考点跟踪训练18_简单随机事件的概率
随机事件的概率考点与题型归纳

随机事件的概率考点与题型归纳一、基础知识1.频数、频率和概率(1)频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数❶,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率❷.(2)概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.2.事件的关系与运算 名称条件结论符号表示 包含关系A 发生⇒B 发生事件B 包含事件A (事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系 若B ⊇A 且A ⊇B事件A 与事件B 相等 A =B 并(和)事件 A 发生或B 发生事件A 与事件B 的并事件(或和事件)❸A ∪B (或A +B )交(积)事件 A 发生且B 发生事件A 与事件B 的交事件(或积事件)A ∩B (或AB ) 互斥事件 A ∩B 为不可能事件 事件A 与事件B 互斥❹ A ∩B =∅ 对立事件 A ∩B 为不可能事件,A ∪B 为必然事件 事件A 与事件B 互为对立事件❺A ∩B =∅, P (A ∪B )=13.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ).(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件,P (A ∪B )=1,P (A )=1-P (B ).频数是一个整数,其取值范围为0≤n A ≤n ,n A ∈N ,因此随机事件A 发生的频率f n (A )=n A的可能取值介于0与1之间,即0≤f n(A)≤1.n频率在一定程度上可以反映事件发生的可能性的大小.但是,频率不是一个完全确定的数,随着试验次数的不同,产生的频率也可能不同.并(和)事件包含三种情况:①事件A发生,事件B不发生;②事件A不发生,事件B 发生;③事件A,B都发生.即事件A,B至少有一个发生.互斥事件具体包括三种不同的情形:①事件A发生且事件B不发生;②事件A不发生且事件B发生;③事件A与事件B都不发生.“事件A与事件B是对立事件”是“其概率满足P(A)+P(B)=1”的充分不必要条件,这里一定不要认为是充要条件.事实上,若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1;反之不一定成立.二、常用结论探究概率加法公式的推广(1)当一个事件包含多个结果时,要用到概率加法公式的推广,即P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).(2)P(A1∪A2∪…∪A n))=1-P(A1∪A2∪…∪A n)=1-P(A1)-P(A2)-…-P(A n).注意涉及的各事件要彼此互斥.考点一随机事件的关系1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:选D事件“至少有一次中靶”包括“中靶一次”和“中靶两次”两种情况.由互斥事件的定义,可知“两次都不中靶”与之互斥.2.从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③解析:选C“至少有一个是奇数”即“两个都是奇数或一奇一偶”,而从1,2,3,…,7这7个数中任取两个数,根据取到数的奇偶性知共有三种情况:“两个都是奇数”“一奇一偶”“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.故选C.3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:选A至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.4.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________________________,互为对立事件的是________.解析:设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C =∅,B∩D=∅,故A与B,A与C,B与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.答案:A与B,A与C,B与C,B与D B与D考点二))))随机事件的频率与概率某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25)℃,由表格数据知,最高气温低于25)℃的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25)℃,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2×(450-300)-4×450=300; 若最高气温低于20)℃,则Y =6×200+2×(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20)℃,由表格数据知,最高气温不低于20)℃的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.[题组训练]某险种的基本保费为a (单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.30,故P (B )的估计值为0.30.(3)由所给数据得如下关系:调查的0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192)5a . 因此,续保人本年度平均保费的估计值为1.192)5a .考点三 互斥事件、对立事件概率公式的应用[典例精析]某商场有奖销售中,购满100元商品得1张奖券,多购多得.1)000)张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)易知P (A )=11)000,P (B )=1100,P (C )=120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .因为A ,B ,C 两两互斥,所以P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501)000=611)000.故1张奖券的中奖概率为611)000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11)000+1100=9891)000.故1张奖券不中特等奖且不中一等奖的概率为9891)000.[题组训练]某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.则P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.[课时跟踪检测]A 级1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”解析:选D A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.2.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17 B.1235 C.1735D.1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A.0.95B.0.97C.0.92D.0.08解析:选C 记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.4.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为( )A.13 B.12 C.23D.56解析:选C 掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,因为B 表示“出现5点或6点”的事件,所以事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.5.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)一次,观察掷出向上的点数,设事件A 为掷出向上为偶数点,事件B 为掷出向上为3点,则P (A ∪B )=( )A.13B.23C.12D.56解析:选B 事件A 为掷出向上为偶数点,所以P (A )=12.事件B 为掷出向上为3点,所以P (B )=16.又事件A ,B 是互斥事件, 所以P (A ∪B )=P (A )+P (B )=23.6.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝⎛⎭⎫54,2B.⎝⎛⎭⎫54,32)) C.⎣⎡⎦⎤54,32D.⎝⎛⎦⎤54,43解析:选D由题意可得⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.7.