现代电源技术实验

合集下载

电工与电子技术的实验报告

电工与电子技术的实验报告

电工与电子技术的实验报告篇一:电工与电子技术实验报告XX实验一电位、电压的测量及基尔霍夫定律的验证一、实验目的1、用实验证明电路中电位的相对性、电压的绝对性。

2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。

二、实验线路实验线路如图1-1所示。

DAE12BC图1-1三、实验步骤将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。

1、电压、电位的测量。

1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数据记入表1-1中。

2)以C点作为电位的参考点,重复实验内容1)的步骤。

2、基尔霍夫定律的验证。

1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。

2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。

3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。

四、实验数据表1-1表1-2五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。

A、高于B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小C、不变六、其他实验线路及数据表格图1-2表1-3 电压、电位的测量实验二叠加原理和戴维南定理一、实验目的1、牢固掌握叠加原理的基本概念,进一步验证叠加原理的正确性。

2、验证戴维南定理。

3、掌握测量等效电动势与等效内阻的方法。

二、实验线路1、叠加原理实验线路如下图所示DE1IAIB2C图2-12、戴维南定理实验线路如下图所示ALB图2-2三、实验步骤1、叠加原理实验实验前,先将两路直流稳压电源接入电路,令E1=12V,E2=6V。

基于DSP控制的PWM型开关电源的研究与开发共3篇

基于DSP控制的PWM型开关电源的研究与开发共3篇

基于DSP控制的PWM型开关电源的研究与开发共3篇基于DSP控制的PWM型开关电源的研究与开发1随着现代电子技术的不断发展,各种电子设备已经成为了人们生活中必不可少的一部分。

而这些电子设备的电力供应往往都离不开一种被称作开关电源的技术。

在目前的众多开关电源技术中,一种基于数码信号处理器(Digital Signal Processor,DSP)控制的脉宽调制(Pulse-Width Modulation,PWM)型开关电源备受关注。

