填充柱气相色谱法..
2020版《中国药典》气相色谱法检验操作规程(USP)

一、目的:制订详尽的工作程序,规范检验操作,保证检验数据的准确性。
二、范围:本操作规程适用于参考美国药典标准检验品种气相色谱法的测定。
三、职责:1、检验员:严格按操作规程操作,认真、及时、准确地填写检验记录;2、化验室负责人:监督检查检验员执行本操作规程。
四、内容:1、液体固定相:用于填料或毛细管柱中。
2、填充柱气相色谱法:液体固定相沉积在细碎的惰性固体载体上,如硅藻土、多孔聚合物或石墨化碳,填充到柱内径一般为2-4毫米,长度一般为1-3米的柱中。
毛细管柱气相色谱法:此类色谱柱不含填料,液体固定相沉积在柱的内表面上,并且可以化学键合到柱上。
3、固体固定相:这类相仅在填充柱中可用。
在这些柱中,固体相是一种活性吸附剂,如氧化铝、二氧化硅或碳,填充到柱中。
有时在填充柱中使用的聚芳烃多孔树脂,不涂覆液相。
[注:填充毛细管柱在使用前必须先调节,直到基线和其他特性稳定为止。
柱或包装材料供应商为推荐的调节程序提供指导。
]4、设备:气相色谱仪由载气源、气化室、色谱柱、检测器和记录装置组成。
气化室、色谱柱、检测器的温度受控,并且可以作为分析的一部分而变化。
典型的载气是氦气、氮气或氢气,根据使用的色谱柱和检测器。
在个别专著中指明,所用检测器的类型取决于分析的化合物的性质,。
检测器输出的数据记录为时间的函数,而仪器的响应(测量为峰面积或峰高度)是存在的量的函数。
5、温度程序:通过改变色谱柱的温度,可以控制气相色谱分离的长度和质量。
当需要温度程序时,个别专著会指示表格式的条件。
该表显示了初始温度、温度变化率(斜坡)、最终温度和在最终温度下的保持时间。
6、程序:6.1用流动载气平衡柱、注射器和检测器,直到接收到恒定信号。
6.2通过注射器隔片注射样本,或使用自动采样仪。
6.3开始温度程序。
6.4记录色谱图。
按规定作分析。
7、色谱图的定义和解释:7.1色谱图:色谱图是检测器响应、流出物中分析物浓度或作为流出物浓度相对于流出物体积或时间的度量的其他量的图形表示。
填充柱气相色谱法..

5.2.2 进样系统 (1)气化室(进样口):金属管, 加热壁, 硅橡胶,密封垫。 作用:将样品瞬间汽化为蒸气 可控温度范围:50~500℃ (2)气体进样阀 六通阀演示 量气管的规格:1,3,5,10ml 四种规格
5.2.3 色谱柱 由柱管和固定相组成 柱形:U形或者螺旋形 柱管材料:不锈钢、铜、玻璃、聚四氟乙烯 柱内径:2~4mm 柱长度:1~10m
主要用于分析稀有气体,永久性气体, 短链极性化合物、醇、醛、水等。特别适合 于痕量分析。
(2)氧化铝 氧化铝是一种弱极性的吸附剂,热稳定性 和机械强度高。比表面积为100—300m2· g-1。 主要用于C1—C4烃类及其异构体的分离, 其含水量影响组分的保留值及选择性。
(3)硅胶
硅胶的主要成分是SiO2,孔径10—70
5.3.3 氢火焰离子检测器(FID)
离子室:金属圆筒
结构
离子头:发射极、收集极、喷嘴
气体供应
氢火焰离子化检测器FID(2)
+ CHO H0 2 + CHO CO 2 H0 2 CO 2 H0 2 CHO+ + CHO CO 2 + CHO H0 2
FID是一个破坏性、质量 型检测器。火焰中生成大 量碳正离子,被收集计算 后形成检测器信号。
高分子多孔微球由苯乙烯和二乙烯苯聚合而 成,属非极性固定相。若在聚合时引入极性不同 的基团,则可改变其表面结构和聚合物的极性。 适于分离短链极性化合物。如醇类、酸、胺 等。特别适合于有机物中痕量水分的测定。 使用前必须进行活化处理,但活化温度不应 超过300℃,否则会发生分解现象。同时,应避 免氧气进入色谱柱,防止高温下氧化。
应采用中性载体避免强酸和强碱样品最为广泛应用的固定相具有相当高的热稳定性和很宽的液态温度范围60350c适合相当数量物质的分离固定相结构与类型商品名称二甲基硅烷ov1ov101se30hp1db1含苯基甲基硅氧烷不同比例对应不同型号含腈丙基苯基的甲基硅氧烷不同比例对应不同型号含碳硼烷结构的甲基硅氧烷ht5sge450c与分子量有关可以分离各种极性和非极性的化合物不同分子量的聚合物具有不同的极性通常使用的是分子量2万的聚合物peg20m或carbowax20m聚合物末端羟基可以连接各种官能团从而可以改变其选择性如连接邻硝基对苯二甲酸可将热稳定性提高至250c以上而且适合分离中性和偏酸性的物质hochohd聚酯类
填充柱气相色谱介绍

