Highly sensitive and selective dopamine biosensor
以3,4-二羟基肉桂酸为介质的多壁碳纳米管糊电极用于检测药物和尿液样品中的谷胱甘肽(英文)

以3,4-二羟基肉桂酸为介质的多壁碳纳米管糊电极用于检测药物和尿液样品中的谷胱甘肽(英文)Mohsen Keyvanfard;Hassan Karimi-Maleh;Khadijeh Alizad【期刊名称】《催化学报》【年(卷),期】2013(0)10【摘要】A sensitive and selective electrochemical sensor for the determination of glutathione(GSH) was developed using a modified multiwall carbon nanotube paste electrode with 3,4 dihydroxy cinnamic acid as a mediator.This modified electrode showed very high electrocatalytic activity for the anodic oxidation of GSH.Under the optimized conditions,the electrocatalytic peak current showed a linear relationship with GSH concentration in the range of 0.5-400.0 μmol/L with a detection limit of 0.1 μmol/L GSH.The relative standard deviations for seven successive assays of 5.0 and 25.0 μmol/L GSH were 2.2% and2.7%,respectively.The modified electrode was used for the determination of GSH compounds in real urine samples.【总页数】7页(P1883-1889)【关键词】Glutathione;3,4-Dihydroxy-cinnamic;acid;Carbon;paste;electrode;Multiwall;carbon;nanotube;Sensor 【作者】Mohsen Keyvanfard;Hassan Karimi-Maleh;Khadijeh Alizad【作者单位】Department of Chemistry,Majlesi Branch,Islamic Azad University;Department of Chemistry,Graduate University of Advanced Technology【正文语种】中文【中图分类】O643.3【相关文献】1.修饰的多壁碳纳米管糊电极用于生物与制药样品中苄丙酮香豆素电催化氧化和测定 [J], MasoumehTaei;FardinAbedi2.聚(3,4-乙烯基二氧噻吩)/碳纳米管复合膜修饰电极的电化学制备及其用于8-羟基-2'-脱氧鸟嘌呤核苷的检测 [J], 潘吉超;姚飞;任腾飞;贾丽萍;贾文丽;崔慧;王怀生3.化学修饰多壁碳纳米管制备碳糊电极用于伏安法测定药物和尿液中的异丙肾上腺素(英文) [J], Ali A.ENSAFI;Hajar BAHRAMI;Hassan KARIMI-MALEH;Shadpour MALLAKPOUR4.在色氨酸存在下利用多壁碳纳米管糊电极和萘酚介质构成的伏安传感器测定N-乙酰半胱氨酸(英文) [J], Mohsen Keyvanfard;Maryam Tahmasbi;Hassan Karimi-Maleh;Khadijeh Alizad5.在3,4-二羟基肉桂酸介质中以多壁碳纳米管为传感器电催化检测L-半胱氨酸(英文) [J], Mohsen Keyvanfard;Rasoul Salmani-mobarakeh;Hassan Karimi-Maleh;Khadijeh Alizad因版权原因,仅展示原文概要,查看原文内容请购买。
单胺氧化酶B抑制剂对帕金森病的治疗作用

单胺氧化酶B抑制剂对帕金森病的治疗作用张 瑜,胡林森,王秋艳(吉林大学第一医院神经内科,吉林长春130021)关键词:单胺氧化酶B抑制剂;帕金森病中图分类号:R742.5文献标识码:A文章编号:10042583X(2006)1320979203 帕金森病(PD)是常见的神经变性疾病,虽然经历了近两个世纪的探索,仍然没有针对病因的治疗而只有针对症状的治疗。
随着药物治疗研究的进展,神经防护策略显现出重要的意义。
近来,单胺氧化酶B(MAO2B)抑制剂的神经防护作用日益受到人们的重视,现综述如下。
1 单胺氧化酶(MAO)MAO在19世纪30年代由Balschko发现,是对神经递质代谢起重要作用的一种酶。
MAO分为两种亚型:MAO2A 和MAO2B。
MAO对内源的和外源的生物活性单胺有氧化去氨基作用并有优先选择不同底物和抑制剂的特性:MAO2A 偏重于52羟色胺脱氨基,它对选择性的抑制剂例如氯吉兰(clorgyline)敏感;MAO2B偏重于β2苯乙胺脱氨基,它对MAO2B抑制剂例如丙炔苯丙胺(selegiline、deprenyl、eldepryl)和雷沙吉兰(rasagiline)敏感[2]。
MAO2A抑制剂已被证明是有效的抗抑郁和抗PD药物,但MAO2A抑制剂很少用在治疗PD上,因为MAO2A抑制剂有潜在的干酪效应(非选择性MAO抑制剂治疗可促进血中去甲肾上腺素蓄积,使血压升高,并可导致高血压危象)。
MAO2B在人类神经中枢数量比MAO2A多,大约占总MAO活性的80%。
研究表明,在哺乳动物中抑制MAO2B增加纹状体和血液中的多巴胺含量,而且在PD中MAO2B抑制剂延长和加强多巴胺的诱生,增加锥体外系运动中枢的多巴胺水平[1]。
MAO2B抑制剂被认为是特异性的治疗帕金森病的药物。
近年来丙炔苯丙胺和雷米吉兰已成为治疗PD的MAO2B抑制剂的研究焦点。
2 丙炔苯丙胺丙炔苯丙胺(苯基异丙基甲基炔丙基胺)由化学家Ecseri首先合成。
研究与思考 可卡因滥用的多巴胺能药物治疗

·研究与思考·
Chinese Journal of Behavioral Medical Science 10( 4) ,2001
可卡因滥用的多巴胺能药物治疗
பைடு நூலகம்
周燕萍, 白海燕, 钱华 ( 武警重庆总队医院药剂科, 重庆, 400061)
关键词: 可卡因; 多巴胺能药物; 治疗 中图分类号: R964 可卡因是一种从古柯叶中提取的生物碱, 是一种强效的 中枢神经系统兴奋剂, 也是已知的最易成瘾的物质之一。必 须要有快速有效的 方案来 治疗这 种强 效毒品 的成 瘾者。行 为学观察证实, 在戒 毒后的 头十周 内是 一个 窗口 期, 在这段 时间内复发的可能性 最大, 因此, 寻找 一些 能帮 助成 瘾者度 过 戒 断 初 期 的药 物 来 使 他 们 成 功 戒 毒 是 很有 必 要 的 。 一 、多 巴 胺 假 说 根据可卡因的剂量和给药途径不同, 可引发多种行为和 心理学效应, 在一定 的药理 水平上, 它 是一 个作 用于 多个不 同药理学位点的非 选择性 药物。它以 高亲 和力 与神 经递质 多巴胺( DA) 、5 羟 色胺( 5- HT) 、去甲 肾上 腺 素( NA) 载 体位 点结合, 从而抑制这些胺类重新摄入突触前神经元。同时也 以中等亲和力与钠离子通道结合, 以较小的亲和力与钙离子 通道以及阿片受体、毒蕈碱受体、胆碱能 受体和δ受 体结合, 这些药理作用中与其 作用于 人体的 行为表 现关 系最 密切的 是抑制 DA 再摄 取。这些 效应 包括 欣快、不 易疲 劳、神 经兴 奋以及更清晰的思 维。 这些奖 赏性效 应最 终导 致滥 用和成 瘾, 表现为心理、生理戒断特征以及成瘾性。停用可 卡因后, 如果 DA 浓度降至基础水平, 将导致对更大剂量可卡因的耐 受, 以及类似不安、易怒、焦虑、抑 郁和 烦躁 等戒 断症 状的出 现。为减轻这些症状, 必然对 成瘾 者使 用更 多、更大 剂量的 可卡因。 二 、潜 在 的 药 物 治 疗 1 . 多 巴胺( DA) 受体配 体 多巴胺 受体分 为 D1 受体家 族( D1 、D5) 和 D2 受体家族( D2 、D3 、D4) 。前者 与腺苷 酸环化 酶正性偶联, 后者与之负性偶联。以下讨论的是 已发现的可 作为潜在可卡因滥用治疗药物的 DA 受体激动剂和拮抗剂。 ( 1) D1 家族受 体配 体 有报 道提 出慢 性自 动服 用可卡 因且恒河猴 Nac 中的 D1 受体密度增加[ 1] , 这表明 D1 受体对 可卡因所致可 塑性 甚为重 要, D1 受 体激动 剂的 增 效性 则有 争议。 例 如, Wee D 和 Wool verton 曾 证 明 低 效 激 动 剂 SKF38393 和SKF77434 不 能 被猴 自动 服 用, 而高 效 激 动剂 SKF81297 和SKF82958 则易 于 取代 可 卡因[ 2] 。在 对 D5 受 体组织分布研究的基 础上, 有人提 出它 是一 种主 动受 体, 并 且 可 作 为 可 卡因 滥 用 干 预 治 疗 的 一 个 潜 在目 标 。 ( 2) D2 家族受体配体 不少 D2 家族受体激动剂用于精 神分裂症的治疗已被临床验证, 一种具有 D1 活性的 D2 受体 激动剂bromocri pti ne 治疗可卡因滥用有协同作用, 近期双盲 试验则表明耐受性较好, 且结 果显著[ 3] , D2 受体激 动剂显示 对 D2 受体家族各成员间的选择性较低, 但在动物和 人体中, 大多数均有增强和诱发自动服药的效应, 人体应用氟哌 醇 治疗前显示可卡因主 观奖赏 应减弱 而可卡 因冲 击效 应则较 小, 更多动物研究表明慢性氟哌 醇治疗增强可卡因优先选 择效应, 而急性治疗则阻 断之[ 4] 。 另有 报道, 精 神分 裂症患 者应用治疗剂量的氟 哌 醇 和氟奋 氖静未 见主 观可 卡因效 应的减弱。D2 受 体 拮抗 剂 可 表 现出 烦 躁 等 可 卡 因 戒 断症 状, 虽然对可卡因滥 用治疗 无助, 但可 作为 一种 潜在 的治疗
多巴胺电化学检测研究进展

多巴胺电化学检测研究进展王保光;张鑫;张雪华;何声太;贺涛【摘要】对近年来电化学方法在多巴胺检测方面的应用和进展进行了综述,并对其发展前景进行了展望.【期刊名称】《应用化工》【年(卷),期】2013(042)012【总页数】4页(P2267-2270)【关键词】多巴胺;灵敏度;选择性;修饰电极;电化学检测【作者】王保光;张鑫;张雪华;何声太;贺涛【作者单位】天津工业大学材料科学与工程学院,天津300387;国家纳米科学中心,北京100190;国家纳米科学中心,北京100190;国家纳米科学中心,北京100190;天津工业大学材料科学与工程学院,天津300387;国家纳米科学中心,北京100190【正文语种】中文【中图分类】TQ035;TQ320.77+2;O646多巴胺(DA)属于儿茶酚胺类物质,是哺乳动物和人类中枢神经系统中一种非常重要的信息传递物质,缺乏DA可导致一些重要疾病如精神分裂症和帕金森氏症[1],所以对DA的研究在神经生理学、临床医学、制药学等许多学科都具有十分重要的意义。
近年来,围绕着发展高灵敏度高选择性检测DA的在线分析方法,研究者做了大量的努力,电化学、化学发光、高效液相色谱法、表面等离子体共振、表面增强拉曼以及荧光法等检测DA的方法相继涌出。
在诸多方法当中,电化学分析法具有高选择性、高灵敏度、高稳定性等优点,尤其是微型电化学探针具有良好的生物相容性,能够进行活体在线分析,这使电化学分析方法成为检测DA的理想方法。
在过去几十年的时间里,电化学检测多巴胺已经取得了很大的进展。
但是,直接电化学方法检测DA面临以下问题:①抗坏血酸和尿酸与DA共存于大脑和体液中,在裸电极上三者的氧化电位相近,易对DA检测造成干扰;②AA的浓度一般为10-7~10-3 mol/L不等,且易被氧化失去两个氢原子而转变成脱氢AA,而DA 的浓度为10-8~10-6 mol/L,AA 能够还原DA的电化学氧化产物使其再生;③DA的氧化产物会在电极表面形成一层薄膜而污染电极。
药品分类

神经系统Nervous System利鲁唑 riluzole [1]丁苯那嗪 tetrabenazine [2] 抗癫痫药Antiepileptics左乙拉西坦 levetiracetam [3] 普瑞巴林 pregabalin [4]海因衍生物Hydantoin derivatives苯妥英 Phenytoin酰胺衍生物Carboxamide derivatives卡马西平 Carbamazepine奥卡西平 oxcarbazepine [5] 脂肪酸衍生物Fatty acid derivatives普罗加比 Progabide巴比妥类和衍生物Barbiturates and derivatives苯巴比妥 Phenobarbital氯硝西泮 Clonazepam镇痛药Analgesics阿片样物质Opioids自然阿片生物碱Natural opium alkaloids吗啡 Morphine氢吗啡酮 hydromorphone [6] 苯基哌啶衍生物Phenylpiperidine derivatives哌替啶 Pethidine芬太尼 fentanyl [7][8]苯并吗啡烷衍生物Benzomorphan derivatives喷他佐辛 Pentazocine苯胺Anilides对乙酰氨基酚 Paracetamol精神抑制药Psycholeptics抗精神病药Antipsychotics利培酮 risperidone [9] [10]阿立哌唑 Aripiprazole带脂族侧链的吩噻嗪Phenothiazines with aliphatic side-chain氯丙嗪 Chlorpromazine带哌嗪结构的吩噻嗪Phenothiazines with piperazine structure奋乃静 Perphenazine苯丁酮衍生物Butyrophenone derivatives氟哌啶醇 Haloperidol苯甲酰胺Benzamides舒必利 SulpirideDiazepines, oxazepines and thiazepines 氯氮平 Clozapine奥氮平 Olanzapine奎硫平 Quetiapine抗焦虑药Anxiolytics苯二氮䓬衍生物Benzodiazepine derivatives氯氮䓬 Chlordiazepoxide地西泮 Diazepam氟地西泮 Fludiazepam奥沙西泮 Oxazepam劳拉西泮 