渗流力学 第一章 渗流基本概念和定律

合集下载

第一章-渗流理论基础-1

第一章-渗流理论基础-1

渗流区或渗流场:假想水流所占据的空间。
2 典型单元体
五、渗流速度 过水断面:垂直于渗流方向的一个岩石截面。
渗流速度:通过单位面积的渗流量。
v=Q/A 渗流速度与地下水的实际平均流速有如下 关系: v=nu
六、地下水的水头和水头坡度 1 地下水的水头
u2 H Z 2g 式中:Z——位置水头; P/γ——承压水头; 二者之和为测压管水头。 u2/2g——流速水头(很小忽略不计)。 我们所说的水位就是测压管水头,这是基准 面取的是海平面。 p
水文地质学基础中,水力坡度定义为:沿渗流 途径水头损失与相应渗透途径长度的比值。
七、地下水运动特征的分类
1. 按地下水运动要素(渗流量、渗流速度、压强、 水头)将地下水分为稳定流和非稳定流。 稳定流:地下水运动要素不随时间变化。 非稳定流:地下水运动要素随时间变化。 2. 根据地下水的运动方向与空间坐标轴的关系分为 一维运动、二维运动和三维运动。 地下水的一维运动:地下水的渗透速度只沿一坐标 轴的方向有分速度,其余坐标轴方向的分速度均为零。
四、渗流 1 渗流
渗流是一种假想水流。 假想水流应有以下特点: ( 1 )假想水流的性质(如密度、粘滞性等)和真 实地下水相同; (2)假想水流充满含水层的整个空间; ( 3 )假想水流运动时,在任ቤተ መጻሕፍቲ ባይዱ岩石体积内所受的 阻力等于真实水流所受的阻力; ( 4 )通过任断面的流量及任一点的压力或水头均 和实际水流相同。
地下水位下降,水压力减小,有效应 力增大,多孔介质被压缩。 多孔介质的压缩包括固体颗粒的压缩 和孔隙的压缩。但固体颗粒的压缩忽略 不计。 即: (1-n)Vb=常数 其对数等于0。即:
此二式厚度变化和孔隙度变化与水的压强变化的关系

渗流力学知识点总结

渗流力学知识点总结

渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。

多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。

渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。

2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。

渗透率是介质内渗流速度与流体粘滞力之比。

一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。

3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。

渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。

4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。

达西定律为渗流理论研究提供了重要的基础。

二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。

渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。

2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。

渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。

3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。

孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。

4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。

对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。

三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。

渗流基本知识

渗流基本知识

第十二章渗流流体在孔隙介质中的运动称为渗流。

流体包括水、石油、天然气等。

孔隙介质是指由颗粒或碎块材料组成的内部包含许多互相连通的孔隙和裂隙的物质。

常见的孔隙介质包括土壤、岩层等多孔介质和裂隙介质。

有些水工建筑物本身就是由孔隙介质构成的,如土坝、河堤等。

研究渗流的运动规律及其工程应用的一门科学便是渗流力学。

在水利工程中,渗流主要是指水在地表以下土壤或岩层孔隙中的运动,这种渗流也称为地下水运动。

研究地下水流动规律的学科常称为地下水动力学,是渗流力学的一个分支。

在社会的许多部门都会遇到渗流问题。

例如,石油开采中油井的布设,水文地质方面地下水资源的探测,采矿、化工等。

在水利部门常见的渗流问题有以下几方面:(1)经过挡水建筑物的渗流,如土坝、围堰等。

(2)水工建筑物地基中的渗流。

(3)集水建筑物的渗流,井、排水沟、廊道等。

(4)水库及河渠的渗流。

上述几方面的渗流问题,就其水力学内容来说,归纳起来不外乎是要求解决以下几方面的问题:(1)确定渗流量;(2)确定浸润线位置;(3)确定渗流压力;(4)估计渗流对土壤的破坏作用。