若A ,B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________. 解析:∵A ,B 为互斥事件, ∴P (A ∪B )=P (A )+P (B ),∴P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3. 答案:0.38.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.解析:断头不超过两次的概率P 1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P 2=1-P 1=1-0.97=0.03.答案:0.97 0.039.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9)600人,则可估计该地区对“键盘侠”持反对态度的有________人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9)600×1825=6)912(人).答案:6)91210.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.解析:由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃球,只需两互斥事件有一个发生即可,因而取得两个同色玻璃球的概率为P =715+115=815.由于事件A “至少取得一个红玻璃球”与事件B “取得两个绿玻璃球”是对立事件,则至少取得一个红玻璃球的概率为P (A )=1-P (B )=1-115=1415. 答案:815 141511.(2019·湖北七市联考)某电子商务公司随机抽取1)000名网络购物者进行调查.这1)000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下: 购物金额分组 [0.3,0.5) [0.5,0.6) [0.6,0.8) [0.8,0.9] 发放金额50100150200(2)以这1)000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x 与获得优惠券金额y 的频率分布如下表:这11)000(50×400+100×300+150×280+200×20)=96. (2)由获得优惠券金额y 与购物金额x 的对应关系及(1)知 P (y =150)=P (0.6≤x <0.8)=0.28, P (y =200)=P (0.8≤x ≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P (y ≥150)=P (y =150)+P (y =200)=0.28+0.02=0.3.12.某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4)000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4)000元的概率.解:(1)设A 表示事件“赔付金额为3)000元”,B 表示事件“赔付金额为4)000元”,以频率估计概率得P (A )=1501)000=0.15,P (B )=1201)000=0.12.由于投保金额为2)800元,赔付金额大于投保金额对应的情形是赔付金额为3)000元和4)000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4)000元”,由已知,可得样本车辆中车主为新司机的有0.1×1)000=100(辆),而赔付金额为4)000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4)000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.B 级1.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1)534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A.134石B.169石C.338石D.1)365石解析:选B 这批米内夹谷约为28254×1)534≈169石,故选B).2.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是( )A.35B.12C.310D.15解析:选A 由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以所求概率P =610=35.3.[与不等式交汇]若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,则x +y 的最小值为________.解析:由题意,x >0,y >0,4x +1y =1.则x +y =(x +y )·⎝⎛⎭⎫4x +1y =5+⎝⎛⎭⎫4y x +x y ≥5+2)4y x ·xy=9,当且仅当x =2y 时等号成立,故x +y 的最小值为9.答案:94.某超市随机选取1)000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1)000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001)000=0.2.(2)从统计表可以看出,在这1)000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001)000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001)000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001)000=0.6,顾客同时购买甲和丁的概率可以估计为1001)000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 5.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到火车站的人进行调查,调查结果如下:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人), 用频率估计概率,可得所求概率为0.44. (2)选择L 1的有60人,选择L 2的有40人, 故由调查结果得频率分布如下表:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 L 1的频率0.10.20.30.20.2(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.用频率估计概率及由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.。
18题高考数学概率与统计知识点(K12教育文档)

(完整版)18题高考数学概率与统计知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)18题高考数学概率与统计知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)18题高考数学概率与统计知识点(word版可编辑修改)的全部内容。
高考数学第18题(概率与统计)1、求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A )=)()(I card A card =n m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B )=P(A )+P (B ); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1。
(3)相互独立事件同时发生的概率:P(A ·B )=P (A )·P(B ); 特例:独立重复试验的概率:Pn(k )=kn k kn p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P ]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种。
第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复。
高考数学随机事件的概率专题复习训练(含答案)

高考数学随机事件的概率专题复习训练(含答案)概率是对随机事情发作的能够性的度量,下面是随机事情的概率专题温习训练,请考生练习。
一、选择题
1.以下说法中一定正确的选项是()
A.一名篮球运发动,号称百发百中,假定罚球三次,不会出现三投都不中的状况
B.一粒骰子掷一次失掉2点的概率是,那么掷6次一定会出现一次2点
C.假定买彩票中奖的概率为万分之一,那么买一万元的彩票一定会中奖一元
D.随机事情发作的概率与实验次数有关
[答案] D
[解析] A错误,会有三投都不中的状况发作;B错误,能够6次都不出现2点C错误,概率是预测值,而该随机事情不一定会出现.
