生物化学期末考试重点总结
生物化学期末考试知识点归纳

生物化学期末考试知识点归纳三羧酸循环记忆方法一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个22个阶段;经过2个阶段生成乳酸2个磷酸化;2个异构化,即可逆反应;2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP;产生2分子NADH3:整个过程需要3个关键酶4:生成4分子的ATP.二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH25:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释:1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
、2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。
维持其稳定的化学键是:肽键。
蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。
蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。
蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。
因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。
蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。
3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。
生物化学期末复习资料全

第三章糖类的化学(1)P18 旋光性是指某些物质能使平面偏振面旋转的性质(2)P19 单糖:凡羟基在右边的,为D-型;凡羟基在左边的,为L-型L-甘油醛 D-甘油醛对于含3个碳原子以上的糖,由于存在不止1个不对称碳原子,在规定其构型时以距醛基或酮基最远的不对称碳原子为准,羟基在右的为D-型羟基在左的为L-型。
(3)P30 寡糖分子中都存在不对称碳原子,因而都有旋光性(4)P33 多糖有旋光性,但无变旋现象4、脂类和生物膜化学1、P47 酸败的化学本质:一方面是油脂中不饱和脂肪酸的双键在空气中氧的作用下成为过氧化物,过氧化物继续分解生成有臭味的低级醛、酮、羧酸和醛、酮的衍生物;另一个原因是霉菌或脂酸将油脂水解成低级脂肪酸,脂肪酸再经过β-氧化过程生成β-酮酸,β-酮酸脱羧生成低级酮类。
第五章蛋白质化学(一)P61 氨基酸的结构通式:(二)P62 构成蛋白质的氨基酸(英文符号)除了甘氨酸(gly)外,构成蛋白质的氨基酸都是L-构型4、P73 谷胱甘肽:是由L-谷氨酸,L-半胱氨酸和甘氨酸组成(谷氨酸由γ-羧基生成肽键,而在其他肽和蛋白质分子中谷氨酸由α-羧基生产肽键)。
谷胱甘肽中因含有-SH,故通常简写为GSH5、P76一级结构:特指肽链中的氨基酸排列顺序。
维系一级结构的主要化学键是肽键。
蛋白质的一级结构的测定:1.肽链末端分析:(1)N-末端端测定:A. 二硝基氟苯法B. 苯异硫氰酯(PITC)法C.二甲基氨基萘磺酰氯法(DNS法);(2)C-末端端测定:肼解法、羧肽酶法;2、二硫键的拆开和肽链的分离;3、肽链的部分水解和肽段的分离:化学裂解法、酶解法4、测定每一段的氨基酸顺序5. 由重叠片段推断肽链顺序6、P82 二级结构:它是指肽链主链骨架原子的相对空间位置,维系二级结构的化学键主要是氢键。
蛋白质二级结构的主要形式:α-螺旋、β-折叠、β-转角、无规卷曲、π-螺旋等7、P91 分子病:由于基因结构改变,蛋白质一级结构中的关键氨基酸发生改变,从而导致蛋白质功能障碍,出现相应的临床症状,这类遗传性疾病称为分子病。
生物化学考试重点总结

生物化学考试重点总结生物化学第一章绪论生物化学:生物化学是在分子水平研究并阐述生物体的物质组成、结构与功能、代谢变化与调节、生命遗传物质化学传递规律的科学。
第二章糖类化学及第九章糖代谢△1糖:糖是具有多羟基醛和多羟基酮及其衍生物或多聚物的总称。
根据其大小可分为单糖、低聚糖、和多糖。
