高中数学第二章概率2.3随机变量的数字特征2.3.2离散型随机变量的方差预习导学案新人教B版选修2_3

合集下载

高中数学必修2-3第二章2.3 2.3.2离散型随机变量的方差

高中数学必修2-3第二章2.3 2.3.2离散型随机变量的方差

2.3.2 离散型随机变量的方差1.问题导航(1)离散型随机变量的方差及标准差的定义是什么?(2)方差具有哪些性质?两点分布与二项分布的方差分别是什么? (3)如何计算简单离散型随机变量的方差? 2.例题导读(1)例4求随机变量的均值和方差、标准差,请试做教材P 68练习1题. (2)例5是均值和方差的实际应用,请试做教材P 68练习3题.1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义:设离散型随机变量X 的分布列为①方差D (X )=∑n i =1(x i -E (X ))2p i . ②标准差为________D (X ).(2)方差的性质:D (aX +b )=________a 2D (X ). 2.两个常见分布的方差(1)若X 服从两点分布,则D (X )=________p (1-p ). (2)若X ~B (n ,p ),则D (X )=________np (1-p ).1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案:(1)× (2)√ (3)√2.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为( )A.43B.83C.89D .1答案:C3.如果X 是离散型随机变量,E (X )=6,D (X )=0.5,X 1=2X -5,那么E (X 1)和D (X 1)分别是( )A .E (X 1)=12,D (X 1)=1B .E (X 1)=7,D (X 1)=1C .E (X 1)=12,D (X 1)=2 D .E (X 1)=7,D (X 1)=2 答案:D4.已知随机变量X ________.答案:3.561.方差与标准差的作用随机变量的方差与标准差一样,都是反映随机变量的取值的稳定与波动、集中与离散程度的,方差越小,取值越集中,稳定性越高,波动性越小;反之,方差越大,取值越不集中,稳定性越差,波动性越大.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.求离散型随机变量的方差袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差;[解] 由题意得,ξ的所有可能取值为0,1,2,3,4,P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为所以E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.[互动探究] 在本例条件下,若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解:由D (aξ+b )=a 2D (ξ)=11,E (aξ+b )=aE (ξ)+b =1,及E (ξ)=1.5,D (ξ)=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.1.求离散型随机变量X 的均值、方差的步骤: (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列;(4)由均值、方差的定义求E (X ),D (X ).2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了1.(1)已知随机变量ξ若E (ξ)=23,则D (ξ)的值为________.解析:由分布列的性质,得 12+13+p =1,解得p =16. ∵E (ξ)=0×12+1×13+16x =23,∴x =2.D (ξ)=⎝⎛⎭⎫0-232×12+⎝⎛⎭⎫1-232×13+⎝⎛⎭⎫2-232×16=1527=59. 答案:59(2)甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望.解:乙投篮的次数ξ的取值为0,1,2.P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324.两点分布与二项分布的方差一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30 s ,求司机总共等待时间η的期望与方差. [解] (1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B (6,13),故E (ξ)=6×13=2,D (ξ)=6×13×(1-13)=43.(2)由已知η=30ξ,故E (η)=30E (ξ)=60(s),D (η)=900D (ξ)=1 200.解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).2.(1)(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:由E (X )=30,D (X )=20,可得⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.答案:13(2)在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差.解:用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,0.8),η=3ξ+2.因为E(ξ)=10×0.8=8,D(ξ)=10×0.8×0.2=1.6,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26(分),D(η)=D(3ξ+2)=32×D(ξ)=9×1.6=14.4.均值、方差的综合应用甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X与Y,且X,Y 的分布列如下:(1)求a,b的值;(2)计算X,Y的期望与方差,并以此分析甲、乙技术状况.[解](1)由离散型随机变量的分布列的性质可知a+0.1+0.6=1,得a=0.3.同理0.3+b+0.3=1,得b=0.4.(2)E(X)=1×0.3+2×0.1+3×0.6=2.3,E(Y)=1×0.3+2×0.4+3×0.3=2,D(X)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81,D(Y)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(X)>E(Y),说明在一次射击中,甲的平均得分比乙高,但D(X)>D(Y),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.离散型随机变量的期望反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相试评定这两个保护区的管理水平.解:甲保护区违规次数ξ的数学期望和方差分别为E (ξ)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D (ξ)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数η的数学期望和方差分别为E (η)=0×0.1+1×0.5+2×0.4=1.3; D (η)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (ξ)=E (η),D (ξ)>D (η),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动性大,乙保护区的违规事件次数更集中和稳定,说明乙保护区的管理水平较好.试求D (X )和D (2X -1).[解] E (X )=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8,所以D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.所以D (2X -1)=4D (X )=4×1.56=6.24.[错因与防范] (1)解答本例易将方差的性质用错,即D (aZ +b )=aD (Z )+b . (2)解决此类问题方法,应利用公式E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ),将求E (aX +b ),D (aX +b )的问题转化为求E (X ),D (X )的问题,从而可以避免求aX +b 的分布列的繁琐的计算,解题时可根据两者之间的关系列出等式,进行相关计算.4.