计算机组成原理第十章 控制单元的设计
Logisim平台微程序控制实验-计算机组成原理

CPU的结构与功能
结构:CPU由控制器、运算器和寄存器组成
功能:控制器负责控制计算机的运行,运算器负责执行算术和逻辑运算,寄存器负责存储数据 和指令
指令集:CPU能够执行各种指令,包括算术指令、逻辑指令、控制指令等
工作原理:CPU通过读取指令、解码指令、执行指令的循环过程,实现对计算机的控制和运算。
控制器:控制计算机的运行,包括指令的 执行和程序的控制
运算器:进行算术和逻辑运算,包括加、 减、乘、除等基本运算
存储器:存储数据和程序,包括内存和外 存
输入设备:将数据或程序输入计算机,包 括键盘、鼠标等
输出设备:将计算机的处理结果输出,包 括显示器、打印机等
总线:连接计算机的各个部件,包括数据 总线、地址总线和控制总线
实验结果分析与讨论
实验目的:验证计算机组成原理的基 本概念和原理
实验方法:使用Logisim平台进行微 程序控制实验
实验结果:成功实现计算机组成原理 的基本功能
分析与讨论:实验结果与预期相符, 验证了计算机组成原理的基本概念和 原理,为后续课程学习打下基础。
06 实验总结与展望
实验总结回顾
实验目的:掌握微程序控制的基本原理和实现方法
实验内容:设计并实现一个简单的微程序控制器
实验方法:使用Logisim平台进行模拟和验证 实验结果:成功实现了微程序控制器的功能,并对计算机组成原理有了更 深入的理解
实验收获与感悟
掌握了Logisim平台的基本操作和微程序控制的原理 提高了计算机组成原理的理解和应用能力 学会了如何分析和解决实际问题 培养了团队合作和沟通能力 提高了对计算机科学的兴趣和热情
微程序控制的优势与局限性
优势:微程序控制可以实现复杂的控制功能,提高系统的灵活性和可扩展性。 优势:微程序控制可以简化硬件设计,降低硬件成本。 局限性:微程序控制需要大量的存储空间,可能导致系统资源紧张。 局限性:微程序控制可能会导致系统响应速度降低,影响系统性能。
计算机组成原理-(完整版)

计算机组成原理-完整版前言计算机组成原理是计算机科学中最基础的课程之一,它主要研究计算机系统的各个组成部分的原理和关系。
它是计算机科学中最基础的课程之一,也是理解其他计算机科学领域的必备基础。
本文将介绍计算机组成原理中涉及的各个方面,从处理器到内存,再到输入输出系统,以及操作系统和应用层,详细解释它们的工作原理和相互关系。
此外,我们还将介绍一些实际的例子,以帮助读者更好地理解这些概念。
计算机硬件组成处理器处理器是计算机的大脑,它是计算机中最为关键的部分之一。
处理器的任务是执行指令,它通过解码指令,再根据指令来执行相应的操作。
处理器包括控制单元和算术逻辑单元两部分。
控制单元是处理器的主控制中心,它决定了处理器要执行的操作,以及操作的顺序。
由于处理器的速度非常快,因此它能够在一个时钟周期内执行多个操作。
算术逻辑单元(ALU)则用于执行运算操作,例如加减乘除、位移等。
ALU从寄存器中读取数据,并根据指令进行相应的计算和操作。
存储器存储器用于存储计算机中的数据和指令。
存储器被分为两种类型:内存和外存。
内存是指计算机中直接可访问的存储,例如DRAM。
它是用于临时存储程序和数据的地方。
内存的访问速度非常快,但只能存储有限的数据量。
外存则是指计算机中不直接可访问的存储,例如硬盘。
它用于长期存储数据和程序。
虽然外存的访问速度相对较慢,但它能够存储大量的数据和程序。
输入输出设备输入输出设备是与计算机交互的途径,例如键盘、鼠标和显示器等。
输入设备用于将数据输入到计算机中,输出设备则用于从计算机中输出数据。
计算机系统架构冯·诺依曼体系结构冯·诺依曼体系结构是计算机系统的经典架构,它由储存器、算术逻辑单元、控制单元和输入输出设备组成。
程序存储在内存中,并通过控制单元来控制执行。
该体系结构具有良好的扩展性和通用性,适用于大多数计算机系统。
哈佛体系结构哈佛体系结构是一种采用不同存储器分别用于程序和数据存储的计算机系统。
cu作用 计算机组成原理

cu作用计算机组成原理计算机组成原理是计算机科学的一门基础课程,它研究计算机硬件系统的组成和工作原理。