2.以下说法正确的选项是()
A.任何事情的概率总是在(0,1)之间
B.频率是客观存在的,与实验次数有关
C.随着实验次数的添加,频率普通会越来越接近概率
D.概率是随机的,在实验前不能确定
[答案] C
[解析] 频率是n次实验中,事情A发作的次数m与实验总次数n的比值,随着实验次数的增多,频率会越来越接近概率.
3.给出以下四个命题:
集合{x||x|0}为空集是肯定事情;
y=f(x)是奇函数,那么f(0)=0是随机事情;
假定loga(x-1)0,那么x1是肯定事情;
对顶角不相等是不能够事情.
其中正确命题的个数是()
A.4
B.1
C.2
D.3
[答案] D
[解析] |x|0恒成立,正确;
奇函数y=f(x)只要在x=0有意义时才有f(0)=0,
正确;
由loga(x-1)0知,当a1时,x-11即x
随机事情的概率专题温习训练分享到这里,更多内容请关注高考数学试题栏目。
18 简单的概率计算120192020学年七年级数学下册强化巩固知识北师大版

专题18 简单的概率计算(1)教师讲义A、小敏的身高为1.50mB、四月份有30天C、小芳家有3口人D、小红所在班里有24名女生3、五位同学用最小刻度是cm的尺子,分别对一张餐桌的一边长进行测量,其结果分别如下:122.2cm,122.2cm,122.3cm,123.3cm,122.35cm,其中四位同学对餐桌的边长进行了计算,你认为谁的计算较为合理( )A、123.3cmB、122.2cmC、122.35cmD、122.3cm4、本学期结束前,学校想知道学生对这学期的营养配餐的满意程度,特向全体学生(900人)作问卷调查,其结果如下表所示:(1)形象地作出反映此调查情况的统计图;(2)计算每一种反馈意见所占总人数的比率.四、知识点梳理1、三种事件的概念(1)、必然事件定义:在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。
有些事情我们事先肯定它一定会发生,这些事情称为必然事件。
注意:必然事件发生的概率为1,但概率为1的事件不一定为必然事件。
(2)、不确定事件定义:不确定事件也称可能事件.概率论中把在一定条件下可能发生的事件叫可能事件,即:不确定事件. 表明事件可能发生也可能不发生.注意:如果A为不确定事件,那么P(A)在0和1之间.不确定事件的概率为:0<P(A)<1(3)、不可能事件定义:概率论中把在一定条件下不可能发生的事件叫不可能事件。
人们通常用0来表示不可能事件发生的可能性。
即:不可能事件的概率为0。
注意:但概率为0的事件不一定为不可能事件事件名称必然事件不确定事件不可能事件概率值10<p<102、频率与概率的区别与联系频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小。
概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小。
中考数学考点跟踪突破18概率的应用

考点跟踪突破18 概率的应用一、选择题(每小题7分,共35分) 1.(2019·宜昌)2019-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( A )A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小 2.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.153.(2014·黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是( A )A.23B.56C.16D.124.(2015·自贡)如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是( B )A.34B.23C.13D.125.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )A.38B.12C.58D.34二、填空题(每小题7分,共21分) 6.(2014·长沙)100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为__120__.7.(2015·深圳)从1,2,3这三个数中,任意抽取两个不同的数字组成一个两位数,则这个两位数能被3整除的概率是__13__.8.(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为__34__.三、解答题(共44分)9.(10分)(2013·常州)一个不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为23 (2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以P(两次摸出的球都是白球)=26=1310.(10分)(2015·常德)商场为了促销某件商品,设置了如图所示一个转盘,它被分成3个相同的扇形,各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取.每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作指向右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买该商品的价格不超过30元的概率是多少?解:画树状图如下:由树状图可知,在9种等可能的结果中,不超过30元的只有三种,∴顾客购买该商品的价格不超过30元的概率P =39=1311.(12分)(2014·安徽)如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1. (1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.解:(1)小明可选择的情况有3种,每种发生的可能性相等,恰好选中绳子AA 1的情况为1种,所以小明恰好选中绳子AA 1的概率P =13 (2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表示如下,每种发生的可能性相等.ACAC ,A 1B 1AC ,B 1C 1AC ,A 1C 1其中左、右结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1.故这三根绳子连接成为一根长绳的概率P =69=2312.(12分)(2015·广州)4件同型号的产品中,有1件不合格产品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?解:(1)P(抽到的是不合格品)=11+3=14(2)所有抽取情况共有12种,其中抽到的都是合格品的情况有6种,故P(抽到的都是合格品)=612=12 (3)由题意,得3+x 4+x=0.95,解得x =16,故x 的值大约为162016年甘肃名师预测1.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )A .47B .49C .29D .192.在四边形ABCD 中,(1)AB ∥CD ,(2)AD ∥BC ,(3)AB =CD ,(4)AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是__23__.。
