生物医学测量与传感器

合集下载

光学传感器在生物医学领域的应用

光学传感器在生物医学领域的应用

光学传感器在生物医学领域的应用随着现代生物医学技术的不断发展,光学传感器在生物医学领域中的应用逐渐扩大。

光学传感技术可以用于精准控制和测量生物体内的各种物理和化学过程,从而提高对生物过程的理解,为生物医学领域的研究和临床应用提供有力支持。

一、光学传感器在生物医学研究中的应用1. 光学传感器用于生物测量生物测量是医学研究的重要方向之一。

目前,光学传感器被广泛用于测量所需的生物参数,如温度、压力、氧浓度等。

此外,光学传感技术还可以实现对生物体内分子的快速、准确和灵敏测量,例如生物体内的蛋白质、DNA分子等,为医学研究提供了极大的便利。

2. 光学传感器用于光学成像随着成像技术的不断升级,光学成像技术已成为生物医学研究中应用广泛的技术手段之一。

光学传感器在光学成像中发挥重要作用,例如在生物分子成像、细胞分析和组织成像中。

通过利用荧光探针等技术手段,可以对生物过程进行精准且无创的成像,为医学研究提供了重要参考。

3. 光学传感器用于即时分析经过多年的研究发展,光学传感器已经被广泛应用于生物分析。

利用光学传感技术可实时监测生物体内的化学反应过程,从而获得所需数据。

例如,在糖化反应、生物分子交互作用等方面的研究中,光学传感技术被广泛应用,可快速完成分析任务。

二、光学传感器在临床医学中的应用1. 光学传感器用于心血管疾病的检测心血管疾病是导致全球人口死亡率的重要原因之一。

光学传感器技术可被应用于对心血管疾病的检测中。

可以通过光学传感器检测生物体内的氧浓度、心脏收缩等指标,以实时监控病情变化,减少病情的恶化。

2. 光学传感器用于麻醉药物的监测麻醉药物是医院内不可或缺的物质,但这种药物的过度或不足使用会对患者造成严重的伤害。

光学传感技术可以用于监测病人身体内的药物水平实时记录药物的摄入情况,从而减少药物滥用的情况。

这对于加强麻醉药物的管理,提高患者生存率有重要的意义。

3. 光学传感器用于组织成像在临床医学研究领域中,组织成像是非常重要的研究方向。

生物医学传感器实验报告.

生物医学传感器实验报告.

综合实验报告学院医学工程学院实验名称生物医学测量与传感器综合实验专业班级学生姓名学号指导教师成绩实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε;式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。

(E为供桥电压)。

三、实验步骤:1位数显万用表2kΩ电阻档测量所有1、在应变梁自然状态(不受力)的情况下,用42应变片阻值;在应变梁受力状态(用手压、提振动台)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。

如下图1—6所示。

2、差动放大器调零点:按图1—7示意接线。

将F/V表的量程切换开关切换到2V档,合上实验箱主电源开关,将差动放大器的拨动开关拨到“开”位置,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转半圈,调节调零电位器,使电压表显示电压为零。

差动放大器的零点调节完成,关闭主电源。

图1—7 差放调零接线图3、应变片单臂电桥特性实验:⑴将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—8示意接线(粗细曲线为连接线)。