分别测定上述5种物质的△IM ,用X′Y′Z′U′S′(可查手册)用分子间各种相
互作用力的总和来确定固定液的选择性。
总△I 值越大,极性越强。
二固定相常数相同,则表明它们的性质基本 相同。
二固定相常数差别大,则表明它们的性质差 别较大。
某固定相常数越小,则该固定相性质越接近 非极性鲨鱼烷。
某固定相常数越大,则该固定相极性越强, 越接近氧二丙腈。
三、固定液与组份分子间作用力
定向力、诱导力、色散力、氢 键作用力。
1、静电力(定向力)——由极性分子 永久偶极矩使分子间产生静电作用引 起。被分离组分极性越大,与固定液 间静电作用力也越强,该组分滞留时 间就越长
2、 诱导力 极性分子的永久偶极使非极性分子
极化而产生诱导偶极,两分子间相互吸引而产生诱
导力。例如苯与环己烷的分离:苯的沸点:80.10℃ 环己
烷的沸点:80.81℃ 两组分都是非极性分子,无永久偶极。 若用非极性固定液很难分开,但苯比环己烷易极化。若用 强极性的ββ′氧二丙腈固定液,使苯产生诱导偶极矩,很 易分离。 tR苯 = 6.3 tR环己烷
环己烷 苯
环己烷
苯
环己烷
苯
非极性石蜡作固定液 强极性ββ’-氧二丙腈做固定液 中等极性DNP作固定液
假如固定液分子中含 -OH ,-COOH , -NH2官能团
分析组分中含F、O、N化合物时, 常有显著氢键作用,使保留值增大。 氢键强弱顺序为:F-H..F>O-H…O >O-H…N>N-H…N>N≡CH…N
第三节 固定液的极性—如何评价固定液?
1、五级分类法(粗分)
规定:ββ′—氧二丙腈的相对极性P = 100
填充柱气相色谱介绍
因为Gc的载气种类少,分离选择性主要靠选 择固定相,峰能否分开,首先取决于固定相, 迄今已有数百种GC固定相,常用的不过十几 种。
气相色谱柱的分类

一. 气相色谱柱的分类色谱柱是由柱管和固定相组成,按照拄管的粗细和固定相的填充方式分为(1)填充柱;(2)毛细管柱。
二. 填充柱气相色谱固定相在影响色谱柱分离效果的诸多因素中选择适当的色谱固定相是关键。
必须使待测各组分在选定的固定相上具有不同的吸附或分配,才能达到分离的目的。
(一)气-液色谱(分配色谱)固定相气-液色谱的固定相是由高沸点物质固定液和惰性担体组成。
1. 担体(或载体)是一种化学惰性的多孔固体颗粒,支持固定液,表面积大,稳定性好(化学、热),颗径和孔径分布均匀;有一定的机械强度,不易破碎。
(1)担体的种类和性能:硅藻土型:红色硅藻土担体—强度好,但表面存在活性中心,分离极性物质时色谱峰易拖尾;常用于分离非、弱极性物质。
白色硅藻土担体—表面吸附性小,但强度差,常用于分离极性物质。
非硅藻土型担体:有氟担体,适用于强极性和腐蚀性气体的分析;玻璃微球,适合于高沸点物质的分析;高分子多孔微球既可以用作气-固色谱的吸附剂,又可以用作气-液色谱的担体。
(2)担体的预处理:除去其表面的活性中心,使之钝化。
酸洗法(除去碱性活性基团);碱洗法(除去酸性活性的基团);硅烷化(消除氢键结合力);釉化处理(使表面玻璃化、堵住微孔)等。
2.固定液——涂在担体上作固定相的主成分(l)对固定液的要求:化学稳定性好:不与担体、载气和待测组分发生反应;热稳定性好:在操作温度下呈液体状态,蒸气压低,不易流失;选择性高:分配系数K 差别大;溶解性好:固定液对待测组分应有一定的溶解度。
(2)组分与固定液分子间的相互作用:组分与固定液分子间相互作用力通常包括:静电力、诱导力、色散力和氢键作用力。
在气-液色谱中,只有当组分与固定液分子间的作用力大于组分分子间的作用力,组分才能在固定液中进行分配。
选择适宜的固定液使待侧各组分与固定液之间的作用力有差异,才能达到彼此分离的目的。
(3)固定液的分类:固定液有四百余种,常用相对极性分类。
四丁基锡中主含量的测定——气相色谱法

四丁基锡中主含量的测定——气相色谱法摘要:本文研究了四丁基锡中主含量(四丁基锡)的测定方法,对气相色谱法测定四丁基锡中四丁基含量的各仪器条件进行了试验。
四丁基锡的测定采用气相色谱法,用热导检测器检测,玻璃填充柱进行分离,面积归一化进行定量。
关键词:四丁基锡玻璃填充柱气相色谱法1前言四丁基锡为无色油状液体,不溶于水,溶于多数有机溶剂。
可燃,有毒,具刺激性,致敏性。
沸点145℃(1.33KPa),熔点-97℃,闪点107℃,相对密度1.0572,折光率(20℃)1.4742。
四丁基锡产品主要用于生产PVC的热稳定剂及部分有机锡催化剂,用作汽油防爆剂。