Lorazepam氯 唑仑 Cloxazolam阿普唑仑 Alprazolam氯基甲酸酯Carbamates甲丙氨脂 Meprobamate安眠药和镇静剂Hypnotics and sedatives甲喹酮 Methaqualone巴比妥类Barbiturates巴比妥 Barbital异戊巴比妥 Amobarbital 环己巴比妥 Cyclobarbital 司可巴比妥 Secobarbital 戊巴比妥 Pentobarbital 海索巴比妥 Hexobarbital硫喷妥 Thiopental苯二氮䓬衍生物Benzodiazepine derivatives硝西泮 Nitrazepam氟西泮 Flurazepam氟硝西泮 Flunitrazepam夸西泮 Quazepam替马西泮 Temazepam溴替唑仑 Brotizolam三唑仑 Triazolam苯二氮䓬相关药物Benzodiazepine related drugs唑吡坦 zolpidem [11] Piperidinedione derivatives 格鲁米特 Glutethimide精神兴奋药Psychoanaleptics抗抑郁药Antidepressants米安舍林 Mianserin文拉法辛 Venlafaxine曲唑酮 Trazodone噻奈普汀 Tianeptine非选择性5-羟色胺再摄取抑制剂Non-selective monoamine reuptake inhibitors氯丙米嗪 Clomipramine阿米替林 Amitriptyline马普替林 Maprotiline选择性5-羟色胺再摄取抑制剂Selective serotonin reuptake inhibitors氟西汀 fluoxetine [12][13]帕罗西汀 Paroxetine氟伏沙明 Fluvoxamine舍曲林 sertraline [14]西酞普兰 Citalopram艾司西酞普兰 esCitalopram单胺氧化酶A抑制剂Monoamine oxidase A inhibitors吗氯贝胺 Moclobemide提神药,注意力不足过动症用药和促智药Psychostimulants, agents used for ADHD and nootropics吡拉西坦 Piracetam甲氯芬脂 Meclofenoxate黄嘌呤衍生物Xanthine derivatives咖啡因 Caffeine中枢起效的拟交感神经药Centrally acting sympathomimetics阿托莫西汀 atomoxetine [15]抗痴呆药Anti-dementia drugs美金刚胺 memantine [16]抗胆碱酯酶药Anticholinesterases多奈哌齐 donepezil [17][18]卡巴拉汀 rivastigmine [19]抗帕金森氏症药Anti-parkinson drugs抗胆碱药Anticholinergic Drugs硫酸阿托品 Atropine Sulphate氢溴酸山莨菪碱 Anisodamine Hydrobromide 溴丙氨太林 Propantheline Bromide右旋氯筒箭毒碱 d-Tubocurarine Chloride 泮库溴铵 Pancuronium Bromide多巴胺药Dopaminergic agents单胺氧化酶B抑制剂Monoamine oxidase B inhibitors雷沙吉兰 rasagiline [20]金刚烷衍生物Adamantane derivatives金刚烷胺 Amantadine多巴胺促效剂Dopamine agonists罗匹尼罗 ropinirole [21] 阿扑吗啡 apomorphine [22] 罗替戈汀 rotigotine [23] 麻醉药Anesthetics拟副交感神经药Parasympathomimetics胆碱酯Choline esters贝胆碱 Bethanechol抗胆碱酯酶药Anticholinesterases新斯的明 Neostigmine吡斯的明 pyridostigmine [24]成瘾症用药Drugs used in addictive disorders酒依赖用药Drugs used in alcohol dependence阿坎酸 acamprosate [25]尼古丁依赖用药Drugs used in nicotine dependence尼古丁 nicotine [26][27] varenicline [28]循环系统Circulatory System心脏治疗药Cardiac therapy雷诺嗪 ranolazine [29]心兴奋剂Cardiac stimulants强心甙类地高辛 Digoxin磷酸二酯酶抑制剂类Phosphodiesterase inhibitors氨力农 Amrinone米力农 Milrinone肾上腺素和多巴胺药Adrenergic and dopaminergic agents多巴酚丁胺 Dobutamine抗心律失常药AntiarrhythmicsIA类抗心律失常药Antiarrhythmics, class IA奎尼丁 QuinidineIB类抗心律失常药Antiarrhythmics, class IB美西律 MexiletineIC类抗心律失常药Antiarrhythmics, class IC氟卡尼 FlecainideII类抗心律失常药Antiarrhythmics, class II普萘洛尔 PropranololⅢ类抗心律失常药Antiarrhythmics, class III胺碘酮 AmiodaroneIV类抗心律失常药Antiarrhythmics, class IV维拉帕米 Verapamil其他抗心律失常药Other Antiarrhythmics地高辛 Digoxin心脏病使用的血管扩张剂Vasodilators used in cardiac diseases奈西立肽 nesiritide [30]抗高血压药Antihypertensives波生坦 bosentan [31]安贝生坦 ambrisentan [32]抗肾上腺素药Antiadrenergic agents利血平 Reserpine利尿药Diuretics高界利尿药High ceiling diuretics呋塞米 Furosemide低界利尿药氢氯喹嗪 Hydrochlorothiazide留钾剂Potassium-sparing agents氨苯蝶啶 Triamtereneβ阻滞剂Beta Blocking Agents非选择性β阻滞剂Beta blocking agents, non-selective普萘洛尔 Propranolol选择性β阻滞剂Beta blocking agents, selective美托洛尔 Metoprolol奈必洛尔 nebivolol [33]α和β阻滞剂Alpha and beta blocking agents卡维地洛 carvedilol [34]钙通道阻滞剂Calcium Channel Blockers主要血管效果Mainly vascular effects硝苯地平 Nifedipine直接心脏效果Direct cardiac effects苯硫卓衍生物Benzothiazepine derivatives地尔硫 Diltiazem苯烷胺衍生物Phenylalkylamine derivatives维拉帕米 Verapamil肾素-血管紧张素系统作用药Agents acting on the renin-angiotensin systemACE抑制剂ACE inhibitors卡托普利 Captopril雷米普利 ramipril [35]血管紧张素Ⅱ拮抗剂Angiotensin II antagonists氯沙坦 Losartan肾素抑制剂Renin-inhibitors阿利克仑 aliskiren [36]调血脂药Lipid-modifying agentsHMG-CoA还原酶抑制剂HMG CoA reductase inhibitors洛伐他丁 Lovastatin罗苏伐他汀 rosuvastatin [37] 纤维酸吉非贝齐 Gemfibrozil抗血栓药Antithrombotic Agents方达肝素 fondaparinux [38]维生素K拮抗剂Vitamin K antagonists华法林 warfarin [39]血小板凝集抑制剂Platelet aggregation inhibitors氯吡格雷 Clopidogrel酶Enzymes阿替普酶 alteplase [40]蛋白质C protein C [41]抗出血剂Antihemorrhagics抗纤溶药Antifibrinolytics抑肽酶 aprotinin [42]血液凝固因子Blood coagulation factors凝血因子VIII Coagulation factor VIII [43]凝血因子IX coagulation factor IX [44]凝血因子VII coagulation factor VII [45]血管性血友病因子与凝血因子VIII组合 von Willebrand factor and coagulation factor VIII in combination [46]凝血酶 thrombin [47][48]血液代用品和灌注溶液Blood substitues and perfusion solutions羟乙基淀粉 hydroxyethylstarch [49]消化系统Digestive System尼替西农 nitisinone [50]sapropterin [51]口腔药Stomatological preparations氨来占诺 amlexanox [52]止吐药Antiemtic阿瑞匹坦 aprepitant [53]东莨菪碱 scopolamine [54]血清素拮抗剂Serotonin (5HT3) antagonists昂丹司琼 ondansetron [55][56]酸相关病药物Drugs for acid-related disorders消化性溃疡与胃食管反流病药物Drugs for peptic ulcer and gastro-oesophageal reflux diseaseH2受体拮抗H2-receptor antagonists西咪替丁 Cimetidine雷尼替丁 Ranitidine法莫替丁 famotidine [57]质子泵抑制剂Proton pump inhibitors奥美拉唑 omeprazole [58]埃索美拉唑 esomeprazole [59]功能性胃肠病药物Drugs for functional gastrointestinal disorders推进剂Propulsives西沙必利 Cisapride甲氧氯普胺 Metoclopramide多潘立酮 Domperidone功能性肠病药物Drugs for functional bowel disorders阿洛司琼 alosetron [60]替加色罗 tegaserod [61][62]肝胆疾病辅助治疗药物Adjuvant for Hepatic and Biliary Diseases联苯双酯 Bifendate水飞蓟宾 Silibinin熊去氧胆酸 Ursodeoxycholic Acid止泻药Antidiarrheals局部作用皮质激素Corticosteroids acting locally布地奈德 budesonide [63]氨基水杨酸和相似药物Aminosalicylic acid and similar agents巴柳氮 balsalazide [64]减肥药Antiobesity Preparations中枢起效的减肥产品Centrally acting antiobesity products 西布曲明 sibutramine [65]右旋芬氟拉明 dexfenfluramine [66]周边起效的减肥产品Peripherally acting antiobesity products奥利司他 orlistat [67][68]糖尿病用药Drugs used in diabetes磺胺尿素衍生物Sulfonamides, urea derivatives甲苯磺丁脲 Tolbutamide格列苯脲 Glibenclamide双胍Biguanides二甲双胍 Metformin噻唑烷二酮Thiazolidinediones吡格列酮 pioglitazone [69]罗格列酮 rosiglitazone [70][71]曲格列酮 troglitazone [72]酶Enzymesα-半乳糖苷酶 agalsidase alfa [73]β-半乳糖苷酶 agalsidase alfa [74]粘多糖-a-L-艾杜糖醛酸水解酶 laronidase [75] 维生素Vitamin维生素E Vitamin E维生素C Vitamin C生物素 Biotin维生素AVitamin A视黄醇 retinolβ-胡萝卜素 Betacarotene维生素D及类似物Vitamin D and analogues麦角钙化醇 Ergocalciferol二氢速甾醇 Dihydrotachysterol呼吸系统Respiratory system抗组胺药Antihistamines塞庚啶 Cyproheptadine咪唑斯汀 Mizolastine依巴斯汀 Ebastine氯雷他定 loratadine [76]非索非那定 fexofenadine [77]代烷基胺Substituted alkylamines氯苯那敏 Chlorphenamine哌嗪衍生物Piperazine derivatives西替利嗪 Cetirizine [78]阻塞性气道疾病药物Drugs for obstructive airway diseases奥马珠单抗 omalizumab [79]糖皮质激素Glucocorticoids环索奈德 ciclesonide [80]免疫系统Immune System免疫增强剂Immunostimulants聚乙二醇干扰素α-2a peginterferon alfa-2b [81] 干扰素β-1α Interferon beta-1a [82]免疫抑制剂Immunosuppressants沙利度胺 thalidomide [83]选择性免疫抑制剂Selective immunosuppressants西罗莫司 sirolimus [84][85]那他珠单抗 natalizumab [86][87]阿法赛特 alefacept [88]eculizumab [89]肿瘤坏死因子α抑制剂Tumor