生物医学工程在生物传感器中的应用

生物医学工程在生物传感器中的应用

生物医学工程在生物传感器中的应用一、引言在现代医学领域中,生物传感器起到了至关重要的作用。

生物传感器是一种能够检测和测量生物分子或生理参数的装置,它将生物体的信息转化为可用于分析和诊断的电学信号。

生物医学工程作为交叉学科,涉及工程、物理学和生物学等多个领域,在生物传感器的研发和应用中发挥着重要作用。

二、生物医学工程在生物传感器设计中的应用1. 材料选择生物传感器的材料选择对传感器的性能和稳定性有着重要影响。

生物医学工程师在材料的选择上常常考虑到生物相容性、生物降解性和机械强度等因素,以确保传感器的可靠性和长期稳定性。

2. 传感器结构设计生物传感器的结构设计需要考虑信号的灵敏度和特异性。

生物医学工程师通过传感器的结构优化,可实现更高灵敏度和更好的信号特异性。

例如,通过微流控技术,可以实现对样品的微量控制,从而提高传感器的灵敏度和可靠性。

3. 生物信号转换生物医学工程师利用电化学、光学和声学等技术,将生物信号转换为电学信号。

通过设计合适的电极结构和信号放大电路,生物医学工程师可以实现生物分子的高灵敏度和快速检测。

三、生物医学工程在不同类型生物传感器中的应用1. 电化学生物传感器电化学传感器通过检测溶液中的电流和电势变化来测量生物分子。

生物医学工程师可以利用纳米材料和分子探针等技术,提高电化学传感器的灵敏度和特异性。

例如,利用纳米材料修饰电极表面,可以提高传感器对生物分子的检测灵敏度。

2. 光学生物传感器光学传感器通过测量样品对光的吸收、散射和发射等性质来检测生物分子。

生物医学工程师可以利用荧光标记物和光纤技术等方法,提高光学传感器的检测灵敏度和特异性。

例如,利用荧光标记物与目标物发生特异性反应,可以实现对生物分子的高灵敏度检测。

3. 声学生物传感器声学传感器利用声波的传播和反射等特性来检测生物分子。

生物医学工程师可以利用超声波和声波传感器等技术,实现对生物分子的高灵敏度和无损检测。

例如,利用超声波探测技术,可以实现对人体内部组织和器官的无损检测,为医学诊断提供重要依据。

第2章 生物医学传感器基础课件

第2章 生物医学传感器基础课件
第2章 生物医学传感器基础
• E 0 是金属浸在含有该金属离子有效浓度 为lmol/L的溶液中达到平衡时的电极电位, 称为这种金属的标准电极电位(表3.2 )
• 可看出 E 0 值远远大于所有生物电位信号 的大小。
• E 0 与金属以离子形态转入溶液的能力K 以及温度T有关系。
第2章 生物医学传感器基础
第2章 生物医学传感器基础
• 图 电极-溶液界面的平衡电位
锌电极放入含Zn2+的溶液 中,锌电极中Zn2+进入溶 液中,在金属上留下电子
带负电,溶液带正电。
进入水中的正离子和带负 电的金属彼此吸引,使大多 数离子分布在靠近金属片 的液层中,形成的电场,阻 碍Zn2+进一步迁移最终达 到平衡。
此时金属与溶液之间形成电荷 分第2布章 产生物生医学一传感定器的基础电位差。
第2章 生物医学传感器基础
一、电极的基本概念
• 生物电是生物体最基本的生理现象,各种生物 电位的测量都要用电极;给生物组织施加电剌 激也要用电极
• 电极实际上是把生物体电化学活动而产生的离 子电位转换成测量系统的电位
• 电极起换能器作用,是一种传感器
• 电流在生物体内是靠离子传导的,在电极和导
线中是靠电子传导的,在电极和溶液界面上则

-
-
-

-
生物电检测电极示意图 第2章 生物医学传感器基础
生物电测量的等效电路
第2章 生物医学传感器基础
• 医用电极按工作性质可分为检测电极和 刺激电极两大类:
• 检测电极是敏感元件,用来测定生物电位的。 需用电极把这个部位的电位引导到电位测量 仪器上进行测量,这种电极称为检测电极。
• 剌激电极是对生物体施加电流或电压所用的 电极。剌激电极是个执行元件。

