2017高考新课标全国1卷文科数学试题和答案解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年高考真题——数学文(全国Ⅰ卷)含答解析

2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年全国1高考数学与2016全国1高考数学难度方面相对持平,在选择题和填空题及解答题方面难度有所降低.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如第2、4、9、12、19题.1。
体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3。
考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如第5、12、13、16题对数形结合思想的考查;第9题对函数与方程思想的考查.4.体现了创新性,如第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.【命题趋势】1.函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如第9题;对函数图像的考查,如第8题;对含参单调性以及零点问题的考查,如21题,比较常规.2.三角函数与解三角形知识:对三角恒等变换的考查,如第15题;对解三角形问题的考查,如第11题.重视对基础知识与运算能力的考查.3.数列知识:对数列通项公式的考查,如17题.整体考查比较平稳,没有出现偏、怪的数列相关考点.4.立体几何知识:对立体几何图形的认识与考查,如文科第6题,理科第7题,试题难度不大,比较常规;第16题,简单几何体的外接球问题,难度一般.立体几何解答题的考查较常规.5。
解析几何知识:对圆锥曲线简单性质的考查,如文科第5题,文科第10题;对圆锥曲线综合知识的考查,如第12题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.6.选做题知识:极坐标与参数方程仍然考查直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,直线与曲线的位置关系,考查较为稳定;不等式选讲仍然考查关于绝对值不等式的应用,解不等式,求参数范围问题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R【答案】A2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1—i)C .(1+i)2D .i (1+i )【答案】C4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π 4 【答案】B【解析】试题分析:不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228a a ππ⨯⨯=,选B .【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.5.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .1 2C .2 3D .3 2 【答案】D6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是A .B .C .D .【答案】A【解析】 试题分析:由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D8.函数sin21cos x y x =-的部分图像大致为A .B .C .D .【答案】C9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C【解析】试题分析:由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a b x +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b +. 10.如图是为了求出满足321000n n ->的最小偶数n ,那么在两个空白框中,可以分别填入A .A 〉1000和n =n +1B .A 〉1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2C =A .π12B .π6C .π4D .π3【答案】B【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=, 即sin (sin cos )2sin()04C A A C A π+=+=,所以34A π=.由正弦定理sin sin a c A C =得223sin sin 4C π=,即1sin 2C =,得6C π=,故选B .【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,学科*网如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.12.设A 、B 是椭圆C :2213x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞ B .(0,3][9,)+∞ C .(0,1][4,)+∞ D .(0,3][4,)+∞ 【答案】A二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】7 【解析】试题分析:由题得(1,3)a b m +=-,因为()0a b a +⋅=,所以(1)230m --+⨯=,解得7m =【考点】平面向量的坐标运算 ,垂直向量【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0. 14.曲线21y xx=+在点(1,2)处的切线方程为______________. 【答案】1y x =+15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________.310 【解析】试题分析:由tan 2α=得sin 2cos αα=又22sincos 1αα+=所以21cos5α=因为(0,)2πα∈所以cos αα==因为cos()cos cos sin sin 444πππααα-=+所以cos()4525210πα-=+=【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.已知三棱锥S —ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S —ABC 的体积为9,则球O 的表面积为________. 【答案】36π形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)记S n为等比数列{}n a的前n项和,已知S2=2,S3=—6.(1)求{}n a的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)32)1(321+⋅-+=n n n S ,证明见解析.解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量"的方法. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为8,求该四棱锥的侧面积.3【答案】(1)证明见解析;(2)326 .19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)ix i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09.(ii)剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09≈.【考点】相关系数,方差均值计算【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.20.(12分)x上两点,A与B的横坐标之和为4.设A,B为曲线C:y=24(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【答案】(1)1;(2)7=+.y x【解析】21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =,)(x f 在(,)-∞+∞单调递增;当0a >,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】试题分析:(1)分0a =,0a >,0a <分别讨论函数)(x f 的单调性;(2)分0a =,0a >,0a <分别解0)(≥x f ,从而确定a 的取值范围. 试题解析:(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()xx x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增.②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为 17d = 当4a ≥-时,d 171717=8a =;当4a <-时,d 171717=16a =-. 综上,8a =或16a =-.【考点】参数方程【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表达椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值.23.[选修4-5:不等式选讲](10分)已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g .(1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.【答案】(1){|1x x -<≤;(2)[1,1]-.(2)图像法:作出函数1||||y x a x b=-+-和2y c=的图像,结合图像求解.。
2017高考新课标1文数含答案解析

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考数学全国卷1文(附参考答案及详解)

!槡#!##33#!#9!