高考数学一轮复习知识点与练习随机事件的概率.doc

1.概率和频率(1) 在相同的条件S 下重复 n 次试验,观察某一事件 A 是否出现,称n 次试验中事件 A 出现的次数n A为事件 A 出现的频数,称事件 A 出现的比例 f n(A)=nn A为事件 A 出现的频率.(2) 对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件 A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件 A 发生的可能性大小,并把这个常数称为随机事件 A 的概率,记作P(A).2.事件的关系与运算定义符号表示包含关系如果事件 A 发生,则事件 B 一定发生,这时称事件B? A( 或 A? B) B 包含事件 A(或称事件 A 包含于事件 B)相等关系若 B? A 且 A? B A=B并事件若某事件发生当且仅当事件 A 发生或事件 B 发生,A∪ B( 或 A+ B) (和事件 ) 称此事件为事件 A 与事件 B 的并事件 (或和事件 )交事件若某事件发生当且仅当事件 A 发生且事件 B 发生,A∩B(或 AB) (积事件 ) 则称此事件为事件 A 与事件 B 的交事件 (或积事件 )互斥事件若 A∩ B 为不可能事件 (A∩ B= ?),则称事件 A 与事A∩B= ? 件 B 互斥对立事件若 A∩ B 为不可能事件, A∪ B 为必然事件,那么称P(A)+P(B)= 1 事件 A 与事件 B 互为对立事件(1)概率的取值范围: 0≤P(A)≤ 1.(2)必然事件的概率 P(E)=1.(3)不可能事件的概率 P( F)= 0.(4)概率的加法公式如果事件 A 与事件 B 互斥,则P(A∪ B)= P(A)+ P(B).(5)对立事件的概率若事件 A 与事件 B 互为对立事件,则P(A) = 1- P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确 (请在括号中打“√”或“×”)(1) 事件发生频率与概率是相同的.( )(2) 随机事件和随机试验是一回事.( )(3) 在大量重复试验中,概率是频率的稳定值.( )(4) 两个事件的和事件是指两个事件都得发生.( )(5) 对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6) 两互斥事件的概率和为 1.( )1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________.①至多有一次中靶②两次都中靶③只有一次中靶④两次都不中靶2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]( 单位: cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为 ________.3. (2015 ·北改编湖 )我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 14.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100 件,必有10 件是次品;②做7 次抛硬币的试验,结果 3 次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.5. (教材改编 ) 袋中装有9 个白球, 2 个红球,从中任取 3 个球,则①恰有 1 个红球和全是白球;②至少有 1 个红球和全是白球;③至少有 1 个红球和至少有 2 个白球;④至少有 1 个白球和至少有 1 个红球.在上述事件中,是对立事件的为________.题型一事件关系的判断例 1某城市有甲、乙两种报纸供居民订阅,记事件 A 为“只订甲报纸”,事件 B 为“至少订一种报纸”,事件 C 为“至多订一种报纸”,事件 D 为“不订甲报纸”,事件 E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件.这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.判断下列各对事件是不是互斥事件或对立事件:某小组有 3 名男生和 2 名女生,从中任选2 名同学去参加演讲比赛,其中①恰有1 名男生和恰有2 名男生;②至少有 1 名男生和至少有 1 名女生;③至少有 1 名男生和全是女生.题型二随机事件的频率与概率例2 (2015 ·北京 ) 某超市随机选取 1 000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整商品甲乙丙丁顾客人数100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3 种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?思维升华(1) 概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数 n 50 100 200 500 1 000 2 000优等品数 m 45 92 194 470 954 1 902m优等品频率n(1) 计算表中乒乓球优等品的频率;(2) 从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)题型三互斥事件、对立事件的概率命题点 1 互斥事件的概率1,得例 3 袋中有 12 个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是35 ,得到黄球或绿球的概率也是 5 ,试求得到黑球、黄球到黑球或黄球的概率是和绿球的概率各是多1212少?命题点 2对立事件的概率例 4某商场有奖销售中,购满100元商品得 1 张奖券,多购多得 .1 000 张奖券为一个开奖单位,设特等奖 1 个,一等奖10 个,二等奖50 个.设 1 张奖券中特等奖、一等奖、二等奖的事件分别为A、 B、C,求:(1) P(A),P(B), P(C);(2)1 张奖券的中奖概率;(3)1 张奖券不中特等奖且不中一等奖的概率.思维升华求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)= 1- P( A )求解.当题目涉及“ 至多”“ 至少” 型问题时,多考虑间接法.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~ 10 环的概率如下表所示:命中环数10 环9 环8 环7 环概率0.320.280.180.12求该射击队员射击一次:(1)射中 9 环或 10 环的概率;(2)命中不足 8 环的概率.21.