生物医学工程中的生物传感器应用

生物医学工程中的生物传感器应用

生物医学工程中的生物传感器应用一、前言在生物医学工程领域,生物传感器被广泛应用于生物体内部和外部的监测、检测和诊断。

本文将通过不同的角度阐述生物传感器在生物医学工程中的应用。

二、生物传感器的概述生物传感器是一种将生物学元件与传感器技术相结合的装置或系统,用于检测、测量和转换生物体内或周围环境的生物学变量。

生物传感器可以分为光学传感器、电化学传感器、压力传感器等不同类型。

具体的生物传感器可以根据其应用领域进行分类。

三、生物传感器在疾病检测中的应用1. 糖尿病检测:生物传感器可以检测血液中的葡萄糖含量,实时监测糖尿病患者的血糖水平,减轻患者的痛苦。

同时,生物传感器也可以对药物剂量进行监测,确保患者得到正确的治疗。

2. 癌症检测:生物传感器可以检测肿瘤标志物的浓度,从而实现早期癌症的检测。

通过定期监测肿瘤标志物,可以提前发现癌症并及时治疗,提高治愈率。

3. 心血管疾病检测:生物传感器可以监测血压、心率、血氧饱和度等生理指标,及时发现和预防心血管疾病的发生。

四、生物传感器在药物研发中的应用1. 药物筛选:在药物研发过程中,生物传感器可以用于筛选和评估候选药物的活性和毒性。

通过监测药物与靶分子的结合情况,可以快速、准确地评估候选药物的疗效。

2. 药物输送:生物传感器可以通过控制释放药物的速率和剂量,实现个性化药物输送。

通过个体化的药物输送系统,患者可以获得精准的治疗,提高治疗效果并减少不良反应。

五、生物传感器在生物医学影像中的应用1. 生物标记剂:生物传感器在生物医学影像中的应用主要是通过标记剂的使用。

通过将生物传感器与荧光染料或放射性同位素等标记剂结合,可以用于显像、判定和定位病理组织。

2. 分子成像:利用生物传感器的高灵敏度和特异性,可以实现对生物体内分子的定量成像。

通过分析不同组织和器官中特定分子的浓度和分布,可以提供更精准的诊断和治疗方案。

六、生物传感器在生理监测中的应用1. 生物体内监测:生物传感器可以植入或注射到生物体内,实现对生理参数的实时监测。

生物医学传感器原理与应用

生物医学传感器原理与应用

生物医学传感器原理与应用
生物医学传感器原理与应用
一、定义
生物医学传感器是指以生物、化学或物理反应为基础,利用传感器原理和检测技术测量生物医学信号(如生物电、血液成分等)的设备。

二、传感原理
储存在生物体内的信息包括激活的物质和信号物质,以及具有不同电子极性的物质。

这些物质在外部因素的作用下,会形成电子信号,从而被传感器检测。

1、光电检测
光电检测可以通过分析光信号来检测生物医学信号,其原理是通过精密的光学技术观测生物体内反射回来的光谱信号,根据其特定频谱来推断出检测物的浓度,从而反应相应信号物的化学变化情况,可用于检测血液中的蛋白质含量、血糖浓度等生物医学信号。

2、电化学检测
电化学检测是一种以电解质反应为基础的检测方法,通过电解剂对电解质反应产生的电流和电压变化来表征物质浓度的变化,从而进行检测。

电化学检测可用于检测血液中的钠、钙和氯离子、血氧分压、血清谷丙转氨酶等生物医学信号。

三、应用
1、临床医学
生物医学传感器的应用非常广泛,如血氧仪、血液分析仪、脑电图仪、心电图仪等都是利用生物医学传感器原理和技术的应用,可用于检测心肺功能、血氧分压、血液成分等,对临床医学大有帮助。

2、环境监测
生物医学传感器也可用于环境监测,如可以用来检测大气污染物的浓度,检测地下水污染等,为环境保护和环境污染防治提供有力的支持。

四、总结
生物医学传感器是一种利用传感器原理来检测生物医学信号的设备,包括光电检测、电化学检测等原理,具有广泛的应用,如用于临床医学、环境监测等领域,为人类的医疗和环境保护提供了有力的支持。