%
%
槡 槡 2$#7)#%$ 2$)7))5%$
7'!
7'!
$#!$本小题满分!$分%设 "#$ 为曲线&&)'#2$ 上 两 点#" 与$ 的 横 坐 标 之 和 为 2! $!%求直线 "$ 的斜率* $$%设 + 为曲线& 上 一 点#& 在 + 处 的 切 线 与 直 线 "$ 平 行# 且 "+0$+#求直线 "$ 的方程!
槡 经 计
算
得
#'
! !&
!&
2
7'!
#7
' 9!94#8 '
!!&72!'&!$#7)#%$ '
槡 槡 !!&$72!'&!#7$)!&#$%3 #!$!$#
!&
2$7)3!"%$ 3 !3!2(9#
7'!
!&
2$#7)#4%$7)3!"%')$!43#其 中 #7 为 抽 取 的 第7 个 零 件 的
-!#!#$ #% 的 中 位 数
(!下 列 各 式 的 运 算 结 果 为 纯 虚 数 的 是 ! !
*!0!10$
+!0$!)0
,!!10$
-!0!10
2!如图正方形 "$&' 内的图形来自中国古代的太极图!正 方 形 内
切圆中的黑色部分和白色部分关于正方形的中心成中心对称!
!!
*
+
全国卷1高考文科数学2017年试题及答案解析(图片版)

全国卷1高考文科数学2017年试题及答案
解析(图片版)
高考语文复习资料高考数学复习资料高考英语复习资料高考文综复习资料高考理综复习资料高考语文模拟试题高考数学模拟试题高考英语模拟试题高考文综模拟试题高考理综模拟试题高中学习方法高考复习方法高考状元学习方法高考饮食攻略高考励志名言忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
高考这个关出国留学网小编陪你一起过,以下是全国卷1高考文科数学2017年试题及答案解析,以供参考。
全国卷1高考文科数学2017年试题及答案解析2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)
猜你喜欢:
2017年高考热点2017年全国各省高考成绩查询入口汇总2017高考招生简章2017高考招生信息汇总2017年全国高考
加分政策汇总2017年全国各省高考答案汇总2017全国高考志愿填报时间及入口汇总2017年全国高考体检时间及通知汇总全国各省2017年高考改革方案汇总2017阳光高考网2017年高考作文题目及范文汇总2017年全国各省市高考状元名单2017年全国各省高考录取分数线出国留学网高考频道整理。
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)解析版 学霸冲冲冲

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{|2}A x x =<,{|320}B x x =->,则( ) A .3{|}2AB x x =< B .AB =∅C .3{|}2AB x x =< D .AB R =【考点】1E :交集及其运算【专题】11:计算题;37:集合思想;5J :集合【分析】解不等式求出集合B ,结合集合交集和并集的定义,可得结论. 【解答】解:集合{|2}A x x =<,3{|320}{|}2B x x x x =->=<,3{|}2A B x x ∴=<,故A 正确,B 错误;{||2}AB x x =<,故C ,D 错误;故选:A .【点评】本题考查的知识点集合的交集和并集运算,难度不大,属于基础题.2.(5分)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:)kg 分别是1x ,2x ,⋯,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,⋯,n x 的平均数B .1x ,2x ,⋯,n x 的标准差C .1x ,2x ,⋯,n x 的最大值D .1x ,2x ,⋯,n x 的中位数【考点】BC :极差、方差与标准差【专题】11:计算题;38:对应思想;4O :定义法;5I :概率与统计 【分析】利用平均数、标准差、最大值、中位数的定义和意义直接求解.【解答】解:在A 中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A 不可以用来评估这种农作物亩产量稳定程度;在B 中,标准差能反映一个数据集的离散程度,故B 可以用来评估这种农作物亩产量稳定程度;在C 中,最大值是一组数据最大的量,故C 不可以用来评估这种农作物亩产量稳定程度; 在D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”, 故D 不可以用来评估这种农作物亩产量稳定程度. 故选:B .【点评】本题考查可以用来评估这种农作物亩产量稳定程度的量的判断,是基础题,解题时要认真审题,注意平均数、标准差、最大值、中位数的定义和意义的合理运用. 3.(5分)下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +【考点】5A :复数的运算【专题】35:转化思想;5N :数系的扩充和复数【分析】利用复数的运算法则、纯虚数的定义即可判断出结论. 【解答】解:A .2(1)22i i i i +==-,是实数.B .2(1)1i i i -=-+,不是纯虚数.C .2(1)2i i +=为纯虚数.D .(1)1i i i +=-不是纯虚数.故选:C .