生物化学考试重点总结(精华篇)
生物化学重点整理

生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。
它涵盖了广泛的领域,从分子水平揭示生命的奥秘。
以下是对生物化学重点内容的整理。
一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。
1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。
氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。
2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。
一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。
3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。
变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。
二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。
DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。
2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。
3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
1、酶的特点酶具有高效性、专一性和可调节性。
高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。
2、酶的作用机制酶通过降低反应的活化能来加速反应。
它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。
3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。
生物化学考试重点总结

生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
生物化学重点总结(15页)

生物化学重点总结酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
蛋白质变性,变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。
蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。
核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。
DNA双螺旋结构是核酸的二级结构。
DNA是一反向平行的互补双链结构DNA的变性在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。
解链过程中,吸光值增加,并与解链程度有一定的比例关系,称为DNA的增色效应。
紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm),G+C比例越高,Tm值越高。
DNA的复性和杂交:变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。
不同来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。
杂交可发生于DNA-DNA之间,RNA-RNA之间以及RNA-DNA之间。
辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。
米氏方程式V=Vmax[S]/(Km+[S])a.米氏常数Km值等于酶促反应速度为最大速度一半时的底物浓度。
b.Km值愈小,酶与底物的亲和力愈大。
c.Km值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关。
d.Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比。
完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。
本章节将讨论酶在生化反应中的作用机制和催化过程。
包括酶的分类、酶动力学和酶抑制剂等内容。
本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。
本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。
本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。
DNA复制DNA复制是遗传信息传递的第一步。
在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。
复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。
RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。
在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。
转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。
蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。
蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。
翻译过程可分为启动、延伸和终止三个阶段。
以上是生物体内遗传信息的传递过程的重要步骤。
深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。
本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
生物化学重点

生物化学重点生物化学重点篇(一):2023年生物化学知识点归纳一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。
两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。
核糖核酸(RNA),存在于细胞质和细胞核内。
1、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。
2、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。
二、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。
三、DNA的空间结构与功能1、DNA的二级结构DNA双螺旋结构是核酸的二级结构。
双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点:a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。
b.DNA是右手螺旋结构螺旋直径为2nm。
每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。
螺距为3.4nm,每个碱基平面之间的距离为0.34nm。
c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。
2、DNA的三级结构三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。
在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。
在核小体的基础上,DNA链经反复折叠形成染色体。
3、功能DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。
DNA中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的DNA分子只是碱基的排列顺序不同。
生物化学重点篇(二):西医综合生物化学知识点第一部分生物大分子的结构和功能重点内容:氨基酸的分类,几种特殊的氨基酸,蛋白质的分子结构及理化性质,核酸的组成,DNA双螺旋结构,酶的基本概念,米式方程,辅酶成分。
生物化学重点

生物化学名词解释:1.从头合成: 利用磷酸核糖、氨基酸、一碳单位与二氧化碳等简单物质为原料, 经过一系列酶促反应, 合成嘌呤核苷酸或嘧啶核苷酸的过程。
2.呼吸链: 线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合物, 课通过链锁的氧化还原将代谢物脱下的电子最终传递给氧生成水, 这一系列酶和辅酶称为呼吸链和电子传递链。
3.糖酵解(无氧氧化): 在机体缺氧条件下, 葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程。
4.酶原和酶原激活: 有些酶在细胞分泌合成或初分泌, 或在其发挥催化功能前只是酶的无话性亲体, 称酶原。
酶原向酶的转化过程称为酶原激活。
5.补救合成: 利用体内游离的嘌呤或嘌呤核苷酸, 经过简单地反应过程, 合成嘌呤核苷酸, 称为补救合成(或重新利用)途径。
6、酶的活性中心: 酶的必需集团在一级结构上可能相距很远, 但在空间结构上彼此靠近, 组成具有特定空间结构的区域, 能和底物特异的结合并将底物转化为产物, 这一区域称为酶的活性中心或活性部位。
7、翻译:蛋白质生物合成也成翻译, 是细胞内以mRNA为模板, 按照mRNA分子中由核苷酸组成的密码信息合成蛋白质的过程。
8、酶的共价修饰调节:酶蛋白肽链上某些残基在不同催化单向反映以酶的催化下发生可逆的共价修饰, 从而引起酶活性的改变, 这种调节称为酶的化学修饰调节又称共价修饰调节。
9、中心法则:10、DNA的二级结构: DNA的二级结构是反向平行, 右手螺旋的互补双链。
11.氧化磷酸化: 由代谢物脱下的氢, 经线粒体氧化呼吸链电子传递释放能量, 偶联驱动ADP磷酸化生成ATP的过程。
12、竞争性抑制作用: 有些抑制剂与酶底物结构相似, 可与底物竞争酶的活性中心, 从而阻碍酶和底物结合生成中间产物。
13.蛋白质变性:在某些物理和化学因素作用下, 蛋白质特定的空间构象被破坏, 即有序的空间结构变成无序的空间结构, 从而导致其理化性质的改变和生物活性的丧失。
生物化学考试复习要点总结