四丁基锡是发展有机锡深加工的重要中间体之一,其衍生物应用量大、面广,除在聚氯乙烯塑料热稳定剂方面应用外,在海洋防污涂料的制作方面占有很重要的位置,还广泛用于木材防腐、农用杀菌剂、玻璃处理及有机合成等方面。
四丁基锡中主要含有四丁基锡,三丁基氯化锡和少量的二丁基二氯化锡及低沸点物质。
对于主含量四丁基锡的分析采用气相色谱法。
用热导检测器检测,玻璃填充柱进行分离。
本文就四丁基锡中主含量的测定涉及的色谱仪检测器,色谱柱的选择及仪器条件的优化进行了试验。
2实验部分2.1 色谱柱的选择气相色谱分析所用的色谱柱有毛细管柱和填充柱。
和填充柱相比,毛细管柱具有分离效率高、应用范围广等优点。
目前GC分析方法中大部分均采用毛细管色谱柱。
但在本实验中,因为样品含有1%左右的Cl-,Cl-对毛细管柱有一定的腐蚀,同时在毛细管柱上四丁基锡不能得到较好的分离。
填充柱有玻璃填充柱和不锈钢填充柱,同样,Cl-对不锈钢有一定的腐蚀,而在玻璃填充柱上四丁基锡、三丁基氯化锡、二丁基二氯化锡有较好的分离效果,见图1,故本试验中选择了玻璃填充柱。
图1玻璃填充柱试验谱图从图1看出,四丁基锡样品在玻璃填充柱上得到很好的分离,所有组分均已出峰,主含量四丁基锡(TBT)得到很好的分离。
本试验选择色谱柱为玻璃填充柱。
气相色谱柱填充柱,毛细管柱

第二章 气相色谱柱第一节气相色谱柱的类型气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。
其核心即为色谱柱。
气相色谱柱有多种类型。
从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。
色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。
在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。
对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U型柱时柱效较高。
按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。
前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。
在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。
根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。
固定液的种类繁多,极性各不相同。
色谱柱对混合样品的分离能力,往往取决于固定液的极性。
常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。
新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。
其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。
在进行气相色谱分析时,色谱柱的选择是至关重要的。
不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。
有关内容我们将在以后章节中加以详细讨论。
第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。
据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。
填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。
第五章 填充柱气相色谱法

Mcreynalds(麦氏常数) 为了提高I值的准确代表性,Mcreynalds做了大量工作, 最后,他认为,五种代表物,将丁醇 乙醇,戊酮-2 甲乙酮,硝基丙烷 硝基甲烷,更准确些。为了区 别,将麦氏常数分别用X’、Y’、Z’、U’、S’表示。 五种化合物的ΔI值之和称为总极性,按总极性由小 到大的顺序,就构成M氏、R氏常数表。 一些书中,R氏常数表 溶剂常数 M氏常数表 ΔI值 ΔI = 100 X R、M氏常数表的应用
酸性作用点,适用于分析碱性样品。
(3)硅烷化:除去载体表面的硅醇基,消除氢键作用点,方
法是加如入硅烷化试剂,如二甲基二氯硅烷等,处理 后,性能 好,但试剂昂贵。