传感器技术在生物医学检测中的应用

传感器技术在生物医学检测中的应用

传感器技术在生物医学检测中的应用在当今科技飞速发展的时代,传感器技术在生物医学检测领域发挥着至关重要的作用。

从疾病的早期诊断到治疗过程中的实时监测,传感器技术为医疗工作者提供了更准确、更及时的信息,为改善患者的治疗效果和生活质量做出了巨大贡献。

传感器是一种能够感知并响应外界物理、化学或生物信号的装置。

在生物医学检测中,传感器的种类繁多,包括物理传感器、化学传感器和生物传感器等。

物理传感器主要用于检测生理参数,如体温、血压、心率等。

化学传感器则能够检测体内的各种化学物质,如血糖、血脂、尿酸等。

生物传感器则是利用生物分子的特异性识别能力,对生物体内的特定物质进行检测,如蛋白质、核酸、病原体等。

以血糖检测为例,传统的血糖检测方法需要患者到医院抽取静脉血,然后进行实验室分析,这种方法不仅费时费力,而且给患者带来了痛苦。

随着传感器技术的发展,便携式血糖仪的出现极大地方便了糖尿病患者的自我监测。

便携式血糖仪通常采用电化学传感器,通过检测血液中的葡萄糖与电极表面的酶发生反应产生的电流来测量血糖浓度。

患者只需用血糖仪采集少量指尖血,几秒钟就能得到血糖值,从而及时调整饮食和药物治疗。

在心血管疾病的检测中,传感器技术也发挥着重要作用。

例如,血压传感器可以实时监测患者的血压变化,帮助医生及时发现高血压等疾病。

此外,心率传感器能够连续监测患者的心率,对于心律失常等疾病的诊断和治疗具有重要意义。

一些新型的传感器还可以检测心脏的电活动、心肌的收缩力等参数,为心血管疾病的研究和治疗提供了更丰富的信息。

在肿瘤检测方面,传感器技术也展现出了巨大的潜力。

肿瘤标志物是肿瘤细胞产生或释放的一些物质,通过检测这些标志物的浓度可以辅助肿瘤的诊断。

生物传感器可以特异性地识别肿瘤标志物,如癌胚抗原、甲胎蛋白等,从而提高肿瘤检测的准确性。

此外,一些纳米传感器能够进入细胞内部,检测细胞内的生物分子变化,为肿瘤的早期诊断提供了新的途径。

除了疾病的诊断,传感器技术在治疗过程中的监测也具有重要意义。

生物传感器与医学应用

生物传感器与医学应用

生物传感器的类型
▪ 压电生物传感器
1.压电生物传感器是基于压电效应,将生物分子间的相互作用 转化为电信号,实现生物分子检测的传感器。 2.该类型传感器具有灵敏度高、稳定性好等优点,可用于检测 生物分子浓度和活性。 3.压电生物传感器在生物医学、环境监测等领域有广泛的应用 前景。
▪ 热学生物传感器
1.热学生物传感器是通过测量生物分子结合过程中释放的热能 ,实现生物分子检测的传感器。 2.该类型传感器具有无需标记、非破坏性等优点,可用于实时 监测生物分子间的相互作用。 3.热学生物传感器在药物筛选、疾病诊断等领域有重要的应用 价值。
康复医学中的应用
1.生物传感器能实时监测患者的生理指标,为康复治疗提供依 据。 2.通过监测患者的运动和功能恢复情况,评估康复治疗效果。 3.生物传感器技术有助于提高康复治疗的针对性和效率。
在医学中的应用
▪ 远程医疗与健康监测
1.生物传感器可实现远程实时监测,为远程医疗提供便利。 2.患者可在家中自测生理指标,将数据实时传输给医生,提高 医疗效率。 3.生物传感器技术有助于降低医疗成本,提高医疗资源的普及 率。
▪ 生物传感器与可穿戴设备
1.生物传感器可集成于可穿戴设备中,实时监测用户的生理指 标。 2.可穿戴设备结合生物传感器技术,可实现健康监测、运动跟 踪等功能。 3.随着技术的进步,生物传感器在可穿戴设备中的应用将更加 广泛,提高人们的健康水平。
生物传感器与医学应用
生物传感器的优势
生物传感器的优势
生物传感器概述
▪ 生物传感器的应用领域
1.生物传感器在医学、环境监测、食品安全等领域有广泛应用。 2.在医学领域,生物传感器可用于疾病诊断、药物筛选、生物分子相互作用研究等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心电、血压、血流量、脉率、心率、心音、呼吸都是非平 稳周期性随机信号; 脑电、肌电、胃电、眼电等都是非平稳非周期性随机信号; 体温对正常人每天的数值基本是平稳周期性信号,而对于 病人(尤其炎症发烧患者)是非平稳非周期性随机信号。
人体中每时每刻都存在着大量的生命信 息。由于我们的身体整个生命过程中都在不 断地实现着物理的、化学的及生物的变化, 因此所产生的信息是极其复杂的。