已知随机变量X ~B (100,0.2),那么D (4X +3)的值为( ) A .64 B .256 C .259 D .320解析:选B.由X ~B (100,0.2)知n =100,p =0.2, 由公式得D (X )=np (1-p )=100×0.2×0.8=16, 因此D (4X +3)=42D (X )=16×16=256.1.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:选D.随机变量ξ∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6解析:选B.由已知随机变量X +Y =8,所以有Y =8-X . 因此,求得E (Y )=8-E (X )=8-10×0.6=2, D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.3.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.解析:因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定. 答案:乙4.若随机变量X 的分布列为:(1)求m 的值;(2)求E (X )和D (X ).解:(1)由随机变量分布列的性质,得0.1+0.2+0.4+m +0.1=1,解得m =0.2.(2)E (X )=-2×0.1+(-1)×0.2+0×0.4+1×0.2+2×0.1=0,D (X )=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.[A.基础达标]1.下列说法正确的是( )A .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平C .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值解析:选C.由离散型随机变量的数学期望与方差的定义可知,C 正确.故选C. 2.设X ~B (n ,p ),若D (X )=4,E (X )=12,则n 和p 分别为( ) A .18和23B .16和12C .20和13D .15和14解析:选A.∵X ~B (n ,p ),∴⎩⎪⎨⎪⎧np =12,np (1-p )=4,解得p =23,n =18.3.已知X 的分布列如下表所示,则下列式子:①E (X )=-13;②D (X )=2327;③P (X =0)=13.其中正确的有( )A.0个 B .1个 C .2个D .3个解析:选C.E (X )=(-1)×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,故只有①③正确. 4.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k ·(13)n -k ,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12 C.29D .16解析:选A.由题意可知ξ~B (n ,23),∴23n =E (ξ)=24.∴n =36. ∴D (ξ)=n ×23×(1-23)=29×36=8.5.(2015·滨州高二期末检测)若随机变量X 的分布列为:P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .2C .4D .无法计算解析:选A.依题意有a =1-13=23,所以E (X )=13m +23n =2,即m +2n =6.又D (X )=13(m-2)2+23(n -2)2=2n 2-8n +8=2(n -2)2,所以当n =2时,D (X )有最小值为0.6.(2014·高考浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.答案:257.(2015·扬州高二检测)设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:由独立重复试验的方差公式可以得到 D (ξ)=np (1-p )≤n (p +1-p 2)2=n4,等号在p =1-p =12时成立,所以D (ξ)max =100×12×12=25,D (ξ)max =25=5.答案:1258.随机变量ξ的分布列如下,其中a ,b ,c 成等差数列.若E (ξ)=53,则D (ξ)的值为________.解析:因为a ,b ,c 成等差数列,所以a +c =2b .又因为a +b +c =1,所以b =13.又因为E (ξ)=a +2b +3c =53,所以a =12,b =13,c =16,所以ξ的分布列为所以D (ξ)=(1-53)2×12+(2-53)2×13+(3-53)2×16=59.答案:599.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.解:ξ的可能值为0,1,2,P (ξ=0)=C 02C 310C 312=611;P (ξ=1)=C 12C 210C 312=922;P (ξ=2)=C 22C 110C 312=122.∴ξ的分布列为∴E (ξ)=0×611+1×922+2×122=12,D (ξ)=(0-12)2×611+(1-12)2×922+(2-12)2×122=322+988+988=1544.10.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)=62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:因为每一株沙柳成活率均为p ,种植了n 株沙柳,相当于做n 次独立重复试验,因此ξ服从二项分布ξ~B (n ,p ).(1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为:(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3), 得P (A )=1+6+15+2064=2132.[B.能力提升]1.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布列大致如下表所示:甲:乙:试分析两名学生的成绩水平.解:∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80, ∵E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.2.如表,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.解:可能为0个,1个,2个,4个.P (X =0)=9A 44=924,P (X =1)=C 14×2A 44=824, P (X =2)=C 24×1A 44=624,P (X =4)=1A 44=124. 故X 的分布列为:∴E (X )=0×924+1×824+2×624+4×124=1, D (X )=924×(0-1)2+824×(1-1)2+624×(2-1)2+124×(4-1)2=9+0+6+924=1. 3.某学校为高二年级开展第二外语选修课,要求每位同学最多可以选报两门课程.已知有75%的同学选报法语课,有60%的同学选报日语课.假设每个人对课程的选报是相互独立的,且各人的选报相互之间没有影响.(1)任选1名同学,求其选报过第二外语的概率;(2)任选3名同学,记ξ为3人中选报过第二外语的人数,求ξ的分布列、期望和方差. 解:设事件A :选报法语课;事件B :选报日语课.由题设知,事件A 与B 相互独立,且P (A )=0.75,P (B )=0.6.(1)法一:任选1名同学,该同学一门课程都没选报的概率是P 1=P (A -B -)=P (A )·P (B )=0.25×0.4=0.1.所以该人选报过第二外语的概率是P 2=1-P 1=1-0.1=0.9.法二:任选1名同学,该同学只选报一门课程的概率是P 3=P (AB )+P (AB )=0.75×0.4+0.25×0.6=0.45,该人选报两门课程的概率是P 4=P (AB )=0.75×0.6=0.45.所以该同学选报过第二外语的概率是P 5=P 3+P 4=0.45+0.45=0.9.(2)因为每个人的选报是相互独立的,所以3人中选报过第二外语的人数ξ服从二项分布B (3,0.9),P (ξ=k )=C k 3×0.9k ×0.13-k ,k =0,1,2,3, 即ξ的分布列是ξ的期望是E(ξ)=(或ξ的期望是E(ξ)=3×0.9=2.7),ξ的方差是D(ξ)=3×0.9×(1-0.9)=0.27.。