一、蛋白质的结构与功能1.蛋白质的含氮量平均为16%.2.氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。
3.酸性氨基酸:天冬氨酸、谷氨酸;碱性氨基酸:赖氨酸、精氨酸、组氨酸。
4.半胱氨酸巯基是GSH的主要功能基团。
5.一级结构的主要化学键是肽键。
6.维系蛋白质二级结构的因素是氢键7.并不是所有的蛋白质都有四级结构。
8.溶液pH>pI时蛋白质带负电,溶液pH<pl时蛋白质带正电。
9.蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。
二、核酸的结构和功能1. RNA和DNA水解后的产物。
2.核苷酸是核酸的基本单位。
3.核酸一级结构的化学键是3′,5′-磷酸二酯键。
4. DNA的二级结构的特点。
主要化学键为氢键。
碱基互补配对原则。
A与T, c 与G.5. Tm为熔点,与碱基组成有关6. tRNA二级结构为三叶草型、三级结构为倒L型。
7.ATP是体内能量的直接供应者。
cAMP、cGMP为细胞间信息传递的第二信使。
三酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。
2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念:必须基因集中存在,并构成一定的空间结构,直接参与酶促反应的区域叫酶的活性中心3.B族维生素与辅酶对应关系。
4. Km含义;Km值一般由一个数乘以测量单位所表示的特定量的大小. 对于不能由一个数乘以测量单位所表示的量,可参照约定参考标尺,或参照测量程序,或两者都参照的方式表示。
5.竞争性抑制特点。
某些与酶作用底物相识的物质,能与底物分子共同竞争酶的活性中心。
酶与这种物质结合后,就不能再与底物相结合,这种作用称酶的竞争性抑制作用。
抑制是可逆的,抑制作用的大小与抑制剂和底物之间的相对浓度有关。
四糖代谢1.糖酵解限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP:2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
生物化学考试重点总结