用正难则反思想求互斥事件的概率专注·专业·口碑·极致- 5 -物的 100 位顾客的相关数据,如下表所示 .一次购物量 1 至 4 件 5 至 8 件9 至 12 件13 至 16 件17 件及以上顾客数 (人 ) x 30 25 y 10 结算时间 (分钟 / 人 ) 1 1.5 2 2.5 3已知这 100 位顾客中一次购物量超过8 件的顾客占 55%.(1)确定 x, y 的值,并估计顾客一次购物的结算时间的平均值;(2) 求一位顾客一次购物的结算时间不超过 2 分钟的概率.(将频率视为概率)...思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“ 正难则反”思想求解.温馨提醒(1) 要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将 A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示 (1) 对统计表的信息不理解,错求 x, y,难以用样本平均数估计总体.(2)不能正确地把事件 A 转化为几个互斥事件的和或对立事件,导致计算错误.[方法与技巧 ]1.对于给定的随机事件 A,由于事件 A 发生的频率 f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率 f n (A)来估计概率 P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件 A 的对立事件 A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成的集合的补集.[失误与防范 ]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“ 至多,,”“至少,,”“不少于,,”等语句的含义.A 组专项基础训练( 时间: 45 分钟 )则事件 M 与 N 互为对立事件;②若事件 A 与 B 互为对立事件,则事件 A 与 B 为互斥事件;③若事件A 与B 为互斥事件,则事件 A 与 B 互为对立事件;④若事件 A 与 B 互为对立事件,则事件A∪ B 为必然事件,其中,真命题是________.112 2.围棋盒子中有多粒黑子和白子,已知从中取出 2 粒都是黑子的概率为7,都是白子的概率是35,则从中任意取出 2 粒恰好是同一色的概率是________.3.从一箱产品中随机地抽取一件,设事件 A= { 抽到一等品 } ,事件 B= { 抽到二等品 } ,事件 C= { 抽到三等品 } ,且已知 P(A)= 0.65, P(B)= 0.2 , P(C)= 0.1,则事件“抽到的产品不是一等品”的概率为__________ .4.从存放的号码分别为1,2,3 , , , 10 的卡片的盒子中,有放回地取100 次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到次数13 8 5 7 6 13 18 10 11 9则取到号码为奇数的卡片的频率是________.5.对一批产品的长度(单位:毫米 )进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25) 上的为一等品,在区间 [15,20) 和[25,30) 上的为二等品,在区间 [10,15) 和 [30,35) 上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.6.在 200 件产品中,有192 件一级品, 8 件二级品,则下列事件:①在这 200 件产品中任意选出9 件,全部是一级品;②在这 200 件产品中任意选出9 件,全部是二级品;③在这 200 件产品中任意选出9 件,不全是二级品.其中 ________是必然事件;________是不可能事件;________是随机事件.7.已知某运每次投命中的概率都40%,采用随机模的方法估运三次投恰有两次命中的概率:先由算器生0 到 9 之取整数的随机数,指定1,2,3,4 表示命中, 5,6,7,8,9,0 表示不命中;再以每三个随机数一,代表三次投的果.随机模生了如下20 随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估,运三次投恰有两次命中的概率________.8.若随机事件A,B 互斥, A, B 生的概率均不等于0,且 P(A) =2- a, P(B)= 4a- 5,数 a 的取范是 _____________.9.(2014 ·西 )某保公司利用随机抽方法,投保行抽,本中每的付果如下:付金 (元 ) 0 1 000 2 000 3 000 4 000数 ( ) 500 130 100 150 120(1)若每的投保金均 2 800 元,估付金大于投保金的概率;(2)在本中,主是新司机的占10%,在付金 4 000 元的本中,主是新司机的占20%,估在已投保中,新司机金 4 000 元的概率.10.从某学校的800 名男生中随机抽取50 名量其身高,被学生身高全部介于155 cm 和 195 cm 之,将量果按如下方式分:第一[155,160) ,第二 [160,165) ,⋯,第八 [190,195] ,如是按上述分方法得到的率分布直方的一部分,已知第一与第八人数相同,第六的人数 4.(1)求第七组的频率;(2) 估计该校的 800 名男生的身高的中位数以及身高在180 cm 以上 (含 180 cm)的人数;(3) 若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x, y,事件 E ={| x- y|≤5} ,事件 F = {| x- y|>15} ,求 P(E∪ F).B 组专项能力提升( 时间: 25 分钟 )11.在一次随机试验中,彼此互斥的事件A, B,C, D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是 ______________.①A+ B 与 C 是互斥事件,也是对立事件;② B+ C 与 D 是互斥事件,也是对立事件;③ A+ C 与 B+ D 是互斥事件,但不是对立事件;④ A 与 B+ C+ D 是互斥事件,也是对立事件.12.如图所示,茎叶图表示的是甲、乙两人在 5 次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.13.若 A,B 互为对立事件,其概率分别为P(A)=4,P( B)=1,且 x>0 ,y>0,则 x+y 的最小值为 ________.x y14.如图, A 地到火车站共有两条路径L1和 L 2,现随机抽取 100 位从 A 地到达火车站的人进行调查,调查结果如下:所用时间 /分钟10~ 20 20~30 30~ 40 40~50 50~ 60选择 L 1的人数 6 12 18 12 12选择 L 2的人数0 4 16 16 4(1)试估计 40 分钟内不能赶到火车站的概率;(2)分别求通过路径 L 1和 L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有 40 分钟和 50 分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.15. (2015 ·西陕 ) 随机抽取一个年份,对西安市该年 4 月份的天气情况进行统计,结果如下:日期123456789101112131415 天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930 天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(1)在 4 月份任取一天,估计西安市在该天不下雨的概率;(2) 西安市某学校拟从4月份的一个晴天开始举行连续 2 天的运动会,估计运动会期间不下雨的概率.专注·专业·口碑·极致- 10 -。