2.3离散型随机变量的均值与方差

2.3离散型随机变量的均值与方差
解:把3种糖果的价格看成随机变量的概率分布列:
X 18 24 36
P
3
2
1
6
6
6
X 18 1 24 1 36 1 23(元 / kg)
2
3
6
例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其
中有且仅有一个选项正确,每题选对得5分,不选或选错不得分,满 分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每 题都从4个选项中随机地选择一个.求学生甲和学生乙在这次测验 中的成绩的均值.
重点:离散型随机变量方差的概念与计算方法
难点:离散型随机变量方差的性质及应用题
教学时间:2012年5月7日第十四周星期一
温故而知新
1、离散型随机变量 X 的均值(数学期望)
n
EX xi pi 反映了离散型随机变量取值的平均水平. i 1
2、均值的性质
E(aX b) aEX b
3、两种特殊分布的均值
X
的分布列为
2
X2
5
6
7
8
9
P 0.01 0.05 0.20 0.41 0.33
请问应该派哪名同学参赛?
EX1 8 , EX 2 8
发现两个均值 相等
因此只根据均值不能区分这两名同学的射击水平.
除平均中靶环数以外,还有其他刻画两名同学各自 射击特点的指标吗?
(1)分别画出 X1 , X 2 的分布列图.
2. 有场赌博,规则如下:如掷一个骰子,出现1,你赢
10元;出现2或3或4,你输3元;出现5或6,不输不赢.这 场赌博对你是否有利?
X 10
-3
0
P
1
1
1
6

高二数学2.3.2 离散型随机变量的方差

高二数学2.3.2 离散型随机变量的方差

探究一
探究二
探究三
探究四
探究一 求离散型随机变量的方差
求离散型随机变量的方差的步骤: (1)列出随机变量的分布列; (2)求出随机变量的均值; (3)求出随机变量的方差.
探究一
探究二
探究三
探究四
【典型例题 1】 袋中有 20 个大小相同的球,其中标记 0 的有 10 个,标 记 n 的有 n 个(n=1,2,3,4).现从袋中任取一球.ξ 表示所取球的标号.
探究一
探究二
探究三
探究四
错因分析:忽略了随机变量分布列的性质出现错误,这里只是机械地套 用公式,且对 D(ax+b)=a2D(x)应用错误.
正解:∵0.2+0.2+a+0.2+0.1=1,∴a=0.3. ∴E(X)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.
D(X)=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0
均值 E(X)的平均偏离程度,我们称 D(X)为随机变量 X 的方差,并称其算术平 方根 ������(������)为随机变量 X 的标准差.
(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值 的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
(3)离散型随机变量的方差的性质: 设 a,b 为常数,则 D(aX+b)=a2D(X).
探究一
探究二
探究三
探究四
(2)由 D(η)=a2D(ξ),得 a2×2.75=11,得 a=±2. 又 E(η)=aE(ξ)+b,所以, 当 a=2 时,由 1=2×1.5+b,得 b=-2; 当 a=-2 时,由 1=-2×1.5+b,得 b=4.