在计算机组成原理中,中央处理器(CPU)是计算机的核心部件之一,而控制单元(CU)则是CPU的重要组成部分。
CU(Control Unit)是CPU中的一个重要模块,它负责控制和协调CPU中各个部件的工作,使得计算机能够按照预定的指令序列进行工作。
CU通常由指令寄存器、指令译码器和时序控制电路等部分组成。
CU负责从主存储器中取出指令,并将其存放在指令寄存器中。
指令寄存器是一个特殊的寄存器,用于存放当前执行的指令。
CU通过控制总线和主存储器进行通信,将指令从主存储器中读取到指令寄存器中。
然后,CU通过指令译码器对指令进行解码。
指令译码器根据指令的操作码,确定指令的类型和执行方式,并产生相应的控制信号。
这些控制信号用于控制CPU中其他部件的工作,如算术逻辑单元(ALU)、寄存器和数据通路等。
在指令执行过程中,CU通过时序控制电路产生时序信号,使得CPU中各个部件按照正确的时序工作。
时序控制电路负责对时钟信号进行分频和分配,确保各个部件在正确的时间进行工作,并协调各个部件之间的数据传输和操作。
CU还负责处理异常和中断。
当计算机遇到异常情况(如除0错误、越界访问等)或外部中断请求(如键盘输入、定时器中断等)时,CU会中断当前的指令执行,保存当前的执行环境,并跳转到相应的异常处理程序或中断服务程序。
CU在计算机组成原理中发挥着重要的作用。
它通过控制和协调CPU中各个部件的工作,实现了计算机的指令执行和数据处理功能。
CU的设计和实现对于计算机的性能和功能具有重要影响,是计算机组成原理中的重要内容之一。
解析计算机组成原理实验系统设计与实现

解析计算机组成原理实验系统的设计与实现摘要:本文首先对系统的硬件设计进行了论述和实验,实验一起所采用的是单元式的结构,包括整个的计算机部件的单元电路,用户可以根据自己所设计的模型计算机结构方案对用户的连接方式进行改变,从而构造出结构不同、复杂程度不同的原理性计算机,用此实验对学生们进行教学指导,从而使学生能够清楚的认识到计算机的组成机构及组成系统。
本文在对计算机组成原理课程教学的基础上,掌握了相关技术,并设计和实现了计算机的组成原理实验系统。
关键词:计算机组成原理实验系统;设计与实现中图分类号:tp301-4当今时代,是商业的时代,计算机组成原理实验系统中系统的设计与实现技术并没有得到公开,然而,面对现代教学的要求,用不完善的计算机组成原理实验系统设计与实现进行实验,并不利于增强学生对计算机组成原理的认识。
针对学生的层次及自身能力的不同,一套结构简单、易于实现的组成原理实验系统的设计很有必要,不仅可以使学生对实验有更加深入的了解,同时还能培养学生学习和了解计算机的相关技术,提高自身的理论与实践结合能力。
1系统硬件的设计系统的硬件可以为学生们提供实验的平台,即原理实验仪,由单片机和构成计算机组成的微程序控制器、运算器、输入输出、存储器等基本单元模块组成。
1.1系统的硬件组成实验仪的组成部分如图1所示:图1实验仪的组成结构图实验仪的硬件是以微控制器atmel at89c52为中心,然后再配合其他的各个部件,实现对计算机组成原理的实验教学功能。
1.2mcu at89c52资源分配at89c52资源分配具有一定的标准功能,即8k字节flash闪速存储器,256字节内部ram,32个i/o口线,3个16位定时计时器,一个6量两级中断结构,单个全双工串行通信口,片内震荡及时钟电路等。
同时,at89c52可以通过静态逻辑操作降到最低的0hz,并选用两种软件进行节电的工作。
当空闲时,可以停止cpu的运行工作,但是可以允许ram、计数器、串行通信口等系统的继续工作。
计算机组成原理_阵列乘法器的设计

沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计与实现院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2014年1月10日目录第1章总体设计方案 01.1设计原理 01.2设计思路 (1)1.3设计环境 (2)第2章详细设计方案 (2)2.1总体方案的设计与实现 (3)2.1.1总体方案的逻辑图 (4)2.1.2器件的选择与引脚锁定 (4)2.1.3编译、综合、适配 (6)2.2功能模块的设计与实现 (6)2.2.1一位全加器的设计与实现 (6)2.2.2 4位输入端加法器的设计与实现 (9)2.2.3 阵列乘法器的设计与实现 (13)第3章硬件测试 (16)3.1编程下载 (16)3.2 硬件测试及结果分析 (16)参考文献 (19)附录(电路原理图) (20)第1章总体设计方案1.1 设计原理阵列乘法器采用类似人工计算的方法进行乘法运算。