第一节渗流的基本概念渗流既是水在土壤孔隙中的流动,其运动规律当然与土壤和水的特性有关。

一、土壤的分类一切土壤及岩层均能透水,但不同的土壤或岩层的透水能力是不同的,有时甚至相差很大。

这主要是由于各种土壤的的颗粒组成不同而引起的。

此外,在低水头下不透水的材料,在高水头作用下仍可能透水。

本章重点研究的土壤中的渗流,故可以根据土壤的透水能力在整个流动区内有无变化对土壤进行分类。

任一点处各个方向的透水能力相同的土壤称为各向同性土壤,否则称为各向异性土壤。

所有各点在同一方向上透水能力都相同的土壤称为均质土壤,否则称为非均质土壤。

显然,均质土壤可以是各向同性土壤,也可以是各向异性土壤。

均质且各向同性的土壤就透水能力而言是一种最为简单的土壤。

严格说来,只有当土壤由等直径的圆球颗粒组成时,其透水能力才不随空间位置及方向变化,才符合均质及各向同性条件。

渗流力学基本理论

渗流力学基本理论

渗流力学基本理论目录第一章渗流理论基础 ........................................................................... ................................................... 1 1.1 渗流的基本概念 ........................................................................... ................................................... 1 1.2 渗流基本定律 ........................................................................... ....................................................... 7 1.3 岩层透水特征及水流折射定律 ........................................................................... ......................... 11 1.4 流网及其应用 ........................................................................... ..................................................... 14 1.5 渗流连续方程 ........................................................................... ..................................................... 19 1.6 渗流基本微分方程 ........................................................................... ............................................. 24 1.7 数学模型的建立及求解 ........................................................................... . (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性 1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。

渗流的基本定律(达西定律)

渗流的基本定律(达西定律)
建立实验装置
根据实验需求,设计并建立渗流装置,包括渗流管、压力源、流量 计等。
设定实验条件
设定恒定的水头压力、流量等实验条件,确保实验数据的准确性和 可靠性。
实验结果分析
01
02
03
数据记录
详细记录实验过程中的水 头压力、流量等数据,并 确保数据的准确性和完整 性。
数据处理
对实验数据进行整理、分 析和处理,绘制水头压力 与流量之间的关系曲线。
达西定律的发现可以追溯到19世纪初,由法国工程师达西通 过实验观察到流体在砂质土壤中的流动规律,并提出了该定 律。
达西定律的概述
达西定律描述了流体在多孔介质中的流动速度与压力梯度 之间的关系。具体来说,当流体在多孔介质中流动时,流 速与作用在流体上的压力梯度成正比,同时与介质的渗透 系数有关。
达西定律的数学表达式为:v = -K * grad(p),其中v是流速, K是介质的渗透系数,grad(p)是压力梯度。该公式表明流速 与压力梯度成正比,与渗透系数成反比。
达西定律与实际渗流过程的联系
01
达西定律是描述均匀、定常、不可压缩流体在多孔介质中稳态 流动的基本定律。
02
它指出,在一定条件下,流体的流量与压力梯度成正比,与介
质孔隙的阻力成反比。
达西定律适用于小孔径、低流速、高孔隙度、均质的多孔介质。
03
达西定律的局限性
1
达西定律不适用于非均匀、非定常、非线性流动, 以及大孔径、高流速、低孔隙度、非均质的多孔 介质。
渗流的基本定律(达西定律)
目录
• 引言 • 达西定律的数学表达 • 达西定律的物理意义 • 达西定律的实验验证 • 达西定律的应用实例 • 达西定律的发展与展望
01 引言

【免费下载】渗流力学基本理论

【免费下载】渗流力学基本理论

目录第一章渗流理论基础 (1)1.1渗流的基本概念 (1)1.2渗流基本定律 (7)1.3岩层透水特征及水流折射定律 (11)1.4流网及其应用 (14)1.5渗流连续方程 (19)1.6渗流基本微分方程 (24)1.7数学模型的建立及求解 (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。