人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测
人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
2020届高考数学(文科)总复习课时跟踪练(六十一)随机事件的概率
课时跟踪练(六十一)A 组 基础巩固1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”的关系为( )A .互斥但非对立事件B .对立事件C .和事件是不可能事件D .以上都不对解析:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.★答案★:A2.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件解析:因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选B.★答案★:B3.(2019·石家庄模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.★答案★:C4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17B.1235C.1735D .1解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥,所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.★答案★:C5.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为( )A .49B .0.5C .0.51D .0.49解析:由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51.★答案★:C6.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为________.解析:“抽到的不是一等品”与事件A 是对立事件,所以所求概率为1-P (A )=0.35.★答案★:0.357.某城市2018年的空气质量状况如表所示:质量为良;100<T ≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________.解析:由题意可知2018年空气质量达到良或优的概率为P =110+16+13=35. ★答案★:358.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5.则实数a 的取值范围是________.解析:由题意可知 ⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43,所以54<a ≤43.★答案★:⎝ ⎛⎦⎥⎤54,439.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000 吨生活垃圾,数据统计如下(单位:吨):(2)试估计生活垃圾投放错误的概率. 解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.10.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的相关数据,如下表所示:(1)求x ,y 的值;(2)求顾客一次购物的结算时间超过2分钟的概率.(将频率视为概率)解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.(2)记A :一位顾客一次购物的结算时间超过2分钟. A 1:该顾客一次购物的结算时间为2.5分钟. A 2:该顾客一次购物的结算时间为3分钟.将频率视为概率可得P (A )=P (A 1)+P (A 2)=20100+10100=0.3,所以一位顾客一次购物的结算时间超过2分钟的概率为0.3.B 组 素养提升11.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若B 表示B 的对立事件,则一次试验中,事件A +B 发生的概率为( )A.13B.12C.23D.56解析:掷一个骰子的试验有6种可能的结果. 依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,因为B 表示“出现5点或6点”的事件, 因此事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.★答案★:C12.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910解析:设被污损的数字为x ,则 x 甲=15(88+89+90+91+92)=90,x 乙=15(83+83+87+99+90+x ),若x甲=x乙,则x=8.若x甲>x乙,则x可以为0,1,2,3,4,5,6,7,故P=810=4 5.★答案★:C13.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P=11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P=1-86+7+8+8+10+10+11=13 15.★答案★:35 131514.(2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:下统计表:(1)记A ,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得:调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a ×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
第18课 简单随机事件的概率
D.4个