2单糖的主要化学性质:①与碱性弱氧化剂反应(与银氨溶液反应)与本尼迪克特试剂(硫酸铜、碳酸钠和柠檬酸钠)单糖+Cu(OH)2→Cu2O↓+复杂氧化物②与非碱性弱氧化剂反应(溴水)③酶促反应④与较强氧化剂反应(HNO3)作用生成糖二酸⑤彻底氧化⑥还原反应⑦成酯反应⑧成苷反应(形成糖苷键)苷类化合物分包括糖部分和非糖部分,非糖部分称为苷元。
3双糖有麦芽糖、蔗糖、和乳糖,其中蔗糖无还原性。
麦芽糖是由两分子的α—D—葡萄糖通过α—1,4糖苷键结合二而成的;具有还原性△4,蔗糖由α-1,2-β-糖苷键连接而成,无还原性5乳糖具有还原性6多糖按其组分可分为同多糖和杂多糖,同多糖由一种单糖缩合而成包括淀粉、糖原和纤维素等;淀粉是直链淀粉和支链淀粉的混合物,水解终产物都是D-葡萄糖,直链淀粉由α-1,4糖苷键连接成键支链淀粉由α-1,4糖苷键和α-1,6糖苷键组成;(直链淀粉遇碘变蓝色);糖原(糖原遇碘呈红褐色)△7糖蛋白:糖蛋白可分为N-连接糖蛋白和O-连接糖蛋白两类8习题:①蔗糖是由一分子的D-葡萄糖一分子的D果糖之间通过α-1,2-β-糖苷键相连② 多糖的构象大致可分为螺旋、带状、皱折和无卷曲四种类型,决定其构象的主要因素是糖链的一级结构。
③直链淀粉的构象是螺旋,纤维素的构象是带状④常用来测定测定还原糖的试剂为斐林试剂和班乃德试剂⑤直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫色,糖原遇碘呈红褐色9糖的无氧分解代谢(糖酵解):葡萄糖或糖原在不消耗氧的条件下被分解成乳糖的过程。
(糖酵解的全部反应在胞液中进行)(熟悉)10糖酵解的全过程:①葡萄糖化成6-磷酸葡萄糖(由己糖激酶催化)消耗1个ATP并需要Mg2+参加己糖激酶是糖酵解中第一个限速酶反应不可逆②6-磷酸葡萄糖转变为6-磷酸果糖(由磷酸己糖异构酶催化)反应可逆③6-磷酸果糖转变为1,6-二磷酸果糖(由6-磷酸果糖激酶-1催化)消耗一个ATP 需Mg2+参加反应不可逆 6-磷酸果糖激酶-1是糖酵解过程中第二个限速酶④1,6-二磷酸果糖裂解成2分子磷酸丙糖(由缩醛酶催化)最后是生成了3-磷酸甘油醛⑤3-磷酸甘油醛氧化为1,3-二磷酸甘油醛(由3-磷酸甘油醛脱氢酶催化)反应产生2个H由辅酶NAD+接受生成NADH + H+ 反应可逆⑥1,3-二磷酸甘油酸转变为3-磷酸甘油酸(由磷酸甘油酸激酶催化)产生2个ATP 反应可逆⑦3-磷酸甘油酸转变为2-磷酸甘油酸(由3-磷酸甘油酸变位酶催化)反应可逆⑧2-磷酸甘油酸转变成为磷酸烯醇式丙酮酸(由烯醇化酶催化)反应不可逆⑨磷酸烯醇式丙酮酸转变为丙酮酸(由丙酮酸激酶(PK)催化)产生两个ATP 丙酮酸激酶是第三个限速酶⑩丙酮酸转化为乳酸(乳酸脱氢酶催化)反应所需要的氢原子由NADH + H+提供然后NADH+ H+重新转变成NAD+保证了糖酵解的继续进行。
吉林农业大学生物化学期末考试总结

吉林农业⼤学⽣物化学期末考试总结1.核酸变性:是指在理化因素作⽤下,核酸分⼦中的氢键断裂,双螺旋结构松散分开,形成⽆规则单链线团结构的过程。
2.DNA的复性:变性DNA在适当条件下,两条彼此分开的单链重新缔合成为双螺旋结构的过程称为复性。
1.等电点(PI):使某氨基酸解离所带正、负电荷数相等,净电荷为零时的溶液PH称为该氨基酸的等电点。
2.蛋⽩质的⼀级结构:是指蛋⽩质多肽链中氨基酸的排列顺序。
3.变构效应(别构效应):指⼀些蛋⽩质由于受某些因素的影响,其⼀级结构不变⽽空间结构发⽣⼀定的变化,导致其⽣物功能的改变。
4.盐析:向蛋⽩质溶液中加⼊⾼浓度的中性盐致使蛋⽩质溶解度降低⽽从溶液中析出的现象,称为盐析。
5.(掌握)蛋⽩质的变性:在某些理化因素的作⽤下,蛋⽩质特定的空间结构破坏⽽导致理化性质改变和⽣物学活性丧失,这种现象称为蛋⽩质的变性。
1.酶的活性中⼼::酶分⼦中能直接与底物分⼦结合,并催化底物化学反应的部位称为.酶的活性中⼼。
2.必需基团:与酶活性密切相关的化学基团称为必需基团。
3.别构酶(变构酶):有些酶分⼦的变构中⼼可以与变构剂发⽣⾮共价结合,引起酶分⼦构象的改变,对酶起到激活或抑制的作⽤,这类酶通常称为变构酶。
4.同⼯酶:催化相同的化学反应,但酶蛋⽩的分⼦结构、理化性质和免疫学性质不同的⼀组酶称为同⼯酶。
第七章糖类分解代谢1.糖酵解:在⽣物体内葡萄糖经⼀系列反应分解为丙酮酸并⽣成少量ATP的过程。
2.三羧酸循环(TCA):从⼄酰辅酶A和草酰⼄酸缩合成含三个羧基的柠檬酸开始,经过脱氢、脱羧等⼀系列反应,最终草酰⼄酸得以再⽣的循环反应过程。
