初中数学重点知识点分类总结,超齐全!
初中数学知识点总结超简

初中数学知识点总结超简初中数学是学生数学学习的重要阶段,它为高中数学打下基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的主要知识点概述。
一、数与代数1. 有理数- 整数和分数的概念- 有理数的加减乘除运算- 有理数的比较大小- 绝对值的概念和性质2. 整式与分式- 单项式和多项式的定义- 整式的加减乘除运算- 分式的定义和运算规则- 分式的化简和约分3. 代数方程- 一元一次方程和二元一次方程- 方程的解法,包括代入法、消元法等- 不等式及其解集- 一元二次方程的解法,包括因式分解、配方法、公式法和图像法4. 函数- 函数的概念和表示方法- 线性函数和二次函数的图像及性质- 函数的基本运算,如函数的和、差、积、商- 反函数和复合函数的概念二、几何1. 平面几何- 点、线、面的基本性质- 角的概念和分类,包括同位角、内错角等- 三角形的分类和性质,包括等边、等腰、直角三角形- 四边形的分类和性质,包括矩形、菱形、正方形、梯形- 圆的基本性质和圆的方程2. 空间几何- 空间图形的基本概念- 立体图形的表面积和体积计算,包括长方体、正方体、圆柱、圆锥、球体- 棱柱、棱锥和棱台的性质3. 几何变换- 平移、旋转、轴对称和中心对称的概念- 坐标系中点的坐标变换- 相似和全等的判定及性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制,如条形图、折线图、饼图- 平均数、中位数和众数的计算2. 概率- 随机事件的概念- 概率的计算和表示方法- 事件的可能性和概率的关系- 简单事件和复合事件的概率以上是初中数学的核心知识点,学生需要通过不断的练习和理解来掌握这些概念和运算方法。
在实际学习过程中,还需要注意培养逻辑思维能力和解决问题的能力,这对于数学学习至关重要。
初中数学重点知识归纳

一次函数的定义;一次函数的图像与性质;一次函数的应用
二次函数
二次函数的定义;二次函数的图像与性质(开口方向、顶点坐标、对称轴);二次函数的应用(最大值、最小值问题)
几何
平行线与相交线
平行线的定义与性质;相交线的性质与判定
三角形
三角形的定义与分类;三角形的性质(内角和、外角和、中线、高线、角平分线、中线定理等);三角形的判定与全等初中数学源自点知识归纳领域知识点
具体内容
数与代数
有理数
整数(正整数、0、负整数);分数(正分数、负分数);数轴;相反数;绝对值;有理数的运算(加法、减法、乘法、除法、乘方、混合运算)
实数
无理数(无限不循环小数);平方根与立方根;实数与数轴的关系
代数式
代数式的定义;合并同类项;整式(单项式、多项式);整式的运算(加减、乘除、幂的运算);分解因式;分式及其运算
四边形
四边形的定义与分类;平行四边形的性质与判定;矩形、菱形、正方形的性质与判定
圆
圆的定义与性质(圆心、半径、直径、弦、弧等);圆的周长与面积;垂径定理、圆周角定理等
方程与不等式
一元一次方程
定义;解法(去分母、移项、合并同类项、未知数系数化为1)
二元一次方程组
定义;解法(代入消元法、加减消元法)
一元二次方程
定义;解法(配方法、分解因式法、公式法)
不等式
不等式的性质;一元一次不等式的解法;一元一次不等式组的解法
函数
函数的概念
函数的定义;自变量、因变量;函数的表示方法(解析式、列表法、图像法)
初中数学知识点全总结