第二章 2.3 2.3.2 离散型随机变量的方差(优秀经典课时作业练习及答案详解)

第二章  2.3  2.3.2 离散型随机变量的方差(优秀经典课时作业练习及答案详解)

[A 组 学业达标]1.下面说法中正确的是( )A .离散型随机变量的均值E (ξ)反映了取值的概率的平均值B .离散型随机变量的方差D (ξ)反映了取值的平均水平C .离散型随机变量的均值E (ξ)反映了取值的平均水平D .离散型随机变量的方差D (ξ)反映了取值的概率的平均值 解析:由E (ξ)与D (ξ)的意义知选C. 答案:C2.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )A .6B .9C .3D .4解析:由题意得E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.答案:A3.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32D .n =7,p =0.45解析:由已知有⎩⎪⎨⎪⎧np =1.6,np (1-p )=1.28,解得n =8,p =0.2.答案:A4.甲、乙两人对同一目标各射击一次,甲命中目标的概率为23,乙命中目标的概率为45,设命中目标的人数为X ,则D (X )等于( )A.86225 B.259675 C.2215D.1522解析:X 取0,1,2,P (X =0)=13×15=115,P (X =1)=25,P (X =2)=815,所以E (X )=2215,D (X )=86225.答案:A5.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小解析:由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝⎛⎭⎫0-p -122×1-p 2+⎝⎛⎭⎫1-p -122×12+⎝⎛⎭⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.答案:D6.若D (ξ)=1,则D (ξ-D (ξ))=________. 解析:D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 答案:17.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.解析:∵D (x )=8, ∴D (2x -1)=4D (x )=2D (x )=16.答案:168.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.59.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.10.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲,乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率.(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解析:(1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为:E (ξ)=0×19+1×718+2×12=2518,D (ξ)=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324,所以D (ξ)=14918.[B 组 能力提升]11.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21 解析:E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1-1.7)2×0.3+(2-1.7)2×0.7=0.21. 答案:D12.若随机变量X 的分布列为P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .1C .4D .2解析:由分布列的性质,得a +13=1,a =23.∵E (X )=2,∴m 3+2n3=2.∴m =6-2n .∴D (X )=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (X )取最小值0. 答案:A13.已知某随机变量X 的分布列如表(p ,q ∈R ):X 1 -1 Ppq且X 的数学期望E (X )=12,那么X 的方差D (X )=________.解析:根据题意可得⎩⎪⎨⎪⎧p +q =1,p -q =12,解得p =34,q =14,故X 的方差D (X )=⎝⎛⎭⎫1-122×34+⎝⎛⎭⎫-1-122×14=34.答案:3414.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为:因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。

19-20 第2章 2.3 2.3.1 离散型随机变量的数学期望

19-20 第2章 2.3 2.3.1 离散型随机变量的数学期望

栏目导航
【解】 (1)X 的所有可能取值有 6,2,1,-2.
P(X=6)=122060=0.63,
P(X=2)=25000=0.25,P(X=1)=22000=0.1,
P(X=-2)=2400=0.02.
故 X 的分布列为:
X
6
2
1
-2
P
0.63
0.25
0.1
0.02
栏目导航
(2)E(X)=6×0.63+2×0.25+1×0.1+(-2)×0.02=4.34. (3)设技术革新后的三等品率为 x,则此时 1 件产品的平均利润为 E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01 =4.76-x(0≤x≤0.29). 依题意,E(X)≥4.73,即 4.76-x≥4.73, 解得 x≤0.03,所以三等品率最多为 3%.
栏目导航
合作探究 提素养
栏目导航
二点分布与二项分布的数学期望 【例 1】 某运动员投篮命中率为 p=0.6. (1)求投篮 1 次时命中次数 X 的数学期望; (2)求重复 5 次投篮时,命中次数 Y 的数学期望. 【精彩点拨】 (1)利用二点分布求解.(2)利用二项分布的数学期望 公式求解.
栏目导航
栏目导航
【解】 只考虑甲、乙两单位的相对位置,故可用组合计算基本事件 数.
(1)设 A 表示“甲、乙的演出序号至少有一个为奇数”,则 A 表示“甲、 乙的演出序号均为偶数”,由等可能性事件的概率计算公式得 P(A)=1- P( A )=1-CC2623
=1-15=45.
栏目导航
(2)ξ 的所有可能取值为 0,1,2,3,4,且
栏目导航
【例 3】 随机抽取某厂的某种产品 200 件,经质检,其中一等品 126

2.3.2离散型随机变量的方差与标准差(新)

2.3.2离散型随机变量的方差与标准差(新)