人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。
如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。
将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。
为了进一步提高乘法的运算速度,可采用大规模的阵列乘法器来实现,阵列乘法器的乘数与被乘数都是二进制数。
可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。
这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果,假设被乘数与乘数的位数均为4位二进制数,即m=n=4,A×B可用如下竖式算出,如图1.1所示。
X4 X3 X2 X1 =A× Y4 Y3 Y2 Y1 =B X4Y1 X3Y1 X2Y1 X1Y1X4Y2 X3Y2 X2Y2 X1Y2X4Y3 X3Y3 X2Y3 X1Y3(进位) X4Y4 X3Y4 X2Y4 X1Y4Z8 Z7 Z6 Z5 Z4 Z3 Z2 Z1图1.1 A×B计算竖式X4 ,X3 ,X2 ,X1 ,Y4 ,Y3 ,Y2 ,Y1为阵列乘法器的输入端,Z1-Z8为阵列乘法器的输出端,该逻辑框图所要完成的功能是实现两个四位二进制既A(X)*B(Y)的乘法运算,其计算结果为C(Z) (其中A(X)=X4X3X2X1 ,B(Y)=Y4Y3Y2Y1,C(Z)=Z8Z7Z6Z5Z4Z3Z2Z1而且输入和输出结果均用二进制表示 )。
计算机组成原理课程设计报告

计算机组成原理课程设计实验报告目录一、程序设计 (1)1、程序设计目的 (1)2、程序设计基本原理 (1)二、课程设计任务及分析 (6)三、设计原理 (7)1、机器指令 (7)2、微程序流程图 (9)3、微指令代码 (10)4、课程设计实现步骤 (11)四、实验设计结果与分析 (15)五、实验设计小结 (15)六、参考文献 (15)一、程序设计1、程序设计目的(1)在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台基本模型计算机。
(2使用简单模型机和复杂模型机的部分机器指令,并编写相应的微程序,具体上机调试掌握整机概念。
(3)掌握微程序控制器的组成原理。
(4)掌握微程序的编写、写入,观察微程序的运行。
(5)通过课程设计,使学生将掌握的计算机组成基本理论应用于实践中,在实际操作中加深对计算机各部件的组成和工作原理的理解,掌握微程序计算机中指令和微指令的编码方法,深入理解机器指令在计算机中的运行过程。
2、程序设计基本原理(1)实验模型机结构[1] 运算器单元(ALU UINT)运算器单元由以下部分构成:两片74LS181构成了并-串型8位ALU;两个8位寄存器DR1和DR2为暂存工作寄存器,保存参数或中间运算结果。
ALU的S0~S3为运算控制端,Cn为最低进位输入,M为状态控制端。
ALU的输出通过三态门74LS245连到数据总线上,由ALU-B控制该三态门。
[2] 寄存器堆单元(REG UNIT)该部分由3片8位寄存器R0、R1、R2组成,它们用来保存操作数用中间运算结构等。
三个寄存器的输入输出均以连入数据总线,由LDRi和RS-B根据机器指令进行选通。
[3] 指令寄存器单元(INS UNIT)指令寄存器单元中指令寄存器(IR)构成模型机时用它作为指令译码电路的输入,实现程序的跳转,由LDIR控制其选通。
[4] 时序电路单元(STATE UNIT)用于输出连续或单个方波信号,来控制机器的运行。
计算机组成原理目录