初中数学知识点全总结初中数学是中学阶段的重要学科,是学生学习和进一步发展数学思维能力的基础。
以下是初中数学的主要知识点的完美打印版总结。
一、整数1.整数的概念2.整数的加法、减法、乘法及其运算规律3.整数的除法及其性质4.整数的运算律5.整数的大小比较二、分数1.分数的概念2.分数的四则运算3.分数的约分和通分4.分数的大小比较5.分数和整数的关系6.带分数的四则运算三、代数1.代数式的概念和基本性质2.代数式的加减和乘法3.代数式的化简和展开4.代数式的因式分解和配方法5.二元一次方程的解法6.一元一次不等式的解法四、平方根与立方根1.平方根和立方根的概念2.平方根的性质和运算3.立方根的性质和运算4.平方根和立方根的应用五、比例与比例的应用1.比例的概念和性质2.比例的四则运算和单位换算3.比例的应用:比例关系图、比例方程和比例尺4.百分数与百分数的应用六、图形的基本性质1.线段、线、角的基本概念及其表示方法2.直线、射线、平行线、垂直线的判定和性质3.三角形的分类、性质和判定4.四边形的分类、性质和判定5.圆的基本概念和性质七、图形的计算1.平面图形的周长和面积计算2.立体图形的表面积和体积计算3.圆的周长和面积计算八、统计与概率1.数据的搜集、整理和表示2.平均数、中位数、众数的计算和应用3.事件的概念、概率的计算和应用九、坐标系与函数1.平面直角坐标系的建立和性质2.坐标的计算和表示3.函数的概念、图像和性质4.一次函数和二次函数的性质和图像十、几何变换1.平移、旋转、翻转和错切的基本概念和表示方法2.几何变换的性质和组合变换以上是初中数学的主要知识点的完美打印版总结,通过对这些知识点的学习和理解,可以夯实基础,为进一步学习高中数学打下坚实的基础。
初中数学的重要知识点总结

初中数学的重要知识点总结一、数与代数1. 整数:初中数学中整数的概念和运算是非常重要的知识点。
学生需要了解正整数、负整数,以及它们的加、减、乘、除等运算规则。
2. 分数:分数是初中数学中的重点难点之一,学生需要掌握分数的概念、约分、通分、加减乘除等基本运算法则。
3. 百分数:百分数是初中数学中常见的一个知识点,学生需要了解百分数的概念、意义、换算,以及百分数与分数、小数之间的转换等知识。
4. 有理数:有理数是整数、分数的统称,学生需要了解有理数的概念、性质、比较大小、加减乘除等操作。
5. 方程与不等式:初中数学中的方程与不等式是一个重要的内容,学生需要了解一元一次方程、一元一次不等式的解法,以及应用解题能力。
6. 几何与图形1. 平面直角坐标系:平面直角坐标系是初中数学中的一个重要知识点,学生需要了解直角坐标系的概念、性质、点、坐标、距离等基本概念。
2. 直线与线段:初中数学中直线和线段是一个重要的几何知识点,学生需要了解直线和线段的概念、性质、垂直、平行、倾斜等基本性质。
3. 角与三角形:初中数学中角与三角形也是一个重要的几何知识点,学生需要了解角的概念、性质、分类,以及三角形的概念、性质、分类、面积等知识。
4. 圆与圆周角:初中数学中圆与圆周角是一个重要的几何知识点,学生需要了解圆的概念、性质,以及圆周角的度量、性质等知识。
7. 函数与方程1. 函数:初中数学中函数是重要的知识点,学生需要了解函数的概念、性质、图像、性质等基本知识。
2. 方程:方程是初中数学中一个重要的知识点,学生需要了解方程的概念、类型、解法,以及应用解题能力。
8. 数据与图表1. 统计与概率:初中数学中统计与概率是一个重要的知识点,学生需要了解调查和统计的基本方法、概率的计算、事件的概率等知识。
2. 数据与图表:数据与图表是初中数学中的重点难点之一,学生需要掌握统计图、频数表、条形图、折线图、饼图等基本图表的制作、分析和解读能力。
初中数学知识点总结归纳重点

初中数学知识点总结归纳重点初中数学是学生数学学习的重要阶段,它为高中数学打下坚实的基础。
初中数学主要包括数与代数、几何、统计与概率三个部分。
以下是初中数学的重点知识点总结:一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的性质:奇数、偶数、质数、合数。
- 整数的四则运算:加法、减法、乘法、除法。
- 整数的整除性:因数、倍数、最大公约数、最小公倍数。
3. 分数与小数- 分数的表示和性质:真分数、假分数、带分数。
- 分数的四则运算:加法、减法、乘法、除法。
- 小数的表示和性质:小数点的位置移动引起大小变化。
- 小数的四则运算:加法、减法、乘法、除法。
4. 代数表达式- 代数式的概念:用字母表示数的式子。
- 单项式与多项式:单项式是字母和数的乘积,多项式是若干个单项式的和。
- 代数式的运算:合并同类项、分配律、结合律、交换律。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 方程的应用:列方程解实际问题。
6. 二元一次方程组- 方程组的概念:含有两个未知数的一组方程。
- 解方程组的方法:代入法、消元法、图解法。
7. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的解集:找出满足不等式的所有数值。
- 解一元一次不等式:基本步骤与解方程类似,但要注意符号的变化。
8. 函数- 函数的概念:一个变量的值依赖于另一个变量的值。
- 函数的表示:图像、表格、解析式。
- 线性函数和二次函数:y=kx+b(k≠0)、y=ax²+bx+c(a≠0)。
二、几何1. 平面图形- 点、线、面的概念:点无大小,线有长度无宽度,面有长度和宽度。
- 角的概念和分类:邻角、对角、同位角等。
- 三角形的性质:边长关系、内角和定理、外角性质。
2. 四边形- 平行四边形的性质:对边平行且相等、对角相等。
初中数学知识点集锦总结