二、探究引入
要从两名同学中挑选出一名,代表班级参加射击比赛. 根据以往的成绩记录,第一名同学击中目标靶的环数 X1 的分布列为
X1
P
X2
5 0.03
5 0.01
6 7 0.09 0.20
6 0.05 7 0.20
8 0.31
9 0.27
10 0.10
9 0.33
第二名同学击中目标靶的环数
X 2的分布列为
2、已知X~B(n, p),E(X) 8, D(X) 1.6, 则n 10 , p 0.8
3、有一批数量很大的商品,其中次品占 1%,现从中任意地连续取出200件商品, 设其次品数为X,求E(X)和D(X)。 2,1.98
4.编号1,2,3的三位学生随意入座编号1,2,3的三
个座位,每位学生坐一个座位,设与座位编号相同的
2 2 2
(3 2) 0.2 (4 2) 0.1 1.2
2 2
( X ) D( X ) 1.2 1.095
2、若随机变量X满足P(X=c)=1,其中c为 常数,求E(X)和D(X)。
解: 离散型随机变量X的分布列为:
X P c 1
E(X)=c×1=c D(X)=(c-c)2×1=0
对方差的几点说明 (1)随机变量的方差和标准差都反映了随机变量取值 偏离于均值的平均程度.方差或标准差越小,则随 机变量偏离于均值的平均程度越小.
说明:随机变量集中的位置是随机变量的均值;方差或标 准差这种度量指标是一种加权平均的度量指标. (2)随机变量的方差与样本的方差有何联系与区别?
随机变量的方差是常数,而样本的方差是随着样本的不同 而变化的,因此样本的方差是随机变量. 对于简单随机样本,随着样本容量的增加,样本方差越来 越接近总体方差,因此常用样本方差来估计总体方差.

2.3 随机变量的数字特征

X3
E(Y ) 10 0.328 5 0.410 00.205 20.057
5.216 (万元)
26
例题与解答
例8 设随机变量X的概率密度为 ex x 0
f (x) 0 x 0
求 Y e2X 的数学期望。 解:Y是随机变量X的函数,
E(Y
)
e2x
f
(x)dx
e2xex dx
8
数学期望的力学解释
在坐标轴上的 X1, X2, , Xn, 等点处放置质量 p1, p2 , , pn 的为质点, 则数学期望处为整个质量体系的重心。,
E(X)
x1
x2
x3
p1
p2
p3
9
例题与解 答
例1 甲乙两名射手在一次射击中得分(分别用 表示)
的分布律如下表所示, 试比较甲、乙两射手的技术。
解:由题意 X~
1 f ( x ) 60
x [ 0,60 ]
g( x)f ( x)dx
设Y表示旅客候车时间0 , 其它

Y=g(X)=
5-X 25-X 55-X
0<X≤5, 5<X≤25, 25<X≤55,
60 1 g( x )dx 0 60
15
25
60 [ 0 ( 5 x )dx 5 ( 25 x)dx
2
2.3.1 数学期 望
问题的提出
1654年, 一个名叫梅累的法国贵族就“两个赌 徒约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望。