3.糖有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化成CO2和H2O,并产⽣⼤量能量的过程。
第⼋章⽣物氧化与氧化磷酸化1.⽣物氧化:⽣物细胞将糖、脂蛋⽩质等燃料分⼦氧化分解,最终⽣成CO2和H2O释放出能量,并偶联ADP磷酸化⽣成ATP的过程,称为⽣物氧化。
生物化学重点知识点总结

生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学考试重点概要

生物化学考试重点概要
一、概述
生物化学是研究生物体内的化学成分及其相互关系的学科,涉及生物大分子、代谢途径、酶的功能等领域。
本文档将重点概括生物化学考试中的重要内容。
二、生物大分子
1. 蛋白质:结构、功能、合成与降解
2. 核酸:DNA和RNA的结构、功能和复制过程
3. 碳水化合物:单糖、多糖的组成和功能
4. 脂类:脂肪酸、甘油与脂质的分类和代谢
三、代谢途径
1. 高级碳水化合物代谢:糖原合成与分解、糖酵解、柠檬酸循环
2. 氨基酸代谢:氨基酸合成与降解、尿素循环
3. 脂类代谢:脂肪酸合成与降解
4. 核酸代谢:核苷酸合成与降解
四、酶的功能
1. 酶的分类与特性:氧化还原酶、转移酶、水解酶等
2. 酶促反应:酶的动力学参数、酶反应速率与底物浓度的关系
3. 酶的调控机制:酶的诱导与抑制、酶活性调节因子
五、其他重要知识点
1. 酶联免疫吸附测定(ELISA)原理与应用
2. PCR技术的原理与应用
3. 蛋白质电泳的原理与应用
六、复建议
1. 重点记忆各个代谢途径的关键酶与反应物
2. 针对酶的功能和调控机制进行重点理解与实例分析
3. 多做题和模拟考试,加强对知识点的掌握和应用能力
以上是生物化学考试重点概要的完整版。
希望本文档能帮助你全面复生物化学知识,取得优异的考试成绩。
最新-生物化学期末考试知识点归纳 精品
三羧酸循环记忆方法一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个2(1)2个阶段;经过2个阶段生成乳酸(葡萄糖--丙酮酸--乳酸)(2)2个磷酸化(葡萄糖--6-磷酸葡萄糖、6-磷酸果糖--1,6-双磷酸糖);(3)2个异构化,即可逆反应(6-磷酸葡萄糖--6-磷酸果糖、3-磷酸甘油酸--2-磷酸甘油酸);(4)2个底物水平磷酸化(1,3-二磷酸甘油酸--3-磷酸甘油酸、磷酸希醇式丙酮酸--丙酮酸);(5)2个ATP消耗(两个磷酸化中消耗了),净得2个分子的ATP;(6)产生2分子NADH(1个NADH=3个ATP)3:整个过程需要3个关键酶(第一步:己糖激酶、第二步:6-磷酸果糖激酶-1、第三步:丙酮酸激酶)4:生成4分子的ATP.二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位(胞浆、线粒体)3:3个阶段:(1)糖酵解途径生成丙酮酸(2)丙酮酸生成乙酰CO-A(3)三羧酸循环和氧化磷酸化4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH25:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释:1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
、2.蛋白质的一级结构:是指多肽链中氨基酸(残基)的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。
维持其稳定的化学键是:肽键。
蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。
蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。
生物化学期末考试重点
等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。
有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。
脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白呼吸链:线粒体膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代物脱下的电子最终传递给氧生成水。