本文将立足于DSP控制的PWM型开关电源的研究与开发,从理论分析、电路设计以及实验测试等方面进行探讨。

一、理论分析在开展研究之前,我们需要先了解PWM型开关电源的基本原理。

PWM型开关电源是一种电源调节技术,它将输入电压转换为短脉冲信号,并通过改变信号的占空比来实现电压的调节。

在PWM型开关电源中,DSP作为核心控制器,通过对电源电路的控制实现对电压、电流等信号的输出控制。

因此,DSP控制技术具有快速、高效、精准等特点,是PWM型开关电源的重要控制手段。

二、电路设计在PWM型开关电源的电路设计中,首先要考虑的是所选用的数字信号处理器(DSP)。

在选择DSP时,需要考虑其性能、成本、可扩展性等因素。

其次,需要在选用的DSP的控制下设计整个PWM型开关电源的电路图。

其中,包括输入电源、滤波电路、开关管、功率变换电路、负载电路等部分,旨在将输入电压转化为输出大于或等于期望值的恒定电压。

另外,在电路设计过程中,还需要注意各部分之间的电气特性和电路参数,以便实现电源稳定、高效、低噪音的输出要求。

三、实验测试完成电路设计之后,需要进行实验测试以验证PWM型开关电源的控制效果和电气性能。

在实验过程中,我们可以通过测定输出的电压、电流大小、占空比等参数来评估所设计的PWM型开关电源的实际性能。

在实验过程中,还需要考虑到温度、负载变化等因素对PWM型开关电源的影响,以保证得到准确的实验结果。

测量电源的电动势和内阻教案

测量电源的电动势和内阻教案

测量电源的电动势和内阻优质教案一、教学目标1. 让学生理解电动势和内阻的概念,知道电源的电动势和内阻是描述电源特性的两个重要参数。

2. 让学生掌握闭合电路欧姆定律,并能够运用该定律分析电路中的电流、电压和电阻关系。

3. 培养学生运用实验方法测量电源的电动势和内阻,提高学生的实验技能和动手能力。

4. 培养学生运用科学思维方法,分析实验数据,提高学生的数据分析能力。

二、教学内容1. 电动势和内阻的概念介绍。

2. 闭合电路欧姆定律的内容及应用。

3. 实验原理及实验步骤。

4. 实验数据处理方法。

5. 实验结果分析。

三、教学重点与难点1. 重点:电动势和内阻的概念,闭合电路欧姆定律的应用,实验原理及实验步骤。

2. 难点:实验数据处理方法,实验结果分析。

四、教学方法1. 采用讲授法,讲解电动势和内阻的概念,闭合电路欧姆定律的内容。

2. 采用实验法,指导学生进行电源电动势和内阻的测量实验。

3. 采用讨论法,分析实验数据,引导学生运用科学思维方法。

4. 采用提问法,激发学生思考,巩固所学知识。

五、教学过程1. 导入:通过提问方式引导学生回顾电源、电压、电流等基本概念,为新课的学习做好铺垫。

2. 讲解:讲解电动势和内阻的概念,闭合电路欧姆定律的内容及应用。

3. 实验:指导学生进行电源电动势和内阻的测量实验,强调实验操作注意事项。

4. 数据分析:引导学生运用科学思维方法,分析实验数据,得出结论。

5. 总结:对本节课内容进行总结,强调重点知识点,布置课后作业。

六、教学评价1. 评价学生对电动势和内阻概念的理解程度。

2. 评价学生对闭合电路欧姆定律的应用能力。

3. 评价学生的实验操作技能和动手能力。

4. 评价学生对实验数据的分析能力及科学思维方法的运用。

七、教学反馈1. 课后收集学生作业,了解学生对知识的掌握情况。

2. 在实验报告中,评价学生的实验数据处理和分析能力。

3. 在课堂上,鼓励学生提问和发表观点,了解学生的学习需求。

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

现代电源技术课程设计任务书开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)一、目的和任务本课程设计目的:巩固和加深现代电源技术理论知识的理解,该设计是开关电源课程结束后的课程设计,目的是使学生更好地掌握开关电源技术设计的基础知识和基本技能。

本课程设计任务:在课程设计过程中将所学理论知识运用到实际设计和调试中,增强学生实际动手能力,提高学生工程素质。

通过实际课题的训练,为毕业设计和将来从事技术工作打下基础。

二、总体要求确定控制任务软件设计硬件设计系统联调提交课程设计报告、演示成果三、内容和具体要求设计任务:TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

1主要特征1、集成了全部的脉宽调制电路。

2、片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

3、内置误差放大器。

4、内置5V参考基准电压源。

5、可调整死区时间。

6、内置功率晶体管可提供500mA7、推或拉两种输出方式。

2 TL494内部框图3 TL494管脚图4实验电路图5 实验步骤1. 运用7815搭建15伏稳压电源.2. 调节变阻器改变输出电压频率(要求记录变阻器数值,及实验波形)3. 改变1脚电压,记录电压与占空比的关系4. 当改变1脚电压使输出占空比最大时,改变3电压,记录电压与占空比的关系。

5. 当14脚接5伏电压,观察输出波形。

四、课程设计报告格式1、请使用学生实习报告本书写或打印成装订好的16K打印稿。

2、写出规范的课程设计报告。

五、考核及评分标准1、平时成绩(到课率、阶段性检查情况等) 25%2、课程设计报告 25%3、课程设计成果50%。

电工技术实验

电工技术实验

电⼯技术实验实验三基尔霍夫定律⼀、实验⽬的⽤实验数据验证基尔霍夫定律,并加深对其的理解。

⼆、实验原理在电路理论中,基尔霍夫定律是最基本的定律之⼀。

它包括两条定律:电流定律和电压定律,它们普遍适⽤于线性电路和⾮线性电路。

基尔霍夫电流定律(简称KCL)是对电路结点⽽⾔的:在任⼀时刻,流⼊电路某结点电流之和等于流出该结点电流之和。

或换⾔之:在任⼀时刻,流⼊电路某结点电流的代数和为零。

即:∑I = 0 。

基尔霍夫电流定律也可推⼴运⽤于电路中任⼀封闭⾯:在任⼀时刻,流⼊电路某封闭⾯电流的代数和为零。

基尔霍夫电压定律(简称KVL)是对电路闭合回路⽽⾔的:在任⼀时刻,沿闭合回路按任意的绕⾏⽅向绕⾏⼀周,电压的代数和为零。

即:∑U = 0 。

三、实验设备1.直流电压表、直流电流表2.直流稳压源3.电阻元件四、实验内容及操作步骤验证电路如图2-3-1所⽰。

实验接线时,应在每条⽀路中(即:串接电流表的⽀路)串接⼀个电流表插⼝,测量电流时只需将电流表的插头插⼊即可,但必须注意插头的极性要正确。

测试数据可填⼊表格2-3-1和表格2-3-2中。

图2-3-1 基尔霍夫定律验证电路表2-3-1 KCL定律验证数据记录表2-3-2 KVL定律验证数据记录五、注意事项1.应按照给定电路计算各待测电压、电流值,以便测量时预选电表量程。

2.全部测量值均以电流表、电压表的读数为准,两电压源电压也不例外。

3.若使⽤指针式仪表,应注意极性,勿使指针反偏。

4. 读取测量值时,应参照参考⽅向确定正负。

5.两直流稳压电源的输出电压应在空载时⽤数字万⽤表核准到给定数值。

六、总结报告及思考题1.根据实验测试数据,验证基尔霍夫定律。

2.分析产⽣误差原因。

3.如电阻阻值标明误差,试问其对理论计算值和实际测量值有⽆影响?为什么?4.电压表、电流表内阻阻值⼤⼩,对被测电路⼯作有⽆影响?对测量误差的产⽣有⽆影响?实验五叠加原理⼀、实验⽬的⽤实验数据验证叠加原理,并加深对其的理解。