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。

高中数学第2章概率2.3随机变量的数字特征2.3.2离散型随机变量的方差学案新人教B版选修2_320181226365

2.3.2 离散型随机变量的方差课时目标1.理解离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及二点分布、二项分布的方差的求法,会利用公式求它们的方差.1.方差一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n,则D(X)=______________________________________叫做这个离散型随机变量X的方差.离散型随机变量的方差反映了离散型随机变量取值相对于期望的平均波动大小(或离散程度).2.标准差________________叫做离散型随机变量X的标准差,它也是一个衡量离散型随机变量波动大小的量.3.二点分布的方差若离散型随机变量X服从二点分布,则D(X)=____________.4.二项分布的方差若离散型随机变量X服从参数为n和p的二项分布,即X~B(n,p),则D(X)=____________.一、选择题1.下列说法中正确的是( )A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平2.已知ξ的分布列为则D (ξ)的值为( ) A.2912B.121144C.179144D.17123.设随机变量X 服从二项分布B (4,13),则D (X )的值为( )A.43B.83C.89D.194.已知ξ~B (n ,p ),E (ξ)=8,D (ξ)=1.6,则n 与p 的值分别为( ) A .100和0.08 B .20和0.4 C .10和0.2D .10和0.85.某事件在一次试验中发生的次数ξ的方差D (ξ)的最大值为( ) A .1 B.12C.14D .2二、填空题6.A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床7.已知随机变量ξ的方差D (ξ)=4,且随机变量η=2ξ+5,则D (η)=________. 8.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.三、解答题9.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、期望和方差.10.某人投弹击中目标的概率为p=0.8.(1)求投弹一次,命中次数X的均值和方差;(2)求重复10次投弹时击中次数Y的均值和方差.能力提升11.已知离散型随机变量X的分布列如下表:若E(X)=0,D(X)=1,则a=______,b=________.12.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差.1.求方差和标准差的关键在于求分布列.只要有了分布列,就可以依据定义求数学期望,进而求出方差、标准差,同时还要注意随机变量aX+b的方差可用D(aX+b)=a2D(X)求解.2.二点分布、二项分布的方差可以直接利用公式计算.3.随机变量的期望和方差在实际问题特别是风险决策中有着重要意义.2.3.2 离散型随机变量的方差答案知识梳理1.(x1-E(X))2p1+(x2-E(X))2p2+…+(x n-E(X))2p n2.D(X)的算术平方根D(X)3.pq(q=1-p)4.npq (q =1-p ) 作业设计1.D [由于离散型随机变量ξ的期望E (ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A 错,而D (ξ)则反映随机变量的集中(或稳定)的程度,即波动水平,故选D.]2.C [∵E (ξ)=1×14+2×13+3×16+4×14=2912,∴D (ξ)=(1-2912)2×14+(2-2912)2×13+(3-2912)2×16+(4-2912)2×14=179144.]3.C [∵X ~B (4,13),∴D (X )=4×13×(1-13)=4×13×23=89.]4.D [因为ξ~B (n ,p ), 所以⎩⎪⎨⎪⎧E (ξ)=np =8,D (ξ)=np (1-p )=1.6,解得⎩⎪⎨⎪⎧n =10,p =0.8.故选D.]5.C [设某事件在一次试验中发生的概率为p (0≤p ≤1),则该事件在一次试验中发生的次数ξ的分布列为所以D (ξ)=p (1-p )=-(p -2)2+4≤4.]6.A解析 E (ξA )=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E (ξB )=0×0.8+1×0.06+2×0.04+3×0.1=0.44.它们的期望相同,再比较它们的方差.D (ξA )=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.606 4,D (ξB )=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.1=0.926 4.因为D (ξA )<D (ξB ),故A 机床加工质量较好. 7.16 8.125解析 D (X )=100p (1-p )=100[p (1-p )]2≤100⎣⎢⎡⎦⎥⎤p +(1-p )22=25,故标准差D (X )≤5,当且仅当p =1-p ,即p =12时,等号成立.9.解 (1)ξ的分布列为∴E (ξ)=0×12+1×20+2×10+3×20+4×5=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.10.解 (1)X 的分布列为E (X )=0×0.2+1×0.8=0.8D (X )=(0-0.8)2×0.2+(1-0.8)2×0.8=0.16.(2)由题意知,命中次数Y 服从二项分布, 即Y ~B (10,0.8).∴E (Y )=np =10×0.8=8,D (Y )=10×0.8×0.2=1.6. 11.512 14解析 由题意知⎩⎪⎨⎪⎧ a +b +c =1112,-a +c +16=0a +c +13=1,,解得⎩⎪⎨⎪⎧a =512,b =14,c =14.12.解 (1)记甲、乙分别解出此题的事件记为A ,B . 设甲独立解出此题的概率为P 1,乙为P 2,则P (A )=P 1=0.6,P (B )=P 2,P (A ∪B )=1-P (A B )=1-(1-P 1)·(1-P 2)=P 1+P 2-P 1P 2=0.92.∴0.6+P 2-0.6P 2=0.92,则0.4P2=0.32,即P2=0.8.(2)P(ξ=0)=P(A)·P(B)=0.4×0.2=0.08,P(ξ=1)=P(A)P(B)+P(A)P(B)=0.6×0.2+0.4×0.8=0.44.P(ξ=2)=P(A)·P(B)=0.6×0.8=0.48.ξ的概率分布为:E(ξ)=0.44+0.96=1.4,D(ξ)=(0-1.4)2×0.08+(1-1.4)2×0.44+(2-1.4)2×0.48=0.1568+0.0704+0.1728=0.4.精美句子1、善思则能“从无字句处读书”。