这一系列酶和辅酶称为呼吸链或电子传递链营养必需氨基酸:体需要而又不能自身合成,必须由食物提供的氨基酸一碳单位:指某些氨基酸在分解代过程中产生的含有一个碳原子的基因半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。
生物化学考试重点笔记(完整版)
⽣物化学考试重点笔记(完整版)第⼀章蛋⽩质的结构与功能第⼀节蛋⽩质的分⼦组成⼀、组成蛋⽩质的元素1、主要有C、H、O、N和S,有些蛋⽩质含有少量磷或⾦属元素铁、铜、锌、锰、钴、钼,个别蛋⽩质还含有碘。
2、蛋⽩质元素组成的特点:各种蛋⽩质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋⽩质为主,因此,只要测定⽣物样品中的含氮量,就可以根据以下公式推算出蛋⽩质的⼤致含量:100克样品中蛋⽩质的含量( g % )= 每克样品含氮克数× 6.25×100⼆、氨基酸——组成蛋⽩质的基本单位(⼀)氨基酸的分类1.⾮极性氨基酸(9):⽢氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)⾊氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) ⾕氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) ⾕氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(⼆)氨基酸的理化性质1. 两性解离及等电点等电点 :在某⼀pH的溶液中,氨基酸解离成阳离⼦和阴离⼦的趋势及程度相等,成为兼性离⼦,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)⾊氨酸、酪氨酸的最⼤吸收峰在 280 nm 附近。
(2)⼤多数蛋⽩质含有这两种氨基酸残基,所以测定蛋⽩质溶液280nm的光吸收值是分析溶液中蛋⽩质含量的快速简便的⽅法。
3. 茚三酮反应氨基酸与茚三酮⽔合物共热,可⽣成蓝紫⾊化合物,其最⼤吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正⽐关系,因此可作为氨基酸定量分析⽅法三、肽(⼀)肽1、肽键是由⼀个氨基酸的α-羧基与另⼀个氨基酸的α-氨基脱⽔缩合⽽形成的化学键。
生物期末复习重点总结
生物期末复习重点总结生物是一门研究生命的科学,涵盖了很多不同的领域,包括细胞生物学、遗传学、生态学等。
本文将对生物学期末复习的重点进行总结,帮助你在考试中取得优异的成绩。
一、细胞生物学1. 细胞结构与功能- 细胞膜、核膜、细胞质、细胞器的结构和功能- 涉及的重要细胞器有:核、线粒体、内质网、高尔基体等2. 细胞的能量转化- 光合作用和呼吸作用的过程和方程式- ATP的合成与利用3. 细胞分裂- 有丝分裂与减数分裂的区别与过程- 染色体结构与功能- 遗传物质的传递与变异二、遗传学1. 遗传的基本规律- 孟德尔的遗传实验和三定律- 配子自由组合法则与独立性法则2. DNA的结构与复制- DNA的双螺旋结构和碱基配对规则- DNA的复制过程和机制3. 基因的表达与调控- 转录与翻译的过程和机制- 遗传密码的规律和意义三、生物进化1. 进化的证据- 古生物学证据:化石、地层- 生物地理学证据:大陆漂移、生物区系分布- 比较生物学证据:同源器官、类似结构2. 进化的机制- 天然选择和人工选择的作用- 遗传变异和基因突变的产生与影响3. 物种形成与多样性- 隔离与适应的作用- 物种形成的方式和机制四、生态学1. 生态系统的组成和结构- 环境要素对生态系统的影响- 生态位与生态位重叠的概念2. 生物种群与群落- 种群的生长与调节- 群落结构与相互关系3. 生态平衡与破坏- 生物多样性的重要性和保护策略- 环境污染和资源过度开发的影响五、人类生殖与发育生物学1. 人类的性别与性别决定机制- 染色体理论和激素理论- 遗传性别与环境性别的区别2. 人类的生殖与发育过程- 男性和女性的生殖系统结构和功能- 受精与胚胎发育的过程和机制3. 遗传疾病与遗传咨询- 基因突变与遗传疾病的关系- 遗传咨询的意义和方法六、人类健康与疾病1. 免疫系统的功能与调节- 免疫系统对病原微生物的防御机制- 自身免疫疾病和免疫调节的失常2. 常见疾病的预防与治疗- 传染性疾病的预防与控制- 常见慢性疾病的防治策略3. 环境与健康- 环境因子对人类健康的影响- 环境保护和健康促进的重要性以上是生物学期末复习的重点总结,希望能帮助你对生物学的知识有更好的掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生化总结1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。