(四)载体的选择 1、红色硅藻土载体:烷烃、芳烃等非极性、弱极性物。 2、白色硅藻土载体:醇、胺、酮等极性物 3、固定液含量大于5%,一般的红色、白色载体 4、固定液含量小于5%,处理过的载体。 5、高沸点:选玻璃微球;强腐蚀的选氟载体。 二、气液色谱固定液
第一节 填充柱气相色谱
一、系统流程图
二、分析单元
(一)气路系统 作用 供给色谱分析所需要的载气、燃气、助燃气。 包括 气体钢瓶(气体发生器)、减压阀、干燥管等。
1、载气:最常用的有N2,H2等。所走的路线为: 钢瓶(或气体发生器)------压力表-----减压阀----净化管-----(仪器)-----表-----汽化室----柱----检测器。
计算方法:选择一物质对,常用正丁烷----丁二烯,分别在非极性、极性、被测固定液柱上 测物质对的相对保留值,并取对数:
q = lg[
t R丁 t R环
]
填充柱气相色谱

第五章填充柱气相色谱色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。
色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。
分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。
液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。
气相色谱中所用毛细管柱的内径一般小于1mm。
微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。
因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。
色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。
第一节气-固色谱固定相-固体固定相气—固色谱法广泛应用于永久气体和低沸点烃类的分析。
常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。
气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。
气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。
吸附等温线气—固色谱法遵循了气体在吸附剂表面上的吸附规律。
气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。
吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。
就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。
(1)线性吸附等温线如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。
(2)朗格缪尔吸附等温线(向下弯曲的吸附等温线)朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。
(3)向上弯的吸附等温线这种吸附等温线如图5-1的(C)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附的量随气相中物质浓度的增加而急剧增加,吸附等温线与其对应的色谱峰是不对称的“伸舌峰”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
撞击
放射源
N+ + e 2
负极
β 、e-
正极
形成10-9~10-8A的基始电流 I0
当电负性物质AB进入检测器时,
AB+e
捕获电子
AB-+E AB+N2
AB-+N2+
致使I0↘,产生负信号 倒峰 组分的电负性↗,倒峰↗ 组分的浓度C↗,倒峰↗
5.3.5 火焰光度检测器(硫磷检测器) 高灵敏度,高选择性检测器 硫:5×10-11g· s-1; 磷:1.4×10-12g· s-1
FID只对电离势低于H2的有机物产生响应,对无 机物、永久性气体和H2O基本上没有响应。
载气流量:考虑分离效能
操作条件 H2流量:考虑灵敏度 空气流量:一般H2︰空气=1︰10
5.3.4
电子捕获检测器
特点:灵敏度高,选择性强,只对电负性的 物质如卤素、硫等有响应。
当N2进入检测器时,
N2+β
N2+
(3)分析速度快
几分钟到几十分钟可完成一个 样品的分析。