广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。

孔隙介质:含有孔隙的岩层,砂层、疏松砂岩等;裂隙介质:含有裂隙的岩层,裂隙发育的花岗岩、石灰岩等。

1.1.1.2 多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。

孔隙度(Porosity)是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数,n=Vv/V。

有效孔隙(Effective pores)是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。

有效孔隙度(Effective Porosity)是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数,n e=V e/V。

死端孔隙(Dead-end pores )是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。

(2) 连通性:封闭和畅通,有效和无效。

(3) 压缩性:固体颗粒和孔隙的压缩系数推导。

(4) 多相性:固、液、气三相可共存。

其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。

固相—骨架matrix气相—空气,非饱和带中液相—水:吸着水Hygroscopic water薄膜水pellicular water毛管水capillary water重力水gravitational water1.1.1.3多孔介质中的地下水运动比较复杂,包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙岩溶水的特点。

渗流力学1

渗流力学渗流力学,也称为多孔介质流动力学,是关注多孔介质中油气水等流体的运动与物质传输的一门交叉学科。

本文将从渗流力学的基本概念、渗透性与渗流规律、渗流模型及其数学描述、渗透率测定以及渗流在工程领域的应用等方面进行综述。

一、基本概念多孔介质即为孔隙率大于零的介质,多数包括岩石、土壤等。

我们通常所知的原油、水等都是沿着孔隙流动的,因此对于研究油气水等流体在多孔介质中的运动及物质传输,渗流力学便成为了必不可少的工具。

渗流力学研究的流体如下:1.单相流体:包括气体和液体。

2.不可压缩单相流体:流体密度不随流速变化的流体。

3.不可压缩多相流体:指含空气、水和油的混合流体。

4.可压缩流体:长跑中会考虑的空气。

快速均匀地离开多孔介质的流体称之为洁净流体。

二、渗透性与渗流规律多孔介质的渗透性是流体运动过程中一个重要的参数,通常用渗透率(permeability)来表示。

渗透率取决于多孔介质的孔隙度、孔隙分布及孔隙形态。

它反映的是一个多孔介质通过润湿的介质进行渗透时,所需要克服阻力的大小。

渗透流指液体、气体或气体-液体等多相流体沿渗透介质流动,而渗透介质包括孔洞和颗粒。

颗粒通常被认为是刚性球形粒子。

渗透性是多孔介质的透水能力。

它是空隙中液体流动的干扰抵消与力的关系,并通过Darcy’s Law来描述非细长孔径多孔介质的渗透流。

Darcy's Law的一般表述为:q = -K(∆p)/μ其中,q是流体的流量,K是渗透性,∆p是流体受力的压力差,μ是流体的黏度。

此外,根据流量公式Q = S × q,可以计算出平均流速v和渗透系数K’:v = q/SK' = Kμ其中,S是截面积。

三、渗流模型及其数学描述渗流过程通常分为传导和对流两种方式。

1.传导传导表示沿着渗透介质孔隙内的流动。

其过程可以用贾格尔-盖茨方程来理解。

dP/dx = -η(k/φ) dv/dx其中,η是粘度,k是渗透系数,φ是孔隙度,v是流量。

渗流力学达西定律公式

渗流力学达西定律公式
摘要:
1.渗流力学简介
2.达西定律的概念
3.达西定律的公式
4.达西定律的应用
正文:
1.渗流力学简介
渗流力学是研究流体在多孔介质中渗流规律的学科,它广泛应用于地下水文学、土壤力学、水利工程等领域。

在渗流力学中,达西定律是一个重要的基本定律,对于分析流体在多孔介质中的渗流特性具有重要意义。

2.达西定律的概念
达西定律,又称达西- 威斯巴赫定律,是由法国工程师达西
(C.V.Darcy)和德国工程师威斯巴赫(R.E.Weisbach)分别于19 世纪提出的。