计算机组成原理目录
一、基本概念和术语
1.计算机组成原理概述
2.计算机硬件和软件的关系
3.信息的表示和处理
4.计算机的运行原理
二、数字逻辑电路基础
1.布尔代数和逻辑门
2.组合逻辑电路
3.时序逻辑电路
4.存储器和寄存器
三、计算机的指令系统和运算
1.指令的表示和执行
2.数据的表示和运算
3.控制逻辑和控制单元
四、存储器和存储器层次结构
1.存储器的分类和特性
2.主存储器和辅助存储器
3.存储器的层次结构和存取方法
4.存储器的高速缓存和虚拟存储器
五、输入和输出设备
1.输入和输出设备的分类和特性
2.输入设备的接口和数据采集
3.输出设备的接口和数据显示
4.输入输出设备的控制和通信
六、总线和通信
1.计算机系统中的总线
2.总线的分类和特性
3.总线的传输方式和速度
4.总线的控制和仲裁
七、处理器的结构和设计原理
1.处理器的功能和组成
2.数据通路和控制单元的设计
3.内部寄存器和处理器的运行状态
4.处理器的性能评价和优化技术
八、计算机体系结构和指令集
1.计算机的级别和体系结构
2.CISC和RISC的比较
3.指令集的设计和实现
4.多核处理器和并行计算
九、系统总线和I/O设备接口
1.系统总线的结构和功能
2.总线的控制和仲裁机制
3.I/O设备的接口和通信
4.DMA和中断处理机制
十、计算机性能评价和提高技术
1.计算机性能的度量和评价
2.程序的优化和并行化技术
3.存储器层次结构的优化
4.编译器的优化技术。
山东大学计算机组成原理课程设计实验报告
运算器结构如下图所示。R0、R1、R2 均为 D 触发器组成的八位寄存器,在打入 脉冲 CPRi 的作用下,接收数据输入端提供的信息送入 Ri 中。
μIR23-16 为微指令寄存器的高八位,可定义为操作数。进位信号 C0、打入脉冲 CPR0、CPR1、CPR2、M、S0、S1、S2、S3 均由微指令寄存器的 μIR8 和 μIR7--μIR0 产生。
算术逻辑运算单元 ALU 的设计
该部分中算术逻辑运算单元用两片 74LS181 芯片按如下图所示结构实现八位 组间串行进位运算器。
74LS181 功能表如下图所示。
5
计算机一班 鸿武 QQ:2420430689(2 号)
ALU 的实现电路图如下。
实验调试
将设计完成的电路图下载到 FPGA 中。按照前面所给的 74LS181 功能表编写 微指令,并写入到 ROM 中,微指令从 0 地址单元开始存放。
微程序控制的存储器读写系统设计............................................... 7 设计目的................................................................. 7 设计要求................................................................. 7 结构与信号索引........................................................... 8 微指令格式及微指令编制................................................... 8
微程序控制的运算器设计详细电路图 ........................................ 22 微程序控制的存储器读写系统设计详细电路图 ................................ 24 微程序设计模型机详细电路图.............................................. 25 硬布线控制的模型机详细电路图............................................ 34
计算机组成原理教学大纲
附件1课程大纲样本1.“计算机组成原理”教学大纲1.课程概要本课程概要如表1-1所示。
本课程大纲由XXX老师执笔。
2.教学内容第1章引言计算机技术的发展;电子计算机发展历史;层次计算机系统;Von Neumann计算机结构及特点;计算机基本组成。