2003年度的诺贝尔生理、医学奖授予了美国伊利诺大学的 化学、生物物理学和计算生物及生物工程学教授Paul C. Lauterbur和英国诺丁汉大学物理学教授Peter Mansfield爵士, 以表彰他们对建立磁共振成像(magnetic resonance imaging, MRI)技术所做出的杰出贡献。
100 kV,满足了X射线产生的条件,伦琴 在 实验中采用的是William Crookes研制的 高真空度的阴极 射线管。这一里程碑式的
发现使得伦琴获得了首届(1901年)
物理学诺贝尔奖。
/wiki/File:X-
ray_by_Wilhelm_R%C3%B6ntge
一个完整的生物信号测量系统一般包括以下四个部分: 1、生物信号的引导 (电极和传感器) 2、生物信号的放大 (数字和模拟电路) 3、生物信号的采集和采样 (A/D转换器) 4、生物信号的记录与处理 (信息处理)
心电电极、心音传感器、导联线
心电、心音信号放大器
数据采集卡(A/D转换卡)
生物医学信号检测系统
1957年,美国Mackay制成一种“无线电丸”,由动物吞服下后,可 用无线遥测方式检测体内的某些生理信息,同年,在前苏联的空 间研究中,将遥测技术用于动物的生理医学实验研究。
1957年,美国Holter博士利用无线遥测与磁带记录技术相结合,连 续记录可行走病人长时间的心电图,并与1961年制成由佩戴式磁 带记录器记录,由示波器回放分析的心电监护系统,后来被称作 Holter监护系统。
1924年法国学者Berger首次采用头皮电极记 录到人脑的电活动,发现人脑活动的p波节律,并 第一次绘出了人类癫痈病发作时的脑电图。
1932年,研制了一种可经食管插入胃中观察胃内病变的半硬式胃镜。
1957年,美国首次开发出纤维光学内镜。
1956年,美国人Anger发明了伽玛照相机,成为核医学成像技术的一 个里程碑。
生物医学工程涵盖生物材料与人工器官、生物力学、仿真及控制、 生物医学信号检测及处理技术、医学成像及图像处理、生物医学 电磁学等,而生物医学测量是生物医学工程学科中最基础、应用 最广泛、与其他分支学科联系最密切的领域。
第一章 现代医学仪器概论
本章内容 1. 医学仪器简介 2. 医学仪器发展简史 3. 医学仪器的分类 4. 医学仪器发展现状及研究方向 5. 生物医学测量概述 6. 生物医学测量方法、特点、安全性
自20世纪60年代,开始出现应用电子技术的临床监护仪器, 1962年,国外开始建立危重病人监护系统(ICU)和冠心病人 自动监护系统(CCU)。自70年代后期,微型计算机引入到 临床监护系统中,出现了运用模式识别技术的智能化监护仪器。
自20世纪60年代以来,重点用于生物医学测量的电化学传感器 得到了逐步发展。1962年出现了具有透氧膜的氧电极,此后相继出现 了把某些无机化合物、有机化合物、高分子化合物和生物物质与电极 结合而形成的多种电化学传感器和生物传感器、半导体技术、微加工 工艺和生物技术的进步,促进了生物传感器的发展。
Байду номын сангаас
2. 医学仪器发展简史
现代医学仪器的诞生和发展始于19世纪末20世纪初,这与以量 子力学和相对论为代表的科学重大发现和以机械 制造和电机工程 为代表的工业文明出现密不可分。
1728年,英国Hales Stephen 采用开口的管子插入马的股动脉, 做了人类历史上的第一次血压实验。
1816年,法国医生Rene 发明了听诊器。
今天B超(全数字化彩色B超)已经在全世 界各大中小医院广泛普及,成为常规性检查手段。
可以说,没有B超的医院不能称其为医院。
X光投射成像技术在伦琴创立之后近百年间发生了长足的 进展,借助于各种影像增强材料和手段.X成像早已突破早期 主要针对人体骨骼的成像范围,扩展到全身各个部位。但由 于X光将人体投影到二维成像平面时,反映的是垂直于射线方 向上的无穷多个平行截面人体组织的叠加或平均,使重要的 空间信息模糊或丢失。1972年根据英国工程师毫斯菲尔德 (G.N.Hounfield)和美国人科马克(A.M.Cormack),将计算机 技术与X线相结合,发明了X射线计算机断层扫描 CT(computer aided tomography scanner)重建技术。它 能从许多不同的投影图,计算出真正的二维切片人体组织图 像。此后人们还从新获得的连续切层图通过组合计算出各种 角度的切片图,直到三维图像。这一医学史上划时代的成果, 使豪斯菲尔德与科马克共享了1979年生理学与医学诺贝尔奖。
人体非电信号:如体温、血压、心音、心输出量 人体非电信号及肺潮气量等,通过相应的传感器,即可转变成 电信号。
电信号是最便于检测、提取和处理的信号。
上述信号是由人体自发生产的,称为"主动性"信号。