(4)应用广 可分析气体、液体、固体样品; 有机物、无机物、生化试样;裂解 色谱可用于高分子化合物、橡胶、 塑料等样品的分析。
5.2 气相色谱仪
气相色谱装置演示
5.2.1 载气系统 (1)载气源:N2, H2,He,Ar
(2)气体净化器:内装硅胶、分子筛、 活性炭 (3)流速控制:稳压阀、流量计、压力表
①组分在固定相中的KD小,适于 分析低沸点化合物
特点
②热稳定性好,柱温上限高,无 流失问题
③吸附剂的选择性高于固定相,特 别适用于异构体的分析
(1)碳质吸附剂 ①活性炭 活性炭是一种微孔结构的非极性吸 附剂,比表面积为300—500m2· g-1,最 高使用温度在300℃以下,吸附活性大, 适用于分析永久性气体和低沸点的烃类。 但活性炭的保留值重现性差,拖尾严重。
5.2.4 检测系统和控制系统
检测器 计算机色谱工作站
5.3 气相色谱检测器 作用:物质量 mi 电信号E (电流、电压、峰面积)
浓度型:响应信号与进入检测器的浓度成正比
类型
E∝ c,(热导池、电子捕获) 质量型:响应信号与单位时间进入检测器的某 组分的物质量成正比。E ∝m,A与 u 无关 (氢火焰) A — 组分的峰面积 u—流动相的流速
5.3.3 氢火焰离子检测器(FID)
离子室:金属圆筒
结构
离子头:发射极、收集极、喷嘴
气体供应
氢火焰离子化检测器FID(2)
+ CHO H0 2 + CHO CO 2 H0 2 CO 2 H0 2 CHO+ + CHO CO 2 + CHO H0 2
FID是一个破坏性、质量 型检测器。火焰中生成大 量碳正离子,被收集计算 后形成检测器信号。
主要用于分析稀有气体,永久性气体, 短链极性化合物、醇、醛、水等。特别适合 于痕量分析。
(2)氧化铝 氧化铝是一种弱极性的吸附剂,热稳定性 和机械强度高。比表面积为100—300m2· g-1。 主要用于C1—C4烃类及其异构体的分离, 其含水量影响组分的保留值及选择性。
(3)硅胶
硅胶的主要成分是SiO2,孔径10—70
含低氧化态的碳数目最多 的被分析物将会产生最大 信号。
色谱柱
H
2 2
H CH CH CH CH CH CH 4 4
2 2
H H H H H
H H
2 2 2
4
2 2 2 2
4
4 4
H H H
喷嘴
2
氢火焰燃烧 有机物 裂解、电离
正离子
负离子
负极 10-6~10-14A 正极 电流
微电流经放大后,由高阻转为电压信号记录下来。
峰高 h(cm) u2 (mv cm )=2RN
Hale Waihona Puke -12 RN h u2最小检测量
0 ' m 1.065 y F 浓度型检测器: c 1/2 c DLc
质量型检测器: m
0 m
1.065 y1/2 DLm
与检测器性能、色谱柱效和操作条件有关
最低检出浓度Cmin
最低检出浓度是检测器能够确证 反应物存在的最低组分含量,是最小 检测量mmin与最大进样量Vmax(重量 或体积)之比,即:
未进样:R参、R测都通载气,λ 相同,两池t相同
R参=R测
∴ R参R2=R测R1 电桥平衡,
△EMN=0,无信号输出
进样:
参比池:载气 样品池:载气+样品
λ λ
载
二元
∵ λ
载≠
λ
二元
,t 参 ≠ t 测,R 参≠ R 测
∴ R参R2≠R测R1,电桥不平衡
△EMN ≠
0,有信号输出
∵ ∴
∝△R∝△t∝△λ ∝C △E∝C
类型
组成
制备
特点及应用
孔径小、比表面大。对强 红色担体:硅藻土+粘合 剂900C煅烧 极性化合物吸附和催化性 较强而导致脱尾,适合非 极性或者弱极性物质
硅藻土
单细胞海藻骨架 (SiO2+少量盐)
白色担体:硅藻土 +20%Na2CO3煅烧
与红色担体特点不同,适 合极性物质
非硅藻土
有机聚合物
人工合成:有机玻璃球, 表面难以浸润,用于特定 F载体,GDX载体 组份的分析
物理意义:1mL载气中有1mg或1mL组分在检测 器上所产生的mV数.
质量型检测器: 响应信号与单位时间内进入检测器 的某组分的量成正比。
60u1u2 A 60 1.056u1u2 y 12 h Sm (mv s g 1 ) m m
物理意义:当每秒有1g组分进入检测器时,所 产生的mv数
含硫有机物在富氢焰中燃烧,发 生下列反应: 2RS+(2+X)O2 XCO2+2SO2
2SO2+4H2
2S2
390℃
4H2O+S2
S2* S2+hr(394nm特征光谱)
5.4
固定相及其选择
5.4.1 气-固色谱固定相
表面具有活性的吸附剂(活性炭、硅胶、 氧化铝、分子筛等).