第2章指令和指令系统程序的构成和执行;汇编语言程序设计;指令和指令系统的概念;指令格式;指令类型和寻址方式;CISC RISC;指令执行步骤;计算机性能评价指标。
第3章数据表示和运算数据的数制表示法;真值和机器数;字符与字符串;检错纠错码;定点数据算术和逻辑运算;浮点数据表示;IEEE754标准;浮点数据算术运算;算术逻辑部件ALU。
第4章中央处理器CPU指令的执行过程;基本数据通路设计;单周期CPU设计;多周期CPU设计;微程序控制器;组合逻辑控制器;中断与中断响应;指令流水及冲突处理。
第5章层次存储器系统存储器系统概念和存储器分类;层次存储器系统;高速缓冲存储器;虚拟存储器;半导体存储器存储原理;磁表面存储器存储原理;光盘的存储原理。
第6章总线总线功能和基本组成;总线仲裁;总线操作;总线举例(PCI、USB)。
第7章输入输出系统和设备输入输出系统基本概念;输出输入方式;输入输出接口;输出设备。
3.课程实验实验名称1:THCO MIPSI6指令集的汇编语言程序设计实验目的:熟悉THCO MIPSI6指令系统及主要指令的功能,领会指令的执行过程。
实验内容:用THCO MIPSI6编写4-5个汇编语言程序,并进行测试。
实验环境:普通PC机,Windowa操作系统,THCO MIPSI6指令模拟器。
实验评测:程序能正确运行。
实验名称2:基本数据通路设计实验目的:(1)熟悉硬件描述语言及开发环境;(2)掌握简单运算器的数据传送通路;(3)验证运算器功能;(4)熟悉TEC-2008教学实验系统。
实验内容:用硬件描述语言VHDL在FPGA上实现一个16位的、能完成9种算术/逻辑运算的ALU,并实现一个简单状态机对其进行控制。
中科大计算机组成原理课件ppt
• 唐本(William Stallings)
– 农村包围城市:总线、存储、I/O、ALU、CPU
• llxx
– 目标:理解构建计算机系统的过程
• 十字箴言:“功能、组织、过程、定时、度量”
– China-ring:快速原型法(prototype)
• 总线、RAM、CPU,存储系统(Cache、辅存)、I/O、ALU
• 基于x86的Debug环境,编写任意10个数值的冒 泡排序程序,并调试运行。
– 成果要求:
• 报告设计过程、结果(汇编代码、内存数据段映像)、出现 的典型问题及解决过程; • 要求结果体现个人ID。
实验课
• 设计实现《计算机系统概论》的 LC-3模型机(见附录A/C)
– 共16条指令,指令集具有RISC特征
Basic computer organization, first look at pipelines + caches 从C语言程序的执行 角度讨论计算机组成 原理,但重点关注 MIPS处理器和存储系 统,其他关注很少
Computer Architecture, First look at parallel architectures
Course Schedule
1. 2. 3. 4. 5. 6.
•
概论(4) 总线(4) RAM/ROM(4) ISA(4) CPU (4)
功能、组成、时序、中断系统
A模型CPU控制器设计(6)
组合逻辑、微程序
7.
•
MIPS处理器设计(6)
指令集、单周期、多周期、流水线
8. 9.
•
Cache(4) 辅存(5)
MIT
• 我在这里的第一学期上了一门叫 《计算机系统设计》得 本科课程,其辛苦程度真实一言难尽。十五个星期内交了 十次作业,作了六次课程设计。有的设计还分几个部分, 分开交设计报告。所以设计报告大概也交了有十次左右。 最恐怖的是有一次,十天内要交六份作业或设计报告,而 且当时正值其他几门课正在期中考试。抱怨是没有用的, 老师说:"我很抱歉。但这门课很重要,请大家不停的工 作。"学生从一般的逻辑时序电路开始设计(数电都已忘 得差不多了);核心是自行设计"麻雀虽小五脏俱全"得 ALU,单指令周期CPU(single cycle CPU);多指令 CPU(Multi-cycle CPU);以直到最后实现流水线(pipe line)32位MIPS CPU和Cache。一门课下来,所有与计 算机CPU有关的知识全部融会贯通。硬件设计水平也有了 很大提高(就是太累)。