生物化学考试重点总结生物化学第一章绪论生物化学:生物化学是在分子水平研究并阐述生物体的物质组成、结构与功能、代谢变化与调节、生命遗传物质化学传递规律的科学。
第二章糖类化学及第九章糖代谢△1糖:糖是具有多羟基醛和多羟基酮及其衍生物或多聚物的总称。
根据其大小可分为单糖、低聚糖、和多糖。
2单糖的主要化学性质:①与碱性弱氧化剂反应(与银氨溶液反应)与本尼迪克特试剂(硫酸铜、碳酸钠和柠檬酸钠)单糖+Cu(OH)2→Cu2O↓+复杂氧化物②与非碱性弱氧化剂反应(溴水)③酶促反应④与较强氧化剂反应(HNO3)作用生成糖二酸⑤彻底氧化⑥还原反应⑦成酯反应⑧成苷反应(形成糖苷键)苷类化合物分包括糖部分和非糖部分,非糖部分称为苷元。
3双糖有麦芽糖、蔗糖、和乳糖,其中蔗糖无还原性。
麦芽糖是由两分子的α—D—葡萄糖通过α—1,4糖苷键结合二而成的;具有还原性△4,蔗糖由α-1,2-β-糖苷键连接而成,无还原性5乳糖具有还原性6多糖按其组分可分为同多糖和杂多糖,同多糖由一种单糖缩合而成包括淀粉、糖原和纤维素等;淀粉是直链淀粉和支链淀粉的混合物,水解终产物都是D-葡萄糖,直链淀粉由α-1,4糖苷键连接成键支链淀粉由α-1,4糖苷键和α-1,6糖苷键组成;(直链淀粉遇碘变蓝色);糖原(糖原遇碘呈红褐色)△7糖蛋白:糖蛋白可分为N-连接糖蛋白和O-连接糖蛋白两类8习题:①蔗糖是由一分子的D-葡萄糖一分子的D果糖之间通过α-1,2-β-糖苷键相连② 多糖的构象大致可分为螺旋、带状、皱折和无卷曲四种类型,决定其构象的主要因素是糖链的一级结构。
③直链淀粉的构象是螺旋,纤维素的构象是带状④常用来测定测定还原糖的试剂为斐林试剂和班乃德试剂⑤直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫色,糖原遇碘呈红褐色9糖的无氧分解代谢(糖酵解):葡萄糖或糖原在不消耗氧的条件下被分解成乳糖的过程。
(糖酵解的全部反应在胞液中进行)(熟悉)10糖酵解的全过程:①葡萄糖化成6-磷酸葡萄糖(由己糖激酶催化)消耗1个ATP并需要Mg2+参加己糖激酶是糖酵解中第一个限速酶反应不可逆②6-磷酸葡萄糖转变为6-磷酸果糖(由磷酸己糖异构酶催化)反应可逆③6-磷酸果糖转变为1,6-二磷酸果糖(由6-磷酸果糖激酶-1催化)消耗一个ATP 需Mg2+参加反应不可逆 6-磷酸果糖激酶-1是糖酵解过程中第二个限速酶④1,6-二磷酸果糖裂解成2分子磷酸丙糖(由缩醛酶催化)最后是生成了3-磷酸甘油醛⑤3-磷酸甘油醛氧化为1,3-二磷酸甘油醛(由3-磷酸甘油醛脱氢酶催化)反应产生2个H由辅酶NAD+接受生成NADH + H+ 反应可逆⑥1,3-二磷酸甘油酸转变为3-磷酸甘油酸(由磷酸甘油酸激酶催化)产生2个ATP 反应可逆⑦3-磷酸甘油酸转变为2-磷酸甘油酸(由3-磷酸甘油酸变位酶催化)反应可逆⑧2-磷酸甘油酸转变成为磷酸烯醇式丙酮酸(由烯醇化酶催化)反应不可逆⑨磷酸烯醇式丙酮酸转变为丙酮酸(由丙酮酸激酶(PK)催化)产生两个ATP 丙酮酸激酶是第三个限速酶⑩丙酮酸转化为乳酸(乳酸脱氢酶催化)反应所需要的氢原子由NADH + H+提供然后NADH+ H+重新转变成NAD+保证了糖酵解的继续进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生化总结(精华篇)1。
蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。
2。
模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。
3。
蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。
4。
试述蛋白质的二级结构及其结构特点。
(1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。
(2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。
(3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。
(4)β-转角结构特点:a、肽链出现180°转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。
(5)无规则卷曲:肽链中没有确定的结构。
5。
蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。
6。
核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。
H2A、H2B、H3和H4共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白H1和DNA连接形成的串珠状结构称核小体。
7。
解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化∆A260达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。
8。
DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。
9。
试述细胞内主要的RNA类型及其主要功能。
(1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。
(2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。
是蛋白质合成模板。
成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。
(3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。
转运氨基酸。
(4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。
(5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。
(6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。
(7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。
10。
试述Watson-Crick的DNA双螺旋结构模型的要点。
(1)DNA是一反向平行、右手螺旋的双链结构。
两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。
(2)DNA是一右手螺旋结构。
螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36°。
DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。
DNA双螺旋分子存在一个大沟和小沟。
(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。