人教版高中数学选修2-3第二章2.3.2离散型随机变量的方差

导入新课复习回顾1 .离散型随机变量 X 的均值 均值反映了离散型随机变量取值的平均水平.2 . 两种特殊分布的均值(1)若随机变量X 服从两点分布,则EX=p.(2)若X~B(n ,p) ,则EX=np.ni ii=1EX =x p数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.2.3.2离散型随机变量的方差教学目标知识与技能(1)了解离散型随机变量的方差、标准差的意义;(2)会根据离散型随机变量的分布列求出方差或标准差.过程与方法了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1-p)”,并会应用上述公式计算有关随机变量的方差 .情感、态度与价值观承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值.教学重难点重点离散型随机变量的方差、标准差.难点比较两个随机变量的期望与方差的大小,从而解决实际问题 .思考要从两名同学中挑选出一名,代表班级参加射击比赛. 根据以往的成绩记录,第一名同学击中目标靶的环数X1的分布列为X1 5 6 7 8 9 10P 0.03 0.09 0.20 0.31 0.27 0.10第二名同学击中目标靶的环数X2的分布列为X2 5 6 7 8 9P 0.01 0.05 0.20 0.41 0.33根据已学知识,可以从平均中靶环数来比较两名同学射击水平的高低,即通过比较X1和X2的均值来比较两名同学射击水平的高低. 通过计算E(X1)=8,E(X2)=8,发现两个均值相等,因此只根据均值不能区分这两名同学的射击水平.思考除平均中靶环数外,还有其他刻画两名同学各自射击特点的指标吗?图(1)(2)分别表示X 1和X 2的分布列图. 比较两个图形,可以发现,第二名同学的射击成绩更集中于8环,即第二名同学的射击成绩更稳定. O 5 6 7 10 9 8 P 1X 0.10.20.30.40.5O 5 6 7 9 8 P 2X 0.1 0.2 0.3 0.4 0.5 (1) (2) 怎样定量刻画随机变量的稳定性?1.方差设离散型随机变量X 的分布列为知识要点X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E(X))2描述了x i (i=1,2,…,n)相对于均值E(X)的偏离程度.为这些偏离程度的加权平均,刻画了随机变量 X 与其均值 EX 的平均偏离程度.我们称 DX 为随机变量 X 的方差(variance). 其算术平方根 为随机变量X 的标准差(standard deviation). 记为 n2i ii=1DX =(x -EX)p DX σX 随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.说明:随机变量集中的位置是随机变量的均值;方差或标准差这种度量指标是一种加权平均的度量指标.思考随机变量的方差与样本的方差有何联系与区别?随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量.对于简单随机样本,随着样本容量的增加,样本方差越来越接近总体方差,因此常用样本方差来估计总体方差.现在,可以用两名同学射击成绩的方差来刻画他们各自的特点,为选派选手提供依据.由前面的计算结果及方差的定义,得∑102DX=(i-8)P(X=i)=1.50,11i=5∑92DX=(i-8)P(X=i)=0.8222i=5因此第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.知识要点2.几点重要性质(1)若X服从两点分布,则D(X)=p(1-p); (2)若X~B(n,p),则D(X)=np(1-p); (3)D(aX+b)=a2D(X).例题1A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:0 1 2 3次品数ξ1概率P 0.7 0.2 0.06 0.040 1 2 3次品数ξ1概率P 0.8 0.06 0.04 0.10问哪一台机床加工质量较好?解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44, Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44. 它们的期望相同,再比较它们的方差Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2 ×0.06+(3-0.44)2×0.04=0.6064,Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264.∴Dξ1< Dξ2 故A 机床加工较稳定、质量较好.例题2有甲乙两个单位都愿意聘用你,而你能获得如下信息:/元1200 1400 1600 1800 甲单位不同职位月工资X10.4 0.3 0.2 0.1获得相应职位的概率P1乙单位不同职位月工资X/元1000 1400 1800 220020.4 0.3 0.2 0.1获得相应职位的概率P2根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得1EX =12000.4 + 1 4000.3 + 16000.2 + 18000.1 =1400⨯⨯⨯⨯2221DX = (1200-1400) 0. 4 + (1400-1400 )0.3 + (1600 -1400 )0.2⨯⨯⨯2+(1800-1400) 0. 1= 40 000⨯2EX =1 0000.4 +1 4000.3 + 1 8000.2 + 22000.1 = 1400⨯⨯⨯⨯2222DX = (1000-1400)0. 4+(1 400-1400)0.3 + (1800-1400)0.2⨯⨯⨯2+ (2200-1400 )0.l = 160000 .⨯分析:因为 ,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1212EX =EX ,DX <DX例题3有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为X.(1)求随机变量的概率分布;(2)求X的数学期望和方差.4411689P(X =4)==,P(X =3)=0,P(X =2)=,P(X =1)=,P(X =0)=A 242424249861E(X)=0+1+2+30+4=124242424⨯⨯⨯⨯⨯222229861V(X)=(0-1)+(1-1)+(2-1)+(3-1)0+(4-1)=124242424⨯⨯⨯⨯⨯解:(1)因此X 的分布列为(2) X 0 1 23 4 P 9/24 8/24 6/24 0 1/24例题3有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.