解析 A.在足球赛中,弱队战胜强队是随机事件,故 本选项正确; B.抛掷1枚硬币,硬币落地时正面朝上是随机事件, 故本选项正确;
第18课 简单随机事件的概率
基础自测
1.(2013·聊城)下列事件:
①在足球赛中,弱队战胜强队;
②抛掷1枚硬币,硬币落地时正面朝上;
③任取两个正整数,其和大于1;
第18课 简单随机事件的概率
基础自测
3.(2013·泰州)事件A:打开电视,它正在播广告;事件B: 抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标
准大气压下,温度低于0℃时冰融化.这3个事件的概率
分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大
小关系正确的是
首 页
A.P(C)<P(A)=P(B)
第18课 简单随机事件的概率
要点梳理
3.概率
概率指事件发生的可能性大小;简单事件的概率可以通
过统计事件发生的所有不同结果来计算,常用的方法有:
首
枚举法、列表法和画树状图法等.
页
事件A发生的概率:P_(_A_)_=__事__件_所_A_发有__生可__的能__可的__能结__的果__结总__果数__总__数_.
④长为3cm、5cm、9cm的三条线段能围成一个三角形.
首
页
其中随机事件有
( B)
A.1个
B.2个
C.3个
D.4个
C.任取两个正整数,其和大于1是必然事件,故本选 项错误; D.长为3cm、5cm、9cm的三条线段能围成一个三角形 是不可能事件,故本选项错误.故选B.
第18课 简单随机事件的概率
基础自测
第18课 简单随机事件 的概率
2018高考数学考点突破— 随机事件的概率
随机事件的概率【考点梳理】1.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n为事件A出现的频率.(2)对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A).2.事件的关系与运算(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式.①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);②若事件B与事件A互为对立事件,则P(A)=1-P(B).【考点突破】考点一、随机事件间的关系【例1】从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③[答案] C[解析]从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.【类题通法】1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.准确把握互斥事件与对立事件的概念.(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.【对点训练】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).[答案] ①④[解析] 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E为必然事件,④正确.由于P(B)=45,P(C)=35,所以⑤不正确.考点二、随机事件的频率与概率【例2】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.[解析] (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.【类题通法】1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值. 【对点训练】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:...(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨的概率.[解析] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,以频率估计概率,在4月份任选一天,西安市不下雨的概率为2630=1315. (2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f =1416=78.以频率估计概率,运动会期间不下雨的概率为78.考点三、互斥事件与对立事件的概率【例3】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率). [解析] (1)由题意,得⎩⎨⎧25+y +10=100×55%,x +30=45,解得x =15,且y =20.该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.又x =1×15+1.5×30+2×25+20×2.5+10×3100=1.9,∴估计顾客一次购物的结算时间的平均值为1.9分钟.(2)设B ,C 分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A 表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”将频率视为概率,得P (B )=20100=15, P (C )=10100=110.∵B ,C 互斥,且A =B +C ,∴P (A )=P (B +C )=P (B )+P (C )=15+110=310, 因此P (A )=1-P (A )=1-310=710,∴一位顾客一次购物结算时间不超过2分钟的概率为0.7. 【类题通法】1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法. 【对点训练】某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解析] (1)P (A )=11 000, P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000,故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000,故1张奖券不中特等奖且不中一等奖的概率为9891 000.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点跟踪训练18 简单随机事件的概率(247—248页)
一、选择题
1.(2011·凉山)下列说法正确的是( )
A .随机抛掷一枚均匀的硬币,落地后反面一定朝上
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大
C .某彩票中奖率为36%,说明买100张彩票,有36张中奖
D .打开电视,中央一套正在播放新闻联播 答案 B
解析 从1,2,3,4,5中随机取一个数,可取得3个奇数,2个偶数,取得奇数的可能性较大.