necrosis factor alpha (TNF-α) inhibitors依那西普 etanercept [90][91]英利昔单抗 infliximab [92]阿达木单抗 adalimumab [93][94]certolizumab pegol [95]白细胞介素抑制剂Interleukin inhibitors达利珠单抗 daclizumab [96]钙调素抑制剂Calcineurin inhibitors他克莫司 tacrolimus [97][98]运动系统抗炎药和抗风湿药Anti-inflammatory and antirheumatic products丁基吡唑烷Butylpyrazolidines羟布宗 Oxyphenbutazone芬那酸Fenamates甲芬那酸 Mefenamic Acid丙酸衍生物Propionic acid derivatives布洛芬 Ibuprofen萘普生 Naproxen醋酸衍生物和相关物质Acetic acid derivatives and related substances双氯芬酸 Diclofenac昔康Oxicams吡罗西康 Piroxicam昔布Coxibs塞来昔布 celecoxib [99][100]肌肉松弛剂Muscle relaxants周边起效的肌肉松弛剂Muscle relaxants, peripherally acting agents肉毒杆菌毒素 botulinum toxin [101]中枢起效的肌肉松弛剂Muscle relaxants, centrally acting agents美索巴莫 Methocarbamol泌尿系统Urinary system他达那非 tadalafil [102]伐地那非 vardenafil [103]西地那非 sildenafil [104]前列地尔 alprostadil [105]生殖系统Genital system雷洛昔芬 raloxifene [106][107]感觉器官Sensory organs眼科Ophthalmologicals哌加他尼 pegaptanib [108]抗青光眼药和缩瞳剂Antiglaucoma preparations and miotics比马前列腺素 bimatoprost曲伏前列腺素 travoprost [109]皮肤非那甾胺 finasteride [110]抗真菌药Antifungals环吡酮胺 ciclopirox [111]特比萘芬 terbinafine [112][113]创伤和溃疡治疗药Preparations for treatment of wounds and ulcers贝卡普明 becaplermin [114][115]抗生素Antibiotics瑞他帕林 retapamulin [116]消毒剂Disinfectants过氧化氢 Hydrogen peroxide高锰酸钾 Potassium Permanganate次氯酸钠 Sodium Hypochlorite乙醇 Ethanol双胍与脒Biguanides and amidines氯己定 Chlorhexidine苯酚及衍生物Phenol and derivatives苯酚 Phenol三氯生 triclosan [117]碘产品Iodine products聚维酮碘 Povidone-iodine季铵化合物苯甲烃铵 Benzalkonium祛痘药Anti-acne preparations维A酸 tretinoin [118]抗肿瘤药Antineoplastic Agents拓扑替康 topotecan [119]伊立替康 irinotecan [120][121]保特佐米 bortezomib [122]三氧化二砷 arsenic trioxide [123] 烷化剂Alkylating Agents替莫唑胺 temozolomide [124][125] 氮芥类似物Nitrogen mustard analogues氮芥 Chlormethine环乙亚胺Ethylene imines塞替派 Thiotepa亚硝脲Nitrosoureas卡莫斯汀 Carmustine [126]烷基磺酸盐Alkyl sulfonate白消安 Busulfan抗代谢药物Antimetabolic Agents叶酸类似物Folic acid analogues甲氨蝶呤 Methotrexate培美曲塞 pemetrexed [127]嘧啶类似物Pyrimidine analogues氟尿嘧啶 Fluprpuracil阿糖胞苷 Cytarabine卡培他滨 capecitabine [128]吉西他滨 gemcitabine [129]嘌呤类似物Purine analogues巯嘌呤 Mercaptopurine植物生物碱和其它天然产物Plant alkaloids and other natural products长春碱及类似物Vinca alkaloids and analogues长春碱 Vinblastine紫杉醇Taxanes太平洋紫杉醇 paclitaxel多西紫杉醇 docetaxel [130][131]细胞毒性抗生素和相关物质Cytotoxic antibiotics and related substances博来霉素 Bleomycinixabepilone [132]放线菌素Actinomycines放线菌素D Dactinomycin蒽环和相关物质Anthracyclines and related substances多柔比星 Doxorubicin表柔比星 epirubicin [133]米托蒽醌 mitoxantrone [134]铂化合物Platinum compounds顺铂 Cisplatin卡铂 Carboplatin奥沙利铂 oxaliplatin [135]单克隆抗体Monoclonal antibodies贝伐单抗 bevacizumab[136]西妥昔单抗 cetuximab [137]利妥昔单抗 rituximab [138]曲妥珠单抗 trastuzumab [139][140]吉妥珠单抗 gemtuzumab [141]用于光动力疗法或放疗的增敏剂Sensitizers used in photodynamic/radiation therapy氨基乙酰丙酸 aminolevulinic acid [142]蛋白激酶抑制剂Protein kinase inhibitors伊马替尼 imatinib [143][144][145][146]吉非替尼 gefitinib [147]埃罗替尼 erlotinib [148]索拉非尼 sorafenib [149]拉帕替尼 lapatinib [150]nilotinib [151]抗感染药antiinfectives抗细菌药Antibacterials雷奈佐利 linezolid [152]β-内酰胺抗生素β-Lactam Antibiotics青霉素钠 Benzylpenicilin Sodium 苯唑西林钠 Oxacillin Sodium阿莫西林 Amoxicillin头孢氨苄 Cefalexin头孢噻肟钠 Cefotaxime Sodium克拉维酸钾 Clavulanate Potassium 氨曲南 Aztreonam四环素类抗生素Tetracycline Antibiotics四环素 Tetracycline氨基糖苷类抗生素Aminoglycoside Antibiotics链霉素 Streptomycin妥布霉素 tobramycin [153]大环内酯Macrolides红霉素 Erythromycin泰利霉素 telithromycin [154] 克拉霉素 clarithromycin [155] 氯霉素类抗生素Chloramphenicol Antibiotics氯霉素 Chloramphenicol喹诺酮抗细菌药Quinolone antibacterials吡哌酸 Pipemidic Acid氟喹诺酮Fluoroquinolones诺氟沙星 Norfloxacin环丙沙星 ciprofloxacin [156] 抗分支杆菌药Antimycobacterials异烟肼 Isoniazid抗真菌药物Antimycotics卡泊芬净 caspofungin [157] 阿尼芬净 anidulafungin [158] 三唑衍生物Triazole derivatives普沙康唑 posaconazole [159] 氟康唑 Fluconazole抗生素两性霉素B Amphotericin B抗病毒药物Antiviral Agents恩夫韦地 enfuvirtide [160] raltegravir [161]maraviroc [162]神经氨酸酶抑制剂Neuraminidase inhibitors奥塞米韦 oseltamivir [163][164] 扎那米伟 zanamivir [165][166] 蛋白酶抑制剂Protease inhibitors替拉那韦 tipranavir [167]阿扎那韦 atazanavir [168]安普那韦 amprenavir [169]沙奎那韦 saquinavir [170][171] 茚地那韦 indinavir [172]利托那韦 ritonavir [173]核苷和核苷酸Nucleoside and nucleotide利巴韦林 Ribavirin核苷和核苷酸逆转录酶抑制剂Nucleoside and nucleotide reverse transcriptase inhibitors齐多夫定 Zidovudine恩替卡韦 entecavir [174]阿巴卡韦 abacavir [175]阿德福韦 adefovir [176]泰诺福韦 tenofovir [177][178]非核苷逆转录酶抑制剂Non-nucleoside reverse transcriptase inhibitors依法韦仑 efavirenz [179]奈韦拉平 nevirapine [180]免疫球蛋白Immunoglobulins乙肝免疫球蛋白 Hepatitis B immunoglobulin [181] 疫苗Vaccines细菌疫苗Bacterial vaccines脑膜炎球菌疫苗 Meningococcal vaccines [182]病毒疫苗Viral vaccines流感灭活全病毒 Influenza, inactivated, whole virus [183]轮状病毒腹泻疫苗 Rota virus diarrhea vaccines [184]乳头状瘤病毒疫苗 Papillomavirus vaccines [185] 抗寄生虫药Antiparasitic Drugs驱肠虫药Anthelmintics抗线虫药Antinematodal agents苯并咪唑衍生物Benzimidazole derivatives阿苯达唑 albendazole [186] 阿维菌素Avermectines伊维菌素 ivermectin [187] 抗吸虫药Antitrematodals吡喹酮 Praziquantel抗原生动物药Antiprotozoals甲醇喹啉Methanolquinolines奎宁 Quinine氨基喹啉Aminoquinolines氯喹 Chloroquine青蒿素与衍生物Artemisinin and derivatives青蒿素 Artemisinin激素制剂Hormone preparations钙稳态Calcium homeostasis抗甲状旁腺药Anti-parathyroid agents西那卡塞 cinacalcet [188]降钙素Calcitonin鲑降钙素 calcitonin salmon [189] 甲状旁腺激素及类似物Parathyroid hormones and analogues特立帕肽 teriparatide [190]甲状腺治疗药Thyroid therapy左旋甲状腺素钠 levothyroxine sodium [191] 类固醇Corticosteroids氢化可的松 Hydrocortisone地塞米松 Dexamethasone垂体激素及类似物Pituitary hormones and analogues派克索曼 pegvisomant [192]生长激素和生长激素拮抗剂Somatropin and somatropin agonists生长激素 somatropin [193]下丘脑激素Hypothalamic hormones兰瑞肽 lanreotide [194]性激素Sex hormones雌激素Estrogens雌二醇 estradiol [195]抗孕激素Antiprogestogens米非司酮 mifepristone [196]。
第八版精神病学 第二十二章 躯体治疗

精神病学(第8版)
其他作用机制的新型抗抑郁剂
米安色林(mianserine)和米氮平(mirtazapine):其药理作用主要是拮抗突触前α2肾上腺素受体, 以增加去甲肾上腺素能和5-羟色胺能的传递。有较强的镇静和抗焦虑作用。有体重增加、过度镇静副 作用,少有性功能障碍或恶心腹泻。米安色林有引起粒细胞减少的报道,应监测血象 安非他酮(bupropion):又称布普品,NE和DA双重再摄取抑制剂。既有DA再摄取抑制作用,又具 有激动DA的特性,长期大剂量服用可使β肾上腺素受体下调。适用于双相抑郁、迟滞性抑郁、睡眠过 多、用于认知缓慢或假性痴呆及对5-HT能药物无效或不能耐受者,还可用于注意缺陷障碍、戒烟、兴 奋剂的戒断和渴求。常见的副作用有坐立不安、失眠、头痛、恶心和出汗。大剂量有诱发癫痫报道 瑞波西汀(reboxetine): 系选择性NE再摄取抑制剂。尤其SSRIs治疗无效者可选用。主要副作用为 口干、便秘、多汗、失眠、勃起困难、排尿困难、不安或体位性低血压等。与抑制CYP3A4酶药物合
第一章
谢 谢 观 看
作者:郝伟
绪论
第二十二章
躯体治疗
作者:王传跃
单位:首都医科大学
目录
第一节 概述
第二节 抗精神病药物
第三节 抗抑郁药物
第四节 心境稳定剂
第五节 抗焦虑药
第六节 物理治疗
重点难点 掌握 常用于精神障碍治疗药物的类别;抗精神病药物、抗抑郁药 物、心境稳定剂及抗焦虑药物的使用原则,适应证与禁忌证, 常见药物不良反应及其处理方法
抗精神病药的历史
氯丙嗪:第一个治疗精神障碍的合成药物,新纪元。 氯氮平:化学结构或治疗靶标的最佳参照。 已有上百种曾先后应用于临床,目前较为常用的大约有二三十种。
抗抑郁剂对认知功能的影响