解 :设庄家获利的数额为随机变量,根据两枚骰子的点数之和可能的结果以及游戏规则可得随机变量的概率分布为:X -30 -20 -10 10 20 30 P 2/36 4/36 6/36 8/36 10/36 6/36 246810665 E(X)=(-30)+(-20)+(-10)+10+20+30=⨯⨯⨯⨯⨯⨯3636363636369因此,顾客每玩36人次,庄家可获利约260元,但不确定顾客每玩36人次一定会有些利润;长期而言,庄家获利的均值是这一常数,也就是说庄家一定是赢家.1.熟记方差计算公式课堂小结n 2i i i=1DX =(x -EX)p 2=E(X-EX)22=EX -(EX)2. 三个重要的方差公式(1)若 X 服从两点分布,则 (2)若 ,则 X ~B(n,p)DX =np(1-p)DX =p(1-p)2(3)D(aX +b)=a DX3.求离散型随机变量X的方差、标准差的一般步骤:①理解X 的意义,写出X 可能取的全部值;②求X取各个值的概率,写出分布列;③根据分布列,由期望的定义求出EX;④根据方差、标准差的定义求出、σXDX高考链接1. (2005年天津)某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是_____(元).[答案]4760提示:分布列为ξ0.6 -2.5P 192/200 8/192故1928Eξ=0.6-2.5=4760()200200元⨯⨯2.(2002年天津)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:5t/hm2)表所示:品种第一年第二年第三年第四年第五年甲9.8 9.9 10.1 10 10.2 乙9.4 10.3 10.8 9.7 9.8则其中产量比较稳定的小麦品种是_______.[答案]甲种3.(2004年湖北)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别为0.9和0.85,若预防方案允许甲、乙两种预防措施单独采用,联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值)[解析]①不采用预防措施时,总费用即损失期望值为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.l=40(万元),所以总费用为45+40=85(万元);③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);继续④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.1.填空课堂练习(1)已知x~B(100,0.5),则Ex=___,Dx=____,sx=___. E(2x-1)=____, D(2x-1)=____, s(2x-1)=_____. 50 25 59910010(1)已知随机变量x 的分布列如上表,则E x 与D x 的值为( )A. 0.6和0.7B. 1.7和0.3C. 0.3和0.7D. 1.7和0.21(2)已知x~B(n ,p),E x =8,D x =1.6,则n , p 的值分别是( )A .100和0.08;B .20和0.4;C .10和0.2;D .10和0.8 2.选择 √ x1 2 P 0.3 0.7√3.解答题(1)一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3①当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)= ②当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)= 43129=449119123=⨯③当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P (ξ=2)= ④当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则 P (ξ=3)= 所以,Eξ= 3299=121110220⨯⨯32191=1211109220⨯⨯⨯399130+1+2+3=44422022010⨯⨯⨯⨯继续(2)有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ~B(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算.解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~ B(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98.习题解答1. E(X)=0×0.1+1×0.2+2×0.4+3×0.2+4×0.1=2. D(X)=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.4+(3- 2)2×0.2+(4-2)2×0.1=1.2.D(X) 1.095.2. E(X)=c×1=c,D(X)=(c-c)2×1=0.3. 略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2离散型随机变量的方差
预习导航
课程目标
学习脉络
1.通过实例,理解取有限个值的离散型随机变量的方差、标准差的概念和意义.
2.会求离散型随机变量的方差、标准差.
3.会利用离散型随机变量的方差、标准差解决一些实际问题.
离散型随机变量的方差
思考1离散型随机变量的数学期望满足E(aξ+b)=aE(ξ)+b,方差是否也满足式子D(aξ+b)=aD(ξ)+b?
名词
数学期望
方差
定义
E(ξ)=ξ1p1+ξ2p2+…+ξnpn
D(ξ)=(ξ1-E(ξ))2p1+(ξ2-E(ξ))2p2+…+(ξn-E(ξ))2pn
ห้องสมุดไป่ตู้性质
(1)E(a)=a(a为常数)
(2)E(aξ)=aE(ξ)
(3)E(aξ+b)=aE(ξ)+b(a,b为常数)
(4)若ξ~B(n,p),则E(ξ)=np
(1)D(a)=0(a为常数)
(2)D(aξ)=a2D(ξ)
(3)D(aξ+b)=a2D(ξ)(a,b为常数)
(4)若ξ~B(n,p),则D(ξ)=npq(p+q=1)
数学
意义
E(ξ)是一个常数,它反映了随机变量取值的平均水平,亦称均值
D(ξ)是一个常数,它反映了随机变量取值的稳定与波动、集中与离散的程度
提示:方差公式为D(aξ+b)=a2D(ξ),不满足式子D(aξ+b)=aD(ξ)+b.
思考2若随机变量X服从二点分布,则其方差D(X)的值为多少,能否利用基本不等式求方差的最大值?
提示:二点分布的方差为D(X)=p(1-p),由式子可得p(1-p)≤ 2= ,故能用基本不等式求方差的最大值.
归纳总结离散型随机变量ξ的期望与方差
相关文档
最新文档