初中数学知识点集锦总结一、数与代数1. 有理数- 整数与分数的概念- 正数、负数和零的性质- 有理数的加法、减法、乘法和除法- 绝对值的概念及性质- 有理数的比较大小2. 整数- 整数的分类(正整数、负整数、零)- 整除、互质、质数与合数- 最大公约数和最小公倍数的求法3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 解方程的步骤(移项、合并同类项、系数化为1)- 方程的应用题5. 二元一次方程组- 代入法与消元法- 方程组的解的类型(相容与不相容,唯一解与无穷多解)6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 不等式组的解集7. 函数- 函数的概念及表示方法- 正比例函数与反比例函数- 一次函数与二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类(邻角、对角、同位角等)- 三角形的分类与性质(等边、等腰、直角三角形)- 四边形的分类与性质(正方形、长方形、菱形、梯形、平行四边形)2. 图形的变换- 平移、旋转、轴对称、中心对称- 相似变换与全等变换3. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 切线的性质与判定4. 面积与体积- 平面图形的面积计算公式(三角形、四边形、圆等)- 空间图形的体积计算公式(长方体、正方体、圆柱、圆锥、球)5. 相似与全等- 全等三角形的判定条件(SSS、SAS、ASA、AAS)- 相似三角形的判定与性质- 相似多边形与比例线段三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率四、综合应用题1. 数列- 等差数列与等比数列的概念- 数列的通项公式与求和公式2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 利用图形解决几何问题3. 综合题- 结合代数与几何知识解决综合性问题- 分析问题,运用适当的数学工具与方法以上是初中数学的主要知识点集锦总结,学生应根据这些知识点进行系统的复习和巩固,以便在考试中取得好成绩。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
(完整版)初中数学知识点全总结(完美打印版)
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
初中数学知识点总结(完整版)
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:任何一个有理数都可以用数轴上的一个点来表示。
如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
有理数的运算:①同号相加,取相同的符号,把绝对值相加。
异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加不变。
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘得0。
乘积为1的两个有理数互为倒数。
0不能作除数。
先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:一个正数有2个平方根/0的平方根为0/负数没有平方根。
立方根:正数的立方根是正数、0的立方根是0、负数的立方根是负数。
实数:实数分有理数和无理数。
每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
在合并同类项时,把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
人教版【初中数学】知识点总结-全面整理(超全)
人教版初中数学知识点总结目录七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (7)第三章一元一次方程 (9)第四章图形的认识初步 (11)七年级数学(下)知识点 (12)第五章相交线与平行线 (12)第六章平面直角坐标系 (16)第七章三角形 (17)第八章二元一次方程组 (23)第九章不等式与不等式组 (24)第十章数据的收集、整理与描述 (26)八年级数学(上)知识点 (28)第十一章全等三角形 (28)第十二章轴对称 (30)第十三章实数 (31)第十四章一次函数 (33)第十五章整式的乘除与分解因式 (34)八年级数学(下)知识点 (37)第十六章分式 (37)第十七章反比例函数 (40)第十八章勾股定理 (41)第十九章四边形 (42)第二十章数据的分析 (46)九年级数学(上)知识点 (47)第二十一章二次根式 (47)第二十二章一元二次根式 (49)第二十三章旋转 (51)第二十四章圆 (53)第二十五章概率 (55)九年级数学(下)知识点 (61)第二十六章二次函数 (61)第二十七章相似 (64)第二十八章锐角三角函数 (66)第二十九章投影与视图 (68)七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。