吸附剂的性能与制备、活化条件有很大 关系,重现性较差。
△E
组分的λ 与流动相的λ 不同时,均可产生 信号,故热导池检测器是通用型检测器。
影响热导池检测器灵敏度的因素
桥电流:在允许的工作电流范围内,工作电流越大,灵敏度越高,一
般控制在100-200 mA左右(受限于载气种类与流速) 池体温度:钨丝与池体温差越大,灵敏度越高,但避免冷凝样品,一 般不低于柱温(150C以上为佳) 载气:热导系数大的载气,灵敏度高,常用载气热导系数大小顺序: H2>He>N2 热敏元件阻值:阻值高、电阻温度系数大的热敏元件,灵敏度高 还取决于池体的体积和载气的纯度
5.2.2 进样系统 (1)气化室(进样口):金属管, 加热壁, 硅橡胶,密封垫。 作用:将样品瞬间汽化为蒸气 可控温度范围:50~500℃ (2)气体进样阀 六通阀演示 量气管的规格:1,3,5,10ml 四种规格
5.2.3 色谱柱 由柱管和固定相组成 柱形:U形或者螺旋形 柱管材料:不锈钢、铜、玻璃、聚四氟乙烯 柱内径:2~4mm 柱长度:1~10m
要求检测器的死体积要足够小
5.3.2
热导池检测器(TCD)
池体:不锈钢、铜 结构 热敏元件:铼钨丝、钨丝、铂丝
样品池 热丝粗细、长短、电阻值完全相同 参比池
热丝电阻值 R∝热丝温度t ∵不同物质有不同的热导系数λ ∴ 通过热导池的气体组成及浓度发生变化时, 热丝的温度变化,R变化。 热丝的电阻值变化用惠斯登电桥测量
硅藻土中表面含有大量的硅醇基、铁 和铝的氧化物。这些活性中心使固定液 涂布不均匀,与极性组分形成氢键,引起 色谱峰拖尾。而且由于有较强的催化活性, 可能使组分或固定液发生催化降解作用。
载体表面处理
方法
酸洗
处理过程
高分子多孔微球由苯乙烯和二乙烯苯聚合而 成,属非极性固定相。若在聚合时引入极性不同 的基团,则可改变其表面结构和聚合物的极性。 适于分离短链极性化合物。如醇类、酸、胺 等。特别适合于有机物中痕量水分的测定。 使用前必须进行活化处理,但活化温度不应 超过300℃,否则会发生分解现象。同时,应避 免氧气进入色谱柱,防止高温下氧化。
5.4.2 气-液色谱固定相
担体表面涂固定液
填充柱
载体/担体 固定液
(1)担体及其选择 担体是一种化学惰性的多孔性固体颗粒. 作用:提供惰性表面,使固定液以液 膜状态均匀地分布在其表面
① ② 要求: ③ ④
表面积大,孔径分布均匀; 化学惰性好; 热稳定性好,有一定的机械强度; 颗粒均匀、细小。
检测限(DL)
—衡量检测器性能好坏的综合指标
3R N
2 R 浓度型检测器: DLc N Sc
2 RN 质量型检测器: DLm Sm
mg / mL
g/s
检测限与灵敏度的区别:
检测限考虑了噪声大小对检测器性能的 影响,是灵敏度和噪音的综合指标。
最小检测量mmin
产生色谱峰高等于二倍噪音时的进样量。
第五章 填充柱气相色谱法 5.1 气相色谱法的特点
(1)分离效能高
可以分离性质十分相似的组分,如顺式、 反式异构体、旋光异构体、同位素等。也可 以分离组成极其复杂的样品,如降水中的 100多种成分和石油样品中的200多种组分。
(2)灵敏度高 可以检出10-11~10-13g的物质量,常 用于高纯物质中微量杂质的测定。农副 产品中农药残留量的测定,以及环境样 品中痕量组分的测定。
分子筛的缺陷:
1、CO2、NH3、HCOOH等有不可逆的吸附; 2、分子筛使用过程应防止水蒸气进入色谱柱, 含水量改变时,不但影响保留时间和分离度, 而且会使组分的出峰顺序逆转。 例:水含量约9%时, CO在CH4之前出峰 水含量约4%时, 两者同时出峰 水含量约2%时,出峰顺序逆转