【点评】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.4.(5分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π【考点】CF :几何概型【专题】35:转化思想;4O :定义法;5I :概率与统计【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积2S π=,则对应概率248P ππ==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.5.(5分)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为( )A .13B .12C .23D .32【考点】KC :双曲线的性质【专题】31:数形结合;44:数形结合法;5D :圆锥曲线的定义、性质与方程【分析】由题意求得双曲线的右焦点(2,0)F ,由PF 与x 轴垂直,代入即可求得P 点坐标,根据三角形的面积公式,即可求得APF ∆的面积.【解答】解:由双曲线22:13y C x -=的右焦点(2,0)F ,PF 与x 轴垂直,设(2,)y ,0y >,则3y =,则(2,3)P ,AP PF ∴⊥,则||1AP =,||3PF =,APF ∴∆的面积13||||22S AP PF =⨯⨯=,同理当0y <时,则APF ∆的面积32S =,故选:D .【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【考点】LS:直线与平面平行【专题】14:证明题;31:数形结合;44:数形结合法;5F:空间位置关系与距离【分析】利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【解答】解:对于选项B,由于//AB MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于//AB MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于//AB NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.【点评】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)设x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………,则z x y=+的最大值为()A.0B.1C.2D.3【考点】7C:简单线性规划【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】解:x,y满足约束条件331x yx yy+⎧⎪-⎨⎪⎩………的可行域如图:,则z x y=+经过可行域的A时,目标函数取得最大值,由33yx y=⎧⎨+=⎩解得(3,0)A,所以z x y=+的最大值为:3.故选:D.【点评】本题考查线性规划的简单应用,考查约束条件的可行域,判断目标函数的最优解是解题的关键.8.(5分)函数sin21cosxyx=-的部分图象大致为()A .B .C .D .【考点】3A :函数的图象与图象的变换【专题】11:计算题;31:数形结合;35:转化思想;51:函数的性质及应用 【分析】判断函数的奇偶性排除选项,利用特殊值判断即可. 【解答】解:函数sin 21cos xy x=-,可知函数是奇函数,排除选项B , 当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选:C .【点评】本题考查函数的图形的判断,三角函数化简,函数的奇偶性以及函数的特殊点是判断函数的图象的常用方法.9.(5分)已知函数()(2)f x lnx ln x =+-,则( ) A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点(1,0)对称 【考点】3A :函数的图象与图象的变换【专题】35:转化思想;4R :转化法;51:函数的性质及应用【分析】由已知中函数()(2)f x lnx ln x =+-,可得()(2)f x f x =-,进而可得函数图象的对称性.【解答】解:函数()(2)f x lnx ln x =+-, (2)(2)f x ln x lnx ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称, 故选:C .【点评】本题考查的知识点是函数的图象与图象变化,熟练掌握函数图象的对称性是解答的关键.10.(5分)如图程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A …和1n n =+D .1000A …和2n n =+【考点】EF :程序框图【专题】11:计算题;38:对应思想;49:综合法;5K :算法和程序框图【分析】通过要求1000A >时输出且框图中在“否”时输出确定“”内不能输入“1000A >”,进而通过偶数的特征确定2n n =+.【解答】解:因为要求1000A >时输出,且框图中在“否”时输出,所以“”内不能输入“1000A >”,又要求n 为偶数,且n 的初始值为0, 所以“”中n 依次加2可保证其为偶数,所以D 选项满足要求, 故选:D .