该定律描述了在多孔介质中,流体渗流速度与压力差成正比,即渗流速度等于压力差除以阻力系数。

3.达西定律的公式
达西定律的数学表达式为:
Q = KiA
其中,Q 表示渗流量,K 表示渗透率,i 表示压力差,A 表示渗流面积。

4.达西定律的应用
达西定律在实际工程中有广泛的应用,如计算地下水的渗流速度、分析土壤的渗水性能、设计水利工程等。

通过达西定律,可以更好地了解流体在多孔介质中的渗流规律,从而为相关领域的研究和实践提供理论依据。

总结来说,渗流力学中的达西定律是描述多孔介质中流体渗流规律的一个重要定律。

渗流力学 学习指南

《渗流力学》课程学习指南第一章渗流的基础知识和基本定律一、学习内容简介油气储集层;渗流的基本概念;渗流过程的力学分析及油藏驱动方式;线性渗流和非线性渗流。

二、学习目标全面掌握渗流力学的基本概念和基本定律,了解本课程的学习目的,为今后的学习打下基础。

三、学习基本要求1.了解油气储集层的理论及实际结构,渗流过程的力学分析及油藏驱动方式,非达西渗流的两种形式;2.掌握孔隙结构的概念和油气储集层的特点,渗流的基本几何形式,渗流速度和压力的概念,掌握达西定律的应用及其范围。

四、重点和难点重点:油气储集层的特点,渗流速度的概念,折算压力在计算中的应用,达西定律和单位制,达西定律的适用条件。

难点:油气储集层的特点,渗流速度和真实渗流速度的概念及关系,换算折算压力,达西定律的适用条件。

五、学习方法推荐结合油层物理,大学物理和课堂例题学习。

第二章单相液体的稳定渗流一、学习内容简介渗流数学模型的建立;单相液体稳定渗流数学模型的解;井的不完善性;稳定试井。

二、学习目标能够建立单相液体稳定渗流基本微分方程;能根据基本微分方程推导流量与产量公式;了解井的不完善性和稳定试井的知识。

三、学习基本要求1.了解渗流力学研究问题方法,井的不完善性的分类,稳定试井可解决的问题;2.掌握渗流力学模型要素及建立过程,平面单向流模型,平面平面单向流、径向流压力分布公式的推导,流量公式的推导和应用,加权法求地层平均压力,稳定试井的概念。

四、学习重点和难点重点:微分法导出渗流数学模型,平面单向流、径向流模型压力分布和流量公式,流场图的含义,面积加权法求地层平均压力,表皮系数、采油指数、指示曲线的概念。

难点:微分法导出渗流数学模型,平面径向流压力分布特点,流量公式的推导,表皮系数的意义。

(四)学习方法推荐联系高等数学的知识与结合例题学习。

第三章多井干扰理论一、学习内容简介多井干扰现象的物理过程;势的叠加原则;镜像反映法及边界效应;等值渗流阻力法;复变函数理论在渗流力学中的应用。

渗流的基本定律(达西定律)

流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
岩层按渗透性分类
同一点各方向上渗透性相同的介质称为各向同性 介质(isotropy medium); 同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; 各向同性、各向异性: 指同一点不同方向的K是否 相同。
渗透流速与实际流速关系渗透流速与实际流速关系三水头与水力坡度潜水含水层压强与水头图114a潜水含水层的压强与水头承压含水层压强与水头图114b承压含水层的压强与水头水力梯坡度水力梯度i为沿渗透途径水头损失与相应渗透途径长度的比值
第一章 地下水运动基本概念
重要知识点: 渗流、典型体元(REV) 地下水质点实际流速、空隙平均流速,达西流速及其关系 达西定律基本式,微分式,推广式及应用条件 渗透系数及其影响因素 渗流分类
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
体,这样多孔介质就处处有孔隙度了。
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档