另外,还有一种"被动性"信号,即人体在外界施加某种刺激 或某种物质时所产生的信号。如诱发响应信号,即是在刺激下所 产生的电信号,在超声波及X 射线作用下所产生的人体各部位的 超声图像、X射线图像等也是一种被动信号。这些信号是我们进行 临床诊断的重要工具。
人体基本生理参量的测量部位示意图 参见课本
医学测量仪器系统通用组成框图
生物信号反映生物体的生命活动状态,生物信号的表 现形式具有多样性,如:既有物理的声、光、电、力等类 的变化;又有化学的浓度、气体分压、PH等的变化,其特 点是信号微弱、非线性、高内阻、干扰因素多等等。这些 特征对于生物信号的研究十分重要。
1892年特斯拉完成了这些实验,但是他并没有使用X光 这个名字,而只是笼统成为放射能。他继续进行实验,并提 醒科学界注意阴极射线对生物体的危害性,但他没有公开自 己的实验成果。1892年赫兹进行实验,提出阴极射线可以穿 透非常薄的金属箔。赫兹的学生伦纳德进一步研究这一效应, 对很多金属进行了实验。
1895年德国物理学家伦琴 (W.h.Roentgen )在吴尔兹堡(Uerzburg)大 学物理研究所发现X射线,在次年的德国物 理学年会上,他宣布并展示了X射线拍摄的 人手X照片,由此开创了人体影像诊断的先 河。当时的电子变压器 高压输出已可达
1842年,Nobelic做早用静电记录了肌电信号。
物理学家希托夫观察到真空管中的阴极发出的射线, 当这些射线遇到玻璃管壁会产生荧光。
随后,英国物理学家克鲁克斯研究稀有气体里的能量释 放,并且制造了一种玻璃真空管,内有可以产生高电压的电 极。
1887年4月,尼古拉·特斯拉开始使用自己设计的高电压 真空管与克鲁克斯管研究X光。他发明了单电极X光管,在其 中电子穿过物质,发生了现在叫做韧致辐射的效应,生成高 能X光射线。
电子学测量方法
杨飞
课程安排
理论课:54课时 实验课 18课时 参考书目:
《生物医学传感器与检测技术》杨玉星 编著 《生物医学测量与仪器》 王保华 主编
生物医学工程是一个多科学的交叉领域,其特点是将工程科学与 生命科学的原理与方法相结合,在生命体的多个层面上对生命体 的现象与运动规律进行定量研究,并发展相应的医疗技术及应用 系统,应用于医学和保健。
随着计算机技术的发展,数字化X线摄影、数字减影(DSA) 应运而生。
这期间另一个重大事件是1903年荷兰生理学家 William Einthoven研制成功了第一台采用弦线式 电流计记录的心电图仪,被誉为心电图之父。他创立的肢体标准导
联的概念,沿用至今。Einthoven开创性的贡献使他获得了1924年 医学诺贝尔奖。
n_of_Albert_von_K%C3%B6llik
er%27s_hand_-_18960123-02.jpg 拍摄的一张X射线照片,伦琴夫人 的手骨与戒指
X线被广泛的应用于对疾病的诊断与治疗,形成了放射诊断 学和放射治疗学。X线还用于疾病的预防、康复和预后随访,在医 学之外,还用于X线衍射分析和工业探伤等多种用途。
治疗类仪器自十八世纪美国科学家富兰克林 (Flanklin)用莱顿瓶放电治疗瘫痪病人以来。直 到19世纪末20世纪初才有了长足的进展,利用电 磁波不同频段不同的生理效应,研制成功的各种 治疗仪器大量进人临床,最具代表意义的有:可 植人式心脏起博器、高频电刀、激光刀、用于癌 症治疗的直线加速器等。伴随微电子技术和计算 机技术的发展。各种物理治疗类仪器在保健、康 复功能替代中发挥了越来越显著的作用。
1. 关键词解释和医学仪器定义
国际标准化组织对医疗器械(medical device)中的 医学仪器(medical instrumentation)定义: 指那些单纯或组合应用于人体的仪器,包括智 能化仪器中的软件。
其使用目的: 1、疾病的预防、诊断、治疗、监护或缓解 2、损伤或残疾的诊断、治疗、监护、缓解或补偿 3、解剖或生理过程的研究、替代或调节 4、妊娠控制
1963年将图像重建理论用于放射医学。
基于压电晶体管效应的超声波发生装置, 在1880年已由Jaeqnts与Pierre Carie建立,其后 在第一、二次世界大战中超声在水下探测中均发 挥了巨大的作用,但作为真正商品化的医用超声 诊断仪直到1958后才出现,此后由于它的广泛的 优点,很快在临床普及。
核磁共振(nuclear magnetic resonance,NMR)成为一种 谱分析方法,早在1946年就由F.Bloch提出,但直到1973年才 由uterbur等研制出临床使用的磁共振成像仪 (magnetic reso-nance imaging,MRI)。该仪器不仅提 供了人体解剖图像(特别是软组织的图像),而且提供了人体特 色部位的生理与代谢信息。
相关文档
最新文档