2.(2011·茂名)如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )
A.2π
B.π2
C.1
2π
D.2π 答案 A
解析 因为⊙O 直径为2,则正方形ABCD 的边长为1,⊙O 的面积π⎝⎛⎭⎫2
22=12
π,∴豆
子落在正方形内的概率=12π=2
π.
3.(2011·济宁)在x 2
□2xy □y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )
A. 1
B.34
C.12
D.1
4
答案 C
解析 填上“+”或“-”后,有x 2+2xy +y 2,x 2+2xy -y 2,x 2-2xy +y 2,x 2-2xy -y 2
共4种情况,能构成完全平方式的有2
种,其概率是24=1
2
.
4.(2011·宿迁)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( )
A .1 B.12 C.13 D.1
4
答案 D
解析 因为甲区域占整个转盘的14,所以指针指在甲区域内的概率是1
4
.
5.(2011·日照)两个正四面体骰子的各面上分别标有数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )
A. 14
B.316
C.34
D.38 答案 A
解析 可知点数之和等于5的情况有4种,其概率为416=1
4
.
二、填空题 6.(2011·嘉兴)从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是________.
答案 13
解析 1到9的9张卡片中,序号是3的倍数的有标有3,6,9三张卡片,其概率是39=1
3
.
7.(2011·金华)从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是____________.
答案 13
解析 任取两个不同的数作为点的坐标,有(-2,-1),(-2,2),(-1,-2),(-1,2),
(2,-2),(2,-1)六种,在第四象限内有(2,-2),(2,-1)两种,其概率P =26=1
3
.
8.(2011·福州)已知地球表面陆地面积与海洋面积的比约为3∶7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是____________.
答案 3
10
解析 设陆地面积为3k ,海洋面积为7k ,则地球总面积为3k +7k =10k ,落在陆地上的概率为3k 10k =3
10.
9.(2011·株洲)如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;……;则从第n 个图中随机取出一个球,是黑球的概率是________.
答案
2n +1
解析 在第n 个图中,黑球有n 个,黑、白的球共有1+2+3+…+n =n (n +1)
2
,随机取
出一个球是黑球的概率是n n (n +1)2
=2
n +1.
10.(2011·菏泽)从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程x 2
-x +k =0 的k 值,则所得的方程中有两个不相等的实数根的概率是________________________________________________________________________.
答案 3
5
(或填写0.6)
解析 题中关于x 的方程有两个不相等的实数根,则(-1)2-4k >0,k <1
4
;而-2,-1,0,1,2
这五个数有三个数在此范围内,所以概率P =3
5
.
三、解答题 11.(2011·宁波)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回..,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
解 树状图如下:
或列表如下:
则P (两次都摸到红球)=1
9
.
12.(2011·扬州)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.
(1)每位考生有__________种选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A 、B 、C 、…或①、②、③、…等符号来代表,可简化解答过程)
解 (1)4.
(2)用A 、B 、C 、D 代表四种选择方案.(其他表示方法也可) 解法一:用树状图分析如下:
∴P (小明与小刚选择同种方案)=416=1
4
.
13.(2011·江西)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请画树状图法或列表法,求恰好选中甲、乙两位同学的概率; (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. 解 (1)方法一: 画树状图如下:
所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
∴P (恰好选中甲、乙两位同学)=1
6
.
方法二: 列表格如下:
∴P (恰好选中甲、乙两位同学)=1
6
.
(2)P (恰好选中乙同学)=1
3
.
14.(2011·株洲)我国网球名将李娜在今年法国网球公开赛上的出色表现,大大激发了国人对网球的热情.在一项“你最喜欢的球类运动”的调查中,共有50名同学参与调查,每人必选且只选一项,将调查结果绘制成频数分布直方图如下,根据图中信息回答:
(1)被调查的同学中选择喜欢网球的有________人; (2)孔明同学在被调查中选择的是羽毛球,现要在参与调查选择喜欢羽毛球的同学中随机抽取2人参加一项比赛,求孔明被选中的概率.
解 (1)15.
(2)记喜欢羽毛球的5个同学分别表示为 1,2,3,4,5,其中1为孔明,从中随机抽取2人,方法有:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)共10种,其中孔明被选中的有4种,
所以孔明被选中的概率P =410=2
5
(或写成0.4).
15.(2011·福州)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ).
(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =-x -2上的概率.
解 (1)
或
(2)落在直线y =-x -2上的点Q 有:(1,-3),(2,-4)两点.∴P =26=1
3.。