抗抑郁剂对认知功能的影响吴香巍;李清伟;吴文源【摘要】@@ 认知功能是指人脑对信息分辨、整合、加工处理的功能,并在此基础上形成解决问题、完成任务的综合能力,其损害是抑郁症的重要临床特征之一[1].抗抑郁剂对认知功能的影响受到越来越多的关注.认知功能损害小甚至能改善认知功能的药物有助于提高治疗依从性,进一步改善预后.本文就临床常见几类抗抑郁剂对认知功能的影响及其可能机制予以综述.【期刊名称】《上海精神医学》【年(卷),期】2010(022)002【总页数】3页(P123-125)【作者】吴香巍;李清伟;吴文源【作者单位】同济大学附属同济医院心身科,200065;同济大学附属同济医院心身科,200065;同济大学附属同济医院心身科,200065【正文语种】中文认知功能是指人脑对信息分辨、整合、加工处理的功能,并在此基础上形成解决问题、完成任务的综合能力,其损害是抑郁症的重要临床特征之一[1]。
抗抑郁剂对认知功能的影响受到越来越多的关注。
认知功能损害小甚至能改善认知功能的药物有助于提高治疗依从性,进一步改善预后。
本文就临床常见几类抗抑郁剂对认知功能的影响及其可能机制予以综述。
1.1 单胺氧化酶抑制剂(monoamine oxidase inhibitor,MAOI)MAOI的代表药物是吗氯贝胺。
抑郁症患者接受吗氯贝胺治疗6周后认知功能测验变化显著。
其中,临界闪烁融合测验(critical flicker fusion point,CFF)、延迟词汇回忆、面孔识别等测试较治疗前有所改善,简单反应时的时间缩短,表明该药可改善抑郁症患者的警觉性、记忆力和注意力[2]。
同研究中的维洛沙嗪、马普替林也有相似作用,但吗氯贝胺改善患者认知功能快且稳定[2]。
1.2 三环类/四环类抗抑郁剂(tricyclic antidepressants,TCA/Tetracyclic antidepressants)该类药物在临床上使用广泛,因其对中枢神经系统M受体和H1受体有较高亲和力,抗胆碱能、抗组胺作用显著,可影响服用者的认知功能。
牛血清蛋白-Au配合物及其复合物制备及表征
牛血清蛋白-Au配合物及其复合物制备及表征王圣琼;孙畅;陶春先;韩朝霞;洪瑞金;林辉;张大伟【摘要】以牛血清蛋白(bovine serum albumin,BSA)、氯金酸(HAuC14)、NaOH等为原料,采用一锅合成法制备了牛血清蛋白-Au配合物(BSA-Au),观察到了样品的宽带红光荧光发射.通过库仑力作用将BSA-Au与表面带有正电荷的金纳米颗粒进行复合,对纳米复合物的吸收光谱及荧光光谱特性进行了研究.实验结果表明,在本实验条件下,金纳米颗粒虽然增强了复合物样品在可见光区域的光吸收,但对BSA-Au红光发光有猝灭作用.【期刊名称】《光学仪器》【年(卷),期】2018(040)001【总页数】6页(P13-18)【关键词】牛血清蛋白;亚纳米尺度金簇;荧光光谱【作者】王圣琼;孙畅;陶春先;韩朝霞;洪瑞金;林辉;张大伟【作者单位】上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093;复旦大学高分子科学系,上海200433;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学教育部光学仪器与系统工程研究中心,上海200093;上海理工大学上海市现代光学系统重点实验室,上海200093【正文语种】中文【中图分类】O433.4引言以金、银为代表的亚纳米尺度贵金属发光结构由于其良好的物理化学稳定性、较高的荧光量子产额、在一定条件下的开/关可控发光等特性,使得其在生物荧光探针[1]、化学传感器[2- 3]、光存储/光编码[4- 5]、无稀土荧光粉[6]等领域显示出了很好的应用前景。
自噬在抑郁症发生发展中作用的研究进展
自噬在抑郁症发生发展中作用的研究进展吴婷【摘要】抑郁症是以显著而持久的心境低落为主要特征的精神性疾病.近年来研究显示抑郁症中存在自噬激活,多种抗抑郁药物可以调节抑郁症患者的自噬水平.细胞自噬本质上是一种溶酶体依赖的蛋白质降解途径,它对神经元存活和突触可塑性都具有重要作用.自噬参与多种神经系统疾病的发展进程,如帕金森病、阿尔茨海默病和亨廷顿病等.目前自噬与抑郁症关系的研究较少,本文就神经元自噬参与抑郁症的发病及相关药物治疗作一综述.【期刊名称】《复旦学报(医学版)》【年(卷),期】2018(045)004【总页数】5页(P573-577)【关键词】抑郁症;自噬;抗抑郁药【作者】吴婷【作者单位】复旦大学附属中山医院中西医结合科-复旦大学中西医结合研究院神经病学研究所上海200032【正文语种】中文【中图分类】R749.4抑郁症是一种严重影响家庭社会和谐的心境障碍性疾病,临床表现为心境低落、快感缺失、睡眠和认知障碍等,严重者可有自杀倾向[1]。
治疗方法主要有药物、心理和物理治疗等。
药物治疗主要有单胺氧化酶抑制剂(monoamine oxidase,MAOI)、三环类抗抑郁药(tricyclic antidepressant,TCA)、选择性5-HT再摄取抑制剂(selective serotonin revptake inhibitor,SSRI)、5-HT/NE再摄取抑制剂(serotonin and norepinephrine revptake inhibitor,SNRI)和NE/DA再摄取抑制剂(norepinephrine-dopamine revptake inhibitor, NDRI)等。
这些药物作用多基于抑郁症单胺类递质失调的假说,集中在调节患者脑内单胺类神经递质系统的功能上。
但目前的药物治疗周期长,起效慢,效率低。
大多数抗抑郁药只对50%的患者起效[2],这意味着经典的单胺递质失调假说并不能完全阐明抑郁症的发病机制。
OMC在电化学生物传感器中的应用论文
OMC在电化学生物传感器中的应用论文OMC在电化学生物传感器中的应用论文电化学生物传感器采用电极作为换能元件,可用于检测样品中的生物分子。
现代生物传感器的概念的提出源于 1962 年,Leland C. Clark Jr 等[1]将葡萄糖氧化酶附着于氧电极,设计了第一支电流型葡萄糖酶电极,至此开启了生物传感器了的大门。
作为传感器的一个重要分支,电化学生物传感器已广泛应用于免疫分析、生物代谢产物分析、生物芯片等多个领域,未来电化学传感器的发展必将受到更广泛的关注。
有序介孔碳热力学稳定性、导电性、催化性等性能良好,适于构建电化学生物传感器,以下主要从三个方面对 OMC 在电化学生物传感器方面的应用做简单介绍。
1 基于有序介孔碳-离子液体的电化学生物传感器离子液体(Ionic Liquids,IL)是一种由含氮、磷的有机阳离子和无机阴离子组成的离子化合物,由于其在室温附近呈液态,故又称为室温离子液体。
由于其沸点高、难挥发、无污染,因而也被视为“绿色溶剂”。
与大多数电解质和传统的有机试剂相比,IL 具有一系列突出的特点:室温呈液态、高沸点、难挥发、溶解能力强、溶解性和粘稠度可调控、电化学性质稳定等,自 IL 发展以来,在电化学领域得到广泛的应用.Zhu 小组将石墨粉、石蜡、离子液体(1-乙-甲基咪唑乙基硫酸盐,1-ethyl-3-methylimidazoli-um ethylsulphate,[EMIM]EtOSO3)按照适当比例混合制成碳糊电极(CILE),进而将分散在 Nafion 溶液中的 OMC 修饰于 CILE 表面,制成新颖的 Nafion-OMC/CILE 修饰电极,从而构建了实现对双链 DNA 检测的电化学生物传感器。
Sun 小组[8]将介孔碳、葡萄糖氧化酶(GOD)、离子液体(1-丁基-3-甲基咪唑六氟磷酸盐,1-butyl-3-methylimidazolium hexafluorophosphate)组合成微电极,实现了对葡萄糖的有效检测,该传感器的研制为多种酶电极的开发应用提供了参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrodeXiuli Niu,Wu Yang n ,Hao Guo,Jie Ren,Jinzhang GaoCollege of Chemistry and Chemical Engineering,Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province,Northwest Normal University,Lanzhou 730070,PR Chinaa r t i c l e i n f oArticle history:Received 6May 2012Received in revised form 8August 2012Accepted 9August 2012Available online 23August 2012Keywords:GrapheneMulti-wall carbon nanotubes Ionic liquid3,4,9,10-perylene tetracarboxylic acid DopamineModified electrodea b s t r a c tA sensitive and selective electrochemical sensor for determination of dopamine (DA)was fabricated based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets,multi-wall carbon nanotubes and ionic liquid modified glass carbon electrode and the properties of modified electrode were characterized by scanning electron microscopy,transmission electron microscope and electro-chemical impedance spectroscopy.The modified electrode showed excellent electrocatalytic activity toward the oxidation of DA.Meanwhile,a possible reaction mechanism related to the oxidation of DA was proposed.The differential pulse voltammetry was used for the determination of DA in the presence of 500m M ascorbic acid and 330m M uric acid under the optimum conditions and a good linear relationship between peak current and the concentration of DA was obtained in the concentration range from 0.03m M to 3.82mM with a detection limit of 1.2Â10À9M (S/N ¼3).Moreover,the proposed method was successfully applied to determine DA in real sample and satisfactory results were obtained.The results showed that the modified electrode exhibits an excellent catalytic activity,good sensitivity,reproducibility and long-term stability.&2012Elsevier B.V.All rights reserved.1.IntroductionSensitive,selective,rapid,and cost-effective analysis of bio-molecules is important in clinical diagnostics and treatment.Carbon nanostructures,such as carbon nanotubes,carbon nano-dots,and carbon nanofibers have been used for this purpose (Liu et al.,2008a ;Chen et al.,2007;Cao et al.,2007;Fu et al.,2007;Hao et al.,2007).Recently,graphene-based nanomaterials have attracted great attention for both fundamental science and applied research.Graphene is a two-dimensional sheet of carbon atoms bonded by sp 2hybrid orbitals.This structural characteristic is the reasons for the extraordinary properties of graphene,which include a very large surface area,high electrical conductivity,exceptional thermal and mechanical properties (Geim and Novoselov,2007).Because of their novel properties,graphene sheets (GS)have received considerable interest for potential applications in many fields,such as nanocomposites,field-effect transistors,biosensors,and so on.It is noted that GS,which have a high specific surface area,tend to form irreversible agglomeratesor even restack to form graphite through strong p –p stacking and van der Waals interaction (Li et al.,2008).Hence the prevention of aggregation is a key challenge in the synthesis and processing of bulk-quantity