(4)β-转角结构特点:a、肽链出现180°转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。
6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。H2A、H2B、H3和H4共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白H1和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化∆A260达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。
9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。
(4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36°。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。
(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。 11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。
13。何为酶的Km值?简述Km和Vm意义。 酶的Km值是酶的特征性常数,是指当酶促反应速度达到最大反应速度一半时的底物浓度。其只与酶的结构、底物和反应条件有关,与酶的浓度无关。可近似表示酶与底物的亲和力。Vmax是酶完全被底物饱和时的反应速率,与酶的浓度成正比,可用于计算酶的转换数。 14。何为酶的竞争性抑制作用?有何特点?试举例说明之。 1)有些抑制剂与酶的底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。这种抑制作用称为竞争性抑制作用。2)有两个特点,一是抑制剂以非共价键与酶呈可逆性结合,可用透析或超滤的方式除去,二是抑制程度取决于抑制剂与酶的相对亲和力和底物浓度的比例,加大底物浓度可减轻抑制作用。3)典型例子是丙二酸对琥珀酸脱氢酶的抑制作用。 15。比较三种可逆性抑制作用的特点。 (1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用的大小与抑制剂与底物的浓度以及酶对它们的亲和力有关。Km值升高,Vm不变。 (2)非竞争性抑制:抑制剂的结构与底物结构不相似或不同,只与酶活性中心外的必需基因结合。不影响酶与底物的结合。抑制作用的强弱只与抑制剂的浓度有关。Km值不变,Vm下降。 (3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离为产物。Km,Vm均下降。
16。Pasteur effect:糖的有氧氧化抑制生物发酵(糖酵解)的现象称为Pasteur effect(巴斯德效应)。 17。三羧酸循环:又称柠檬酸循环或Krebs循环,是一个由一系列酶促反应构成的循环反应系统。是指在线粒体内,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,经过4次脱氢,2次脱羧,生成4分子还原当量和2分子CO2,重新生成草酰乙酸的循环反应过程。 18。底物水平磷酸化:能量物质体内分解代谢时,脱氢氧化或脱水反应使代谢分子内部能量重新分布生成高能化合物,直接将能量转移给ADP(GDP)生成ATP(GTP)的反应,这种底物水平的反应与ADP的磷酸化偶联生成ATP的方式为底物水平磷酸化。 19。简述糖酵解的生理意义。 (1)迅速供能 (2)某些组织细胞无线粒体,完全依赖糖酵解供能,如成熟红细胞等。 (3)神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。 20。列表比较糖酵解与有氧氧化进行的部位、反应条件、关键酶、产物、能量生成及生理意义。