【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin (sin cos )0B A C C +-=,2a =,c =(C = )A .12πB .6πC .4π D .3π 【考点】HP :正弦定理【专题】11:计算题;35:转化思想;4O :定义法;56:三角函数的求值;58:解三角形 【分析】根据诱导公式和两角和的正弦公式以及正弦定理计算即可 【解答】解:sin sin()sin cos cos sin B A C A C A C =+=+, sin sin (sin cos )0B A C C +-=,sin cos cos sin sin sin sin cos 0A C A C A C A C ∴++-=, cos sin sin sin 0A C A C ∴+=, sin 0C ≠, cos sin A A ∴=-, tan 1A ∴=-,2A ππ<<,34A π∴=,由正弦定理可得sin sin c aC A=, sin sin c AC a∴=, 2a =,c =sin 12sin 22c AC a∴===, a c >,6C π∴=,故选:B .【点评】本题考查了诱导公式和两角和的正弦公式以及正弦定理,属于基础题12.(5分)设A ,B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( )A .(0,1][9,)+∞B .(0[9,)+∞ C .(0,1][4,)+∞D .(0[4,)+∞【考点】4K :椭圆的性质【专题】32:分类讨论;44:数形结合法;5D :圆锥曲线的定义、性质与方程【分析】分类讨论,由要使椭圆C 上存在点M 满足120AMB ∠=︒,120AMB ∠︒…,60AMO ∠︒…,当假设椭圆的焦点在x轴上,tan tan 60AMO ∠=︒,当即可求得椭圆的焦点在y 轴上时,3m >,tan tan 60AMO ∠=︒=m 的取值范围.【解答】解:假设椭圆的焦点在x 轴上,则03m <<时,设椭圆的方程为:22221(0)x y a b a b+=>>,设(,0)A a -,(,0)B a ,(,)M x y ,0y >,则22222a y a x b-=,MAB α∠=,MBA β∠=,AMB γ∠=,tan y x a α=+,tan y a xβ=-, 则222222222222tan tan 2222tan tan[()]tan()1tan tan ()ay ay ab ab a y a x y y a b c yy bαβγπαβαβαβ+=-+=-+=-=-=-=-=------,222tan ab c yγ∴=-,当y 最大时,即y b =时,AMB ∠取最大值,M ∴位于短轴的端点时,AMB ∠取最大值,要使椭圆C 上存在点M 满足120AMB ∠=︒,120AMB ∠︒…,60AMO ∠︒…,tan tan 60AMO ∠︒=,解得:01m <…;当椭圆的焦点在y 轴上时,3m >,当M 位于短轴的端点时,AMB ∠取最大值,要使椭圆C 上存在点M 满足120AMB ∠=︒,120AMB ∠︒…,60AMO ∠︒…,tan tan 60AMO ∠︒=,解得:9m …,m ∴的取值范围是(0,1][9,)+∞故选A .故选:A .【点评】本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
2017年高考数学新课标Ⅰ卷文科.pdf

2017年高考数学新课标Ⅰ卷(文科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}A=x|2x <,{}|320B x x =->,则()(A )3|2A B x x ⎧⎫=<⎨⎬⎩⎭ (B )A B =∅(C )3|2A B x x ⎧⎫=<⎨⎬⎩⎭(D )A B R= 答案:A解析:32B x x ⎧⎫=⎨⎬⎩⎭<,所以32A B x x ⎧⎫⋂=⎨⎬⎩⎭<,选A2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,...n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()(A )12,,...n x x x 的平均数(B )12,,...n x x x 的标准差(C )12,,...n x x x 的最大值(D )12,,...n x x x 的中位数答案:B3.下列各式的运算结果为纯虚数的是()(A )()21i i +(B )()21i i -(C )()21i +(D )()1i i +答案:C4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()(A )14(B )8π(C )12(D )12答案:B解析:由图可知黑色部分占整个圆的12,221122=48ABCD S r P S r ππ==圆,选B 5.已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A得坐标是()1,3.则APF ∆的面积为()(A )13(B )12(C )23(D )32答案:D解析:由题意可知F (3,0),求得P 点的坐标为(3,8),131322S =⨯⨯=.6.如图,在下列四个正方体中,,A B 为正方体的两个顶点,,,M N Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是()答案:A解析:A 选项中,AB 与平面MNQ 相交,所以答案选A.7.