GS.Recently,it has been found that the functiona-lization is an efficient method to improve their dispersibility and solubility in aqueous solvent (Zhang et al.,2011;Liu et al.,2010;Li et al.,2009;Hong et al.,2010).It is well known that carbon nanotubes(CNTs)are suitable materials for electrode modification because of the high accessible surface area,low electrical resis-tance,extremely high mechanical strength and stiffness,outstand-ing charge-transfer characteristics and high chemical stability (Fang et al.,2009;Guldi et al.,2005;Dai et al.,2006;Rodney et al.,2002).The application of CNTs in the fields of electroanalysis and electrochemical biosensors had been reviewed.Generally,CNTs can enhance the detection sensitivity and improve reversi-bility as it can promote electron transfer.On the other hand,ionic liquid (IL)have also received great attention in the last few years due to their excellent properties such as high ionic conductivity,good chemical and thermal stability,negligible vapor pressure,wide electrochemical windows and well biocompatibility.IL can be used as not only the supporting electrolyte but also the modifier for the chemically modified electrodes.The reviews about the application of IL in theContents lists available at SciVerse ScienceDirectjournal homepage:/locate/biosBiosensors and Bioelectronics0956-5663/$-see front matter &2012Elsevier B.V.All rights reserved./10.1016/j.bios.2012.08.025nCorresponding author.Tel.:þ869317971216.E-mail address:xbsfda123@ (W.Yang).Biosensors and Bioelectronics 41(2013)225–231fields of analytical chemistry or electrochemistry had been reported (Pandey,2006;Sun et al.,2007).Several groups had used different kinds of IL in electrode modification for the design of new electro-chemical sensors or as novel electrocatalytic materials.The studies demonstrated that the presence of IL not only acted as a suitable charge-transfer bridge to facilitate the electrode transfer rate but also exhibited excellent electrocatalytic ability and good anti-fouling ability(Sun et al.,2009a,b;Shul et al.,2006;Choi et al.,2009).Dopamine(DA)is an important neurotransmitter in the mamma-lian central nervous system.Low levels of DA may cause neurological disorders such as schizophrenia and Parkinson’s disease(Liu et al., 2005;Mo and Ogorevc,2001).The accurate and rapid determination of DA concentration in bodyfluid is a significant issue to conveniently trace and diagnose the diseases.Ascorbic acid(AA)is well known for its antioxidant property and usually coexists with DA in biological samples,which concentration is several orders of magnitude higher than that of DA,and have a similar oxidation potential(Yen et al., 2002;Ali et al.,2007;Tang et al.,2008).Therefore,it is of importance to develop a rapid,simple,sensitive sensor for the detection of DA without interference by AA.Recently,different kinds of DA sensors have been fabricated based on chemical modified electrodes,such as polymer electrodes,self-assembled monolayer and carbon nanoma-terialfilm electrodes(Codognoto et al.,2007;Lakshmi et al.,2009; Rodriguez et al.,2008;Kalimuthu and Abraham,2010;Liu et al., 2008b;Zhu et al.,2009;Kim et al.,2010;Thiagarajan et al.,2009). Graphene and CNTs have widely been used as ideal electrode modified nanomaterials because they can provide more active sites and are easier to fabricate.Several groups had used functionalized graphene,CNTs or negatively charged polymerfilms to modify electrodes to determination positively charged DA and to eliminate the interference of AA(Hou et al.,2010;Deng et al.,2009;Zhao et al., 2005;Wang et al.,2009;Balamurugan and Chen,2007).Although the electrochemical responses have been continuously improved,the development of more reliable and efficient sensors for sensitive analysis of DA still remains very challenging.Therefore,the choice of material is essential and important to construct sensors with excellent performances.In this paper,3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets(PTCA-GS)were prepared by a simple synthetic method.The modification of PTCA onto graphene sheets can not only separate the graphene sheets and maintain inherent electronic structure of graphene sheets but also provide a negatively-charged –COOH,which made the resulting PTCA-GS composites disperse well in solvents and provide more active sites.Meanwhile,by combining the advantages of PTCA-GS,MCNT and IL,a novel and more sensitive dopamine electrochemical sensor was fabricated with PTCA-GS/MCNT/IL modified electrodes.Because of synergetic effects of conductive functionalized graphene,MCNT and biocom-patible IL,the direct electron transfer between DA and electrode surface can be efficiently achieved.Most importantly,such mod-ified electrode shows good electrocatalytic performance to DA with high sensitivity and good stability.The sensitivity of the sensor along with its improved selectivity might allow for its potential use in the investigation and diagnosis of dopamine-related disease. 2.Materials and methods2.1.ReagentsNatural graphite powder(o20m m)was purchased from Tianjin Guangfu Research Institute(Tianjin,china).Multi-walled carbon nanotubes(purity495%)was purchased from Shenzhen Nanotech Port Company(Shenzhen,China).[BMIM][BF4]was purchased from Lanzhou Institute of Chemical Physics(Lanzhou,China).3,4,9, 10-perylenetetracarboxylic dianhydride(PTCDA,97%),dopamine,ascorbic acid and uric acid were ordered from Sigma-Aldrich (USA).The3,4,9,10-perylene tetracarboxylic acid(PTCA)solution was made by hydrolyzing3,4,9,10-perylenete-tracarboxylic dianhy-dride(PTCDA)in an appropriate amount of1.0M sodium hydroxide. Phosphate buffer solution(PBS)was prepared by mixing the stock solution of0.1M NaH2PO4and0.1M Na2HPO4and adjusting the pH with0.1M H3PO4or0.1M NaOH.Unless otherwise stated,other reagents were of analytical grade and were used as received. All aqueous solutions were prepared with double distilled water.2.2.ApparatusElectrochemical experiments were performed on a CHI-832 electrochemical workstation(CH Instruments,Shanghai Chenhua Instrument Corporation,China).A three-electrode cell was employed, consisting of a glassy carbon electrode(GCE)or a modified GCE as a working electrode,saturated calomel electrode(SCE)and platinum sheet respectively as the reference and auxiliary