糖酵解 糖的有氧氧化 反应条件 供氧不足 有氧情况 进行部位 胞液 胞液和线粒体 关键酶 已糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、 丙酮酸激酶 有左列三个酶及丙酮酸脱氢酶复合体、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体、柠檬酸合酶 产物 乳酸、ATP H2O、CO2、ATP 能量 1mol葡萄糖净得2molATP 1mol葡萄糖净得30或32molATP 生理意义 迅速供能;某些组织依赖糖酵解供能 是机体获得能量的主要方式
21。试述磷酸戊糖途径的生理意义。 (1)是机体生成NADPH的主要代谢途径:NADPH在体内可用于:①作为供氢体,参与体内代谢:如参与合成脂肪酸、胆固醇等。②参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。③维持谷胱甘肽的还原状态,还原型谷胱甘肽可保护含-SH的蛋白质或酶免遭氧化,维持红细胞膜的完整性,由于6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。 (2)是体内生成5-磷酸核糖的主要途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸葡萄糖的形式提供,其生成方式可以由G-6-P脱氢脱羧生成,也可以由3-磷酸甘油醛和F-6-P经基团转移的逆反应生成。 22。简述血糖的来源和去路。 血糖的来源:①食物经消化吸收的葡萄糖;②肝糖原分解;③糖异生 血糖的去路:①糖酵解或有氧氧化产生能量;②合成糖原;③转变为脂肪及某些非必需氨基酸;④进入磷酸戊糖途径等转变为其它非糖类物质。 23。简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用。 (1)6-磷酸葡糖糖的来源:①已糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄糖。②糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖。③非糖物质经糖异生由6-磷酸果糖异构为6-磷酸葡萄糖。 (2)6-磷酸葡萄糖的去路:①经糖酵解生成乳酸。②经糖的有氧氧化彻底氧化生成CO2、H2O和ATP。③通过变位酶催化生成1-磷酸葡萄糖,合成糖原。④在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途径。 由上可知,6-磷酸葡萄糖是糖代谢各个代谢途径的交叉点,是各种代谢途径的共同产物,如已糖激酶或变位酶的活性降低,可使6-磷酸葡萄糖的生成减少,上述各代谢途径不能顺利进行。因此,6-磷酸葡萄糖的代谢方向取决于各条代谢途径中相关酶的活性大小。 24。脂肪动员:是指储存在脂肪细胞中的甘油三脂,被脂肪酶逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织氧化利用的过程。 25。脂酸的β-氧化:指脂肪酸活化为脂酰CoA,脂酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体催化下,依次进行脱氢、加水、再脱氢和硫解四步连续反应,释放出一分子乙酰CoA和一分子比原来少两个碳原子的脂酰CoA。由于反应均在脂酰CoA的α碳原子与β碳原子之间进行,最后β碳原子被氧化为酰基,所以称为~ 26。酮体:指脂肪酸在肝分解氧化时产生的乙酰CoA可在肝组织中生成的特有物质,包括乙酰乙酸、β-羟丁酸和丙酮三种。 27。血浆脂蛋白的分类及功能。 电泳法 密度法 功能 乳糜微粒 CM 转运外源性甘油三脂和胆固醇 前β-脂蛋白 VLDL 转运内源性甘油三酯 β-脂蛋白 LDL 转运内源性胆固醇 α-脂蛋白 HDL 参与胆固醇的逆向转运 28。胆固醇不可以分解为乙酰CoA。胆固醇可转变为类固醇激素、维生素D3和胆汁酸。 29。乙酰CoA可进入以下代谢途径: ①进入三羧酸循环氧化分解为CO2和H2O,产生大量能量。 ②以乙酰CoA为原料合成脂肪酸,进一步合成脂肪和磷脂等。 ③以乙酰CoA为原料合成酮体作为肝输出能源方式。 ④以乙酰CoA为原料合成胆固醇。 30。氧化磷酸化:指代谢物脱下的氢,经呼吸链传递给O2氧化成H2O,并偶联ADP磷酸化生成ATP的过程。