设x ,y 满足约束条件则z x y =+的最大值为()(A )0(B )1(C )2(D )3答案:D解析:画出可行域,可知在点(3,0)处取到最大值,最大值为3,选D8.函数sin21cos xy x=-的部分图像大致为()答案:C解析:()()f x f x =--函数为奇函数,当x π=时,()0f π=;()06f π-<选C9.已知函数()ln ln(2)f x x x =+-,则()(A)()f x 在()0,2单调递增(B)()f x 在()0,2单调递减(C)()y f x =的图像关于直线1x =对称(D)()y f x =的图像关于点(1,0)对称答案:C10.右图程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白中,可以分别填入()(A)10001A n n >=+和(B)10002A n n >=+和(C)10001A n n ≤=+和(D)10002A n n ≤=+和答案:D11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()sin sin sin cos 0B A C C +-=,2,2a c ==,则C =()(A)12π(B)6π(C)4π(D)3π答案:B解析:()sin sin sin cos cos sin B A C A C A c =+=+;sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,所以()sin cos sin 0cos sin C A A A A +=⇒=-,34A π=又因为2,2a c ==,由正弦定理得:sin sin a c A C =,得出:6C π=12.设,A B 是椭圆22y :+=13mx C 长轴的两个端点,若C 上存在点M 满足120AMB ︒∠=,则m 的取值范围是()(A)(][)0,19.+∞ (B)([)39.+∞ (C)(][)0,14+∞ ,(D)([)34+∞ ,答案:A解析:设椭圆C 短轴的一个端点为N ,则只需60ONA ∠≥︒,所以tan 3aONA b∠=≥,223a b ≥.所以0333m m <<⎧⎨≥⎩,或333m m >⎧⎨≥⨯⎩,解得01m <≤或9m ≥.故A .二、填空题:本题共4小题,每小题5分,共20分13.已知向量()()=1,2,,1a b m -,a+b 和a 垂直,则m =.答案:7解析:由()0a b a +⋅=,得出:7m =14.曲线21y x x=+在点()1,2处的切线方程为.答案:1y x =+解析:()'212f x x x=-,由()'11f =,又切线过点(1,2),所以切线方程为1y x =+15.已知0,,tan 2,cos 24ππααα⎛⎫⎛⎫∈=-= ⎪ ⎪⎝⎭⎝⎭则.答案:31010解析:因为1tan 2,cos 5αα=∴=,所以310cos 410πα⎛⎫-= ⎪⎝⎭16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,,SA AC SB BC ==,三棱锥S ABC -的体积为9,则球O 的表面积为.答案:36π解析:连接OA 、OB ,因为SA AC =,SB BC =,所以AO SC ⊥,BO SC ⊥,所以SC ⊥平面AOB ,且AOB ∠即为二面角A SC B --的平面角,又平面SCA ⊥平面SCB ,所以90AOB ∠=︒.设球O 的半径为r ,则OS OC OA OB r ====,所以231111293323S ABC AOB V S SC r r r -=⋅⋅=⋅⋅== ,解得3r =,所以球O 的体积为2436V r ππ==.三、解答题:共70分,解答应写出文字说明、证明过程或验算步骤.第17~21题为必考题本题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分。
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2. 【觥答】 解:在 A 中,平均数是表不一组数据仗中趋势的址数,它是反映数据梊中趋势的一项指标, 故 A 不可以用来评估这种农什物由产量稳定程度; 在 B 中,标准差能反映一个数据集的离散程度,故 B 可以用来评估这种农作物亩产量稳定程度; 在 C 中,最大值是一组数据最大的量,故 C 不可以用来评估这种农作物亩产量稳定程度; 在 D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的"中等水平”, 故 D 不可以用来评估这种农作物亩产量稳定程度. 故选: B.
尺寸的均值与标准差.(精确到 0.01) n
区 ( xi-x) ( yi-y)
:n11(=:1 云) 2荨了 ' 三=0.09. 附:杆本 (x;, y;) (i=l, 2,..., n) 的相关系数 r=
21. (12 分)已知函数 f (x) =e'(e•-a) -a奴
( 1) 讨论 f (x) 的单调性; ( 2) 若 f (x) ?co, 求 a 的取值范围.
I: (x, - x) (i - 8.5) = - 2.78, 其中 x 为抽取的第 i 个零件的尺寸, i=l, 2,..., 16.
1=1