electrode. All potentials are referred to the SCE.The electrochemical impedance spectroscopy measurements were performed on a VMP2multi-channel potentiostats.Scanning electron microscopy(SEM)images were determined with a JSM-6701Ffield emission scanning electron microscope(Japanese Electron Optics Company).Transmission elec-tron microscope(TEM)images were obtained with a JEM1200EX transmission electron microscope opened at an accelerating voltage of80.0KV(Japanese Electron Optics Company).2.3.Synthesis of graphene and PTCA-functionalized graphene sheetsSynthesis of graphene:graphite oxide(GO)was synthesized from graphite powder by a modified Hummers method.GS were prepared by the chemical reduction of GO with hydrazine.Typi-cally,GO(100mg)was dispersed in100mL of deionized water and the dispersion was sonicated using a KQ-250DE ultrasonic bath cleaner until it became clear with no visible particulate matter. Hydrazine monohydrate(1mL)was then added to the dispersion and the mixture was heated in an oil bath at1001C for24h.After the completion of the reaction,the reduced graphite oxide was collected byfiltration,followed by washing with deionized water several times to remove excess hydrazine.Thefinal product was dried in a vacuum oven at801C for24h.Synthesis of PTCA-GS:PTCA-GS was prepared by a simple synthetic method.Typically,PTCA(7.4mg)and GO(30.0mg) were dispersed in25.0mL water and then stirred at401C for 24h.Subsequently,hydrazine solution(0.5mL)and ammonia solution(0.5mL)were added to the mixture and the reaction mixture was held at901C for50min under vigorous agitation. Finally,the precipitation wasfiltered,washed with deionized water forfive times,and dried in a vacuum oven at251C.2.4.Fabrication of PTCA-GS/MCNT/IL,MCNT/IL and PTCA-GS/IL modified electrodesBefore the modification,GCE(3mm)were carefully polished to a mirror with 1.0m m,0.3m m and0.05m m alumina slurry in sequence,rinsed thoroughly with doubly distilled water between each polishing step,finally sonicated in1:1HNO3,1:1ethanol,and doubly distilled water,and dried under a nitrogen stream.And then the electrode was immersed in1.0M H2SO4and treated by cyclic voltammetric scanning in the potential range ofÀ1.0toþ1.0V (vs.saturated calomel electrode,SCE)until a stable CV profile was obtained.For the preparation of PTCA-GS/MCNT/IL/GCE,MCNT/IL/ GCE and PTCA-GS/IL/GCE,10mL of0.1mg mLÀ1PTCA-GS/MCNT wasfirst mixed with50m L of IL and sonicated for2h to form a homogenous mixture.Then,5m L of the mixture was dropped on the pretreated GCE with a microsyringe and dried for24h in air beforeX.Niu et al./Biosensors and Bioelectronics41(2013)225–231 226use.MCNT/IL/GCE,PTCA-GS/IL/GCE were also fabricated for compar-ison using similar process just using MCNT and PTCA-graphene sheets instead of PTCA-GS/MCNT,respectively.3.Results and discussion3.1.Characterization of GS,PTCA-GS and PTCA-GS/MCNT/IL compositefilmThe morphology of GS,PTCA-GS and PTCA-GS/MCNT/IL com-positefilm was characterized using SEM and TEM.Fig.1A and C shows the surface morphology of GS and PTCA-GS,respectively. It can be seen that the unfunctionalized graphene sheets tended to restack with one another,remarkably reducing the useful surface area.In addition,the lateral size of the nanosheets ranged from several hundred nanometers to several micrometers in length.As shown in Fig.1B,graphene sheets exhibited as ultrathin transparent nanosheets and the transparent sheets wereflake-like with wrinkles.In contrast,the SEM(Fig.1C)and TEM(Fig.1D) images of PTCA-GS show a more uniform surface topography. Moreover,ultrathin transparent nanosheet of PTCA-GS show three-dimensional network-like structure.The intergraphene gaps are clearly less than1nm,and this porous structurecouldFig. 1.(A)SEM image of graphene sheets,(B)TEM image of graphene sheets,(C)SEM image of PTCA-functionalized graphene sheets,(D)TEM image of PTCA-functionalized graphene sheets,(E)SEM image of PTCA-GS/MCNT/IL compositefilm and(F)TEM image of PTCA-GS/MCNT/IL compositefilm.X.Niu et al./Biosensors and Bioelectronics41(2013)225–231227significantly increase the effective electrode surface and facilitate the diffusion of the analytes into the film.PTCA not only behave as a modifier of graphene,altering their surface property and preventing their possible agglomeration,but also act as a linkage between graphene and the analytes.The SEM and TEM images of the PTCA-GS/MCNT/IL composite film are shown in Fig.1E and F.It can be seen that interwoven PCTA-GS and MCNT formed a layer of well distributed and steady thin film under the high conduc-tivity of IL.Moreover,a well-packed,highly ordered structure film of PTCA-GS/MCNT/IL was formed during the drying process of the PTCA-GS/MCNT/IL suspension mixture.The nanosized composite film contained a large amount of open graphitic edge planes,which may facilitate the improvement of the electrochemical behaviors.Once deposited on the GCE surface,PTCA-GS,MCNT and IL tended to form a uniform film on the GCE surface.The uniform surface,along with the high conductivity of PTCA-GS,MCNT and IL,provided a favorable environment for electroche-mical tests of biomolecules,such as DA.3.2.Electrochemical characteristics of the modified electrodes Electrochemical impedance spectroscopy (EIS)was employed to monitor the modifying process of electrode.Fig.2shows the typical EIS results of different modified electrodes in 10.0mM [Fe(CN)6]3À/4Àsolution.By fitting the data using an appropriate equivalent circuit,the charge transfer resistance (R ct )of the bare GCE was obtained as 2937O (curve a).After modification with IL,the R ct decreased dramatically to 1786O (curve b),indicating the presence of high ionic conductive IL could greatly enhance the conductivity of the electrode and facilitated the electron transfer between solution and electrode interface.After IL-modified GCE was further modified with MCNT (curve c)and PTCA-GS (curve d)respectively,the EIS exhibited very low interfacial R ct and the R ct values decreased significantly to 556.3O and 474.9O ,which demonstrated that the PTCA-GS/IL/GCE and MCNT/IL/GCE could effectively improve the conductivity of the electrode and have higher electrochemical activity than bare GCE and IL/GCE.While on the PTCA-GS/MCNT/IL/GCE,a nearly straight line was obtained with the R ct value