11。
酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。
12。
同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。
13。
何为酶的Km值?简述Km和Vm意义。
酶的Km值是酶的特征性常数,是指当酶促反应速度达到最大反应速度一半时的底物浓度。
其只与酶的结构、底物和反应条件有关,与酶的浓度无关。
可近似表示酶与底物的亲和力。
Vmax是酶完全被底物饱和时的反应速率,与酶的浓度成正比,可用于计算酶的转换数。
14。
何为酶的竞争性抑制作用?有何特点?试举例说明之。
1)有些抑制剂与酶的底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。
这种抑制作用称为竞争性抑制作用。
2)有两个特点,一是抑制剂以非共价键与酶呈可逆性结合,可用透析或超滤的方式除去,二是抑制程度取决于抑制剂与酶的相对亲和力和底物浓度的比例,加大底物浓度可减轻抑制作用。
3)典型例子是丙二酸对琥珀酸脱氢酶的抑制作用。
15。
比较三种可逆性抑制作用的特点。
(1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。
抑制作用的大小与抑制剂与底物的浓度以及酶对它们的亲和力有关。
Km值升高,Vm不变。
(2)非竞争性抑制:抑制剂的结构与底物结构不相似或不同,只与酶活性中心外的必需基因结合。
不影响酶与底物的结合。
抑制作用的强弱只与抑制剂的浓度有关。
Km值不变,Vm下降。
(3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离为产物。
Km,Vm均下降。
16。
Pasteur effect:糖的有氧氧化抑制生物发酵(糖酵解)的现象称为Pasteur effect(巴斯德效应)。
17。
三羧酸循环:又称柠檬酸循环或Krebs循环,是一个由一系列酶促反应构成的循环反应系统。
是指在线粒体内,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,经过4次脱氢,2次脱羧,生成4分子还原当量和2分子CO2,重新生成草酰乙酸的循环反应过程。
18。
底物水平磷酸化:能量物质体内分解代谢时,脱氢氧化或脱水反应使代谢分子内部能量重新分布生成高能化合物,直接将能量转移给ADP(GDP)生成ATP(GTP)的反应,这种底物水平的反应与ADP的磷酸化偶联生成ATP 的方式为底物水平磷酸化。
19。
简述糖酵解的生理意义。
(1)迅速供能(2)某些组织细胞无线粒体,完全依赖糖酵解供能,如成熟红细胞等。
(3)神经细胞、白细胞、骨髓细胞等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。
20。
列表比较糖酵解与有氧氧化进行的部位、反应条件、关键酶、产物、能量生成及生理意义。
糖酵解糖的有氧氧化反应条件供氧不足有氧情况进行部位胞液胞液和线粒体关键酶已糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶有左列三个酶及丙酮酸脱氢酶复合体、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体、柠檬酸合酶产物乳酸、ATP H2O、CO2、ATP能量1mol葡萄糖净得2molATP 1mol葡萄糖净得30或32molATP生理意义迅速供能;某些组织依赖糖酵解供能是机体获得能量的主要方式21。
试述磷酸戊糖途径的生理意义。
(1)是机体生成NADPH的主要代谢途径:NADPH在体内可用于:①作为供氢体,参与体内代谢:如参与合成脂肪酸、胆固醇等。
②参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。
③维持谷胱甘肽的还原状态,还原型谷胱甘肽可保护含-SH的蛋白质或酶免遭氧化,维持红细胞膜的完整性,由于6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。
(2)是体内生成5-磷酸核糖的主要途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸葡萄糖的形式提供,其生成方式可以由G-6-P脱氢脱羧生成,也可以由3-磷酸甘油醛和F-6-P经基团转移的逆反应生成。
22。
简述血糖的来源和去路。
血糖的来源:①食物经消化吸收的葡萄糖;②肝糖原分解;③糖异生血糖的去路:①糖酵解或有氧氧化产生能量;②合成糖原;③转变为脂肪及某些非必需氨基酸;④进入磷酸戊糖途径等转变为其它非糖类物质。
23。
简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用。
(1)6-磷酸葡糖糖的来源:①已糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄糖。
②糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖。
③非糖物质经糖异生由6-磷酸果糖异构为6-磷酸葡萄糖。
(2)6-磷酸葡萄糖的去路:①经糖酵解生成乳酸。
②经糖的有氧氧化彻底氧化生成CO2、H2O和ATP。
③通过变位酶催化生成1-磷酸葡萄糖,合成糖原。
④在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途径。
由上可知,6-磷酸葡萄糖是糖代谢各个代谢途径的交叉点,是各种代谢途径的共同产物,如已糖激酶或变位酶的活性降低,可使6-磷酸葡萄糖的生成减少,上述各代谢途径不能顺利进行。
因此,6-磷酸葡萄糖的代谢方向取决于各条代谢途径中相关酶的活性大小。
24。
脂肪动员:是指储存在脂肪细胞中的甘油三脂,被脂肪酶逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织氧化利用的过程。
25。
脂酸的β-氧化:指脂肪酸活化为脂酰CoA,脂酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体催化下,依次进行脱氢、加水、再脱氢和硫解四步连续反应,释放出一分子乙酰CoA和一分子比原来少两个碳原子的脂酰CoA。
由于反应均在脂酰CoA的α碳原子与β碳原子之间进行,最后β碳原子被氧化为酰基,所以称为~26。
酮体:指脂肪酸在肝分解氧化时产生的乙酰CoA可在肝组织中生成的特有物质,包括乙酰乙酸、β-羟丁酸和丙酮三种。
27。
血浆脂蛋白的分类及功能。
电泳法密度功能法乳糜微粒CM 转运外源性甘油三脂和胆固醇VLDL 转运内源性甘油三酯前β-脂蛋白β-脂蛋LDL 转运内源性胆固醇白α-脂蛋HDL 参与胆固醇的逆向转运白28。
胆固醇不可以分解为乙酰CoA。
胆固醇可转变为类固醇激素、维生素D3和胆汁酸。
29。
乙酰CoA可进入以下代谢途径:①进入三羧酸循环氧化分解为CO2和H2O,产生大量能量。
②以乙酰CoA为原料合成脂肪酸,进一步合成脂肪和磷脂等。