( 1) 求 (x;, i) (i=l, 2,..., 16) 的相关系数 r, 并回答是否可以认为这一天生产的零件尺寸不随生 产过程的进行而系统地变大或变小(若 I rl <o.2s, 则可以认为零件的尺寸不随生产过程的进行而
-冗
x
-冗
X
A. 1-4
B. 千
c. 1_2
D. 于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A.14B .π8C.12D.π45.已知F是双曲线C:x2-23y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π312.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是 A .(0,1][9,)+∞ B .(0,3][9,)+∞ C .(0,1][4,)+∞D .(0,3][4,)+∞二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________. 14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查? (ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.21.(12分)已知函数()f x=e x(e x﹣a)﹣a2x.(1)讨论()f x的单调性;(2)若()0f x≥,求a的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a tty t=+⎧⎨=-⎩(为参数).(1)若a=−1,求C与l的交点坐标;(2)若C上的点到l a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围..2017年高考新课标1文数答案1.A2.B3.C4.B5.D6.A7.D8.C 9.C 10.D 11.B 12.A 13.714. 1y x =+15.3101016.36π17.(12分)【解析】(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ ,解得2q =-,12a =-.故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.18. (12分)【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得AD =,2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,AD BC ==PB PC ==. 可得四棱锥P ABCD-的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+19. (12分)【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈. 20.(12分)解:(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-. (2)由24x y =,得2xy'=.设M (x 3,y 3),由题设知312x=,解得32x =,于是M (2,1).设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24x y =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=.由题设知||2||AB MN =,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+. 21. (12分)(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()xf x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042a a --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.22.[选修4-4:坐标系与参数方程](10分) 解:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=. 由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩. 从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =. 当4a ≥-时,d=8a =; 当4a <-时,d.=16a =-. 综上,8a =或16a =-.、23.[选修4-5:不等式选讲](10分)解:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解; 当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤.所以()()f x g x ≥的解集为1{|1}2x x -+-<≤. (2)当[1,1]x ∈-时,()2g x =. 所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的学科&网最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.。