close to zero (curve e),indicating the higher conductivity.Though the surfaces of PTCA-GS and MCNT have a quantity of negative change,it cannot totally hinder the diffusion of high concentration (10mM)of [Fe(CN)6]3À/4Àtowards the electrode surface.Moreover,these results also indicated that the PTCA-GS,MCNT and IL were successfully modified on the surface of GCE and promoted the electrode transfer.3.3.Electrochemical behavior of DAThe electrochemical behaviors of DA at the bare and modified electrodes were investigated by cyclic voltammogram (CV)in 0.1M PBS (pH 5.0)containing 110m M DA.As shown in Fig.3A,a pair of small and unsymmetrical redox peaks appeared on the bare GCE (curve a)with an anodic peak (E pa )and a cathodic peak (E pc )respectively at 0.397and 0.196V and peak-to-peak separa-tion (D E p )was calculated as 201mV,which indicated that the direct electron transfer of DA on bare GCE was very slow and irreversible.However,on the PTCA-GS/MCNT/IL/GCE (curve d)appeared a pair of well-defined redox peaks with E pa and E pc respectively at 0.229and 0.288V and D E p was calculated as 59mV,which indicated that a quasi-reversible electrochemical reaction of DA took place and the redox reaction was very fast.The peak current increased for about 2.4-fold larger than that on the bare GCE.The higher redox currents and morenegativeFig. 2.Electrochemical impedance spectroscopy for (a)bare GCE,(b)IL/GCE,(c)MCNT/IL/GCE,(d)PTCA-GS/IL/GCE,(e)PTCA-GS/MCNT/IL/GCE in the solution of 10.0mM [Fe(CN)6]3À/4Àand 0.1M KCl with the frequencies swept from 105to 0.1Hz.Inset is the Randles circuit model for the modified electrodes.R s :solution resistance;R ct :charge-transfer resistance;C :double-layer capacitance;Z w :War-buryresistance.Fig.3.(A)The cyclic voltammograms of 110m M DA at the bare GCE (a),MCNT/IL/GCE (b),PTCA-GS/IL/GCE (c),PTCA-GS/MCNT/IL/GCE (d);Typical cyclic voltammo-grams of 50m M DA in the presence of 125m M AA (B)and in the absence of AA (C)at the bare GCE (dotted line)and PTCA-GS/MCNT/IL modified electrode (full line)in 0.1M PBS (pH 5.0).Scan rate:60mV s À1.X.Niu et al./Biosensors and Bioelectronics 41(2013)225–231228oxidation potential suggested that PTCA-GS/MCNT/IL/GCE had a good electrocatalytic ability to the electrochemical reaction of DA. The MCNT/IL/GCE(curve b)and PTCA-GS/IL/GCE(curve c)showed a quite low anodic peak potential at0.223V,0.226V respectively. The peak currents increased about1.33-fold,1.4-fold larger than that on the bare GCE.The decrease of overpotential and the increase of redox peak currents demonstrated that the MCNT/IL and PTCA-GS/IL modified electrode could facilitate the oxidation of DA pared to bare GCE,MCNT/IL and PTCA-GS/IL modified electrode,the PTCA-GS/MCNT/IL modified electrode possessed high conductivity,larger surface areas,uniform struc-ture,efficient catalytic activity and biocompatibility.The syner-gistic effect of PTCA-GS,MCNT and IL in the compositefilm can facilitate the electron transfer rate and increase the oxidation signals significantly.The presence of IL not only promoted the electron transfer but also exhibited excellent electrocatalytic ability and good anti-fouling ability.Fig.3B and C shows cyclic voltammograms for the oxidation of DA in the presence and absence of AA at the bare and modified electrode.50m M DA and125m M AA in0.1M PBS(pH 5.0) showed an irreversible broad oxidation peak at0.465V at the bare GCE(Fig.3B(b)).But at the PTCA-GS/MCNT/IL/GCE appeared well-shaped redox peaks(Fig.3B(a))with a remarkable increase in redox currents and negative shift of oxidation peak poten-tial(0.309V).Due to the strong electrostatic repulsion between AA and PTCA-GS/MCNT/IL compositefilm,the electrochemical oxidation of AA was inhibited seriously.Thus,no currents response could be seen.In absence of AA,similar results were observed(Fig.3C).The current responses of DA in the absence and presence of AA were approximately equal,which indicated that oxidation of DA took place on the modified electrode without any interference from AA.The extraordinarily electrocatalytic activity of the modified electrode may be attributed to the high specific surface area and excellent electron transfer ability of the PTCA-GS/MCNT/ILfilm.Because PTCA and acid-pretreated MCNT intro-duce more negatively charged(–COOH,–OH)without further destroying the conjugation of graphene and MCNT.The PTCA-GS/ MCNT/IL compositefilm can concentrate the DA from solution due to electrostatic attraction of the positively charged DA and the negatively charged group.At the same time,the PTCA-GS/ MCNT/IL compositefilm can block the diffusion of AA by the electrostatic repulsion of the negatively charged AA and the negatively charged group.Therefore,the PTCA-GS/MCNT/IL mod-ified electrode eliminated AA interference and increased the selectivity and sensitivity.The determination of DA could be achieved even in the presence of high concentration of AA.3.4.Optimization of condition3.4.1.Effect of accumulation potential and timeAccumulation can improve the amount of adsorption of DA at the electrode and enhance its oxidation signal,which resulted in an improvement of the sensitivity.Fig.S1A shows that the peak current of DA rapidly increased with increasing accumulation time and then decreased with the further increase,and the maximum peak currents was obtained at60s.The peak current of DA at60s was about3-times larger than that without accumulation.Therefore,the accumulation time of60s was chosen as the optimum value for further experiments.Fig.S1B shows the effect of accumulation potential on the CV peak current of100m M DA after60s accumulation.The peak current slightly increased and then decreased as the potentials shifted negatively from0.6toÀ0.3V.The maximal peak current was observed at 0.2V.Therefore,0.2V was applied as the optimal accumulation potential.3.4.2.Effect of the solution pHProton is always involved in the electrochemical reaction of organic compound and exerts significant impact on the reaction speed.Therefore,the effect of pH was investigated by CV in0.1M PBS over the range from pH 3.0to8.0.Plots of peak current against pH are shown in Fig.S2A.It is apparent that the highest peak currents were obtained at pH5.0,when pH45.0the anodic and cathodic peak currents decreased with increasing pH.There-fore,pH5.0was chosen for the subsequent analytical experi-ments.Fig.S2B shows the anodic and cathodic peak potentials shifted linearly to negative direction with the increasing pH values from3.0to8.0,suggesting the involvement of proton in the electrode reactions.The relationship between the anodic and cathodic peak potentials and the solution pH could befit to the equation of E pa(V)¼À0.06694pHþ0.5434(R¼0.9924)and E pc (V)¼À0.06551pHþ0.4565(R¼0.9980),respectively.The pH effect on E pa and E pc demonstrated that the number of electrons and protons involved in the DA oxidation process was equal. Therefore,the probable reactions of DA on PTCA-GS/MCNT/IL/GCE were described as Scheme1.3.4.3.Effect of potential scan rateFig.S3shows the CV of PTCA-GS/MCNT/IL/GCE in0.1M PBS (pH5.0)containing100m M DA with scan rate ranging from30to 500mV sÀ1.The relation between redox peak currents and the scan rate predicted a hybrid kinetic process.At lower scan ratesHO HO NH2H+HOHONH3NH3-2H+OONH3O ONHOONH3O OHNOONHOO+HNOO+NH3HOHOScheme1.Possible reaction process of DA on the electrodeX.Niu et al./Biosensors and Bioelectronics41(2013)225–231229(from 30to 200mV s À1),both the oxidation and reduction peak currents were linearly proportional to the square root of scan rate.The regression equations was i pa (m A)¼À4.9364v (mV 1/2s À1/2)À0.9606and i pc (m A)¼2.8014v (mV 1/2s À1/2)þ1.0137,with a correlation coefficient of 0.9961and 0.9915,respectively.It suggested that the electrochemical redox behavior of DA at the PTCA-GS/MCNT/IL/GCE surface was a diffusion-controlled pro-cess.Whereas at higher scan rates (from 230to 500mV s À1),the redox peak currents increased linearly with the increase of scan rate and the regression equations were i pa (m A)¼À0.0111v (mV s À1)À12.4036and i pc (m A)¼0.0155v (mV s À1)þ10.5496,with a correlation coefficient of 0.9907and 0.9954,respectively.It indicated that the electrochemical oxidation of DA was typical adsorption controlled process.These phenomena suggested that,at low scan rates,DA can easily permeate through PTCA-GS/MCNT/IL film to reach the surface of the electrode by diffusion only.However,at high scan rates,there was not enough time for diffusion of DA through the PTCA-GS/MCNT/IL film,and the electrochemical oxidation process was an absorption behavior.It could be concluded that the reaction occurs not only at the outer surface of electrode but also at reactive sites within the adsorbed assembly.3.5.Selective determination of DA in the presence of AA and UA The differential pulse voltammetry (DPV)was used for the determination of DA in the presence of 500m M AA and 330m M UA under the optimum conditions.The voltammograms of solutions with different concentrations of DA are shown in Fig.4.The peak currents were proportional to DA concentration in the range of 0.03m M–3.82mM with a detection limit of 1.2Â10À9M (S/N ¼3).The linear relationship was described as:I (m A)¼À6.5501À0.0150c (m M)(R ¼0.9982,RSD ¼1.15,N ¼13)A comparison of the PTCA-GS/MCNT/IL modified electrode with other reported modified electrodes for DA detection in the presence of AA is listed in Table 1.It can be seen that the proposed method was fairly sensitive and has a large linear range and low detection limit.3.6.Stability and reproducibility of the modified electrodeThe stability of the modified electrode was evaluated.After two-week storage at 41C,97.5%of the initial current signal was obtained and after four-week storage,95.2%signal remained,indicating that the prepared electrode had excellent long-term stability.Meanwhile,the reproducibility of this modified elec-trode was investigated and the relative standard deviation (RSD)of the sensor response to 0.78mM DA was 2.69%for fifteen successive measurements.When five modified electrodes from the same fabrication procedure were prepared and used for the determination of DA solution,and the RSD was 3.9%.These results indicated that the biosensor had good detecting and fabrication reproducibility,and excellent long-term stability.3.7.Analytical applicationsIn order to evaluate the validity of the proposed method,the modified electrode was applied to determine DA in Dopamine Hydrochloride Injection (10mg mL À1).The sample was diluted 10-times with double distilled water and then appropriate amounts of the sample were transferred to an electrolytic cell for the determination using DPV.The analytical results are shown in Table S1.It can be seen that DA in the sample could be satisfactorily detected with a recovery of 97.8%–103.5%,and the RSD (n ¼5)was less than 3.0%.4.ConclusionsA novel and simple strategy for the sensitive detection of DA at PTCA-GS/MCNT/IL modified electrode was presented in this paper.The experimental results demonstrated that the PTCA-GS/MCNT/IL modified electrode exhibited excellent electrocatalytic activity towards the oxidation of DA with good sensitivity,wide linear range and low detection limit.Meanwhile,the proposed method was successfully applied to the determination of DA in Dopamine Hydrochloride Injection with satisfactory results.Functionalized graphene may offer a promising platform for developing highly sensitive and stable electrochemicalbiosensors.Fig.4.DPVs for various concentrations of DA in the presence of 500m M AA in the range of 0.03m M–3.82mM (from a to n)in 0.1M PBS.Inset:Corresponding linear calibration curve of peak current vs.DA concentration.Pulse amplitude:50mV,pulse width:50ms,pulse period:0.2s.Table 1Comparison of different modified electrodes for DA determination.ElectrodespH Linear range (M)Detection Limit (M)ReferenceBoron-doped CNT/GCE n 7 2.0Â10À8–7.5Â10À5 1.4Â10À9Deng et al.(2009)MCNT-IL-Gel/GCE 7 1.0Â10À6–1.0Â10À4 1.0Â10À7Zhao et al.(2005)GS/DMF/GCE 7.4 4.0Â10À6–1.0Â10À4 2.64Â10À6Kim et al.(2010)GS/CS/GCE7 5.0Â10À6–2.0Â10À4–Wang et al.(2009)MCNT-poly(DBA)/GCE 7.4 1.0Â10À7–7.0Â10À5 1.0Â10À8Zhou et al.(2010)EDTA-GS/Nafion/GCE 7.2 2.0Â10À7–2.5Â10À5 1.0Â10À8Hou et al.(2010)PTCA-GS/MCNT/IL/GCE53.0Â10À8–3.8Â10À31.2Â10À9Present worknGCE:glassy carbon electrode;CNTs:carbon nanotubes;MCNTs:multi-wall carbon nanotubes;IL:ion liquids;GS:graphene sheets;DMP:dimethyl formamide;CS:chitosan;poly(DBA):poly(3,5-dihydroxy benzoic acid);PTCA-GS:3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets.X.Niu et al./Biosensors and Bioelectronics 41(2013)225–231230。