电子科技大学,数字电路R-S D

电子科技大学,数字电路R-S D

现代电子技术实验
一、实验目的
实验目的
1、掌握基本RS触发器、D触发器的逻辑功能 2、掌握基本RS触发器、D触发器的测试方法 3、熟悉D触发器与其他触发器间的相互转换
实验原理
实验内容
注意事项
二、实验原理
实验目的
现代电子技术实验
触发器是一种具有记忆功能的二进制 存贮器件,是构成各种时序电路的基本逻 辑单元。它在数字系统和计算机中有着广 泛的运用。
构成一位二进制计数器(二分频器)。可应用译码显 示循环状态,用示波器观察Q波形。 电路图:
+ VCC
循环状态:
Qn 0 1
波形输出:
6 1Q 1D 2
14 5 1Q 1
1RD
1CP 3
74 LS 74 1S D 4
7
现代电子技术实验
D触发器构成其它触发器
(1)用D触发器构成T触发器
在D触发器输入端连接 一异或门, D触发器 的输出端与异或门输 入端相连接,构成T触 发器。 Qn+1=T⊕Qn。 T 触发器
d触发器的qn1tqnd触发器构成其它触发器现代电子技术实验2用d触发器构成t触发器rdsd不用时悬空或接高电平上升沿到达时触发器翻转频率fqfcp2tt触发器若将d触发器的输入端与q相连接即得t触发器发器cp端的上升沿达
现代电子技术实验
基本RS触发器、D触发器的研究
实验目的 实验原理
实验内容 注意事项
现代电子技术实验
(2)用D触发器构成T’触发 器
RD、SD不用时, 悬空或接高电平
若将D触发器的输入端与 Q相连接,即得T’触 发器, 。当T’触 发器CP端的上升沿达 到时,触发器的状态就 翻转一次。
上升沿到达时 触发器翻转 频率fQ=fCP/2

电力电子实训总结和心得体会

电力电子实训总结和心得体会

电力电子实训总结和心得体会电力电子实训总结和心得体会电子技术的实习要求我们熟悉电子元器件、熟练掌握相关工具的操作以及电子设备的制作、装调的全过程,从而有助于我们对理论知识的理解,帮助我们学习专业的相关知识。

下面是带来的五篇电力电子实训总结和心得体会,希望大家喜欢!电力电子实训总结和心得体会1随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。

电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。

本学期实验课程共进行了四个实验。

包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验.单结晶体管触发电路实验实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的基本调试步骤。

实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。

v6为单结晶体管,其常用型号有bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。

由同步变压器副边输出60v 的交流同步电压,经vd1半波整流,再由稳压管v1、v2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。

电工技术实验报告

电工技术实验报告
二、实验设备和器材
1、直流可调稳压电源:0-30V;两路..
2、万用表:1只..
3、直流数字电压表:0-30V;一只..
4、直流数字电流表:0-2000mA;一只..
5、基尔霍夫定律实验电路板:1块..
6、导线若干..
三、实验原理
根据基尔霍夫定律;沿闭合回路循行一周;回路中各段电压的代数和为零;即∑U=0;通过各节点的电流的代数和为零;即∑I=0..
5、电阻箱0-99999.9欧一个
6、导线若干
三、实验原理
1、根据欧姆定律U=IR;只要测出通过一电阻的电流I和其两端的电压U;即可求出其阻值R;这就是伏安法测电阻..
2、根据闭合电路的欧姆定律I=E/R+r;未知电阻R与电路电流I有一一对应关系;这就是欧姆表的工作原理..
四、实验步骤与数据分析
1、掌握DGJ-3型电工实验装置电源的开关、启动和停止方法;直流电压源的使用方法;及装置中仪表、元件和电路的布局..
3、在断开电源开关S不接电机的情况下;分别按下正、反转起动按钮;用万用表电阻档测量控制电路两端的电阻值;应分别等于正、反转交流接触器线圈的阻值;否则控制电路有短路或断路注意切勿带电检查;应查明其原因..
4、控制电路实验:经指导老师检查无误后;在未接电机的情况下;接通电源开关S;分别按下SBSTP、SBSTF和SBSTR;观察各电器的工作状态是否正常;并检查正、反转连锁作用是否符合要求..如属正常;将电路恢复到静止状态;否则应查找原因..
实验二: 电源电动势和内阻的测定
一、实验目的
1、利用闭合电路的欧姆定律测电源电动势和内阻..
2、学会用平均值法求待测量..
3、熟悉DGJ-3型电工技术实验装置的使用方法..
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一反激式电流控制开关稳压电源一、实验目的(1)了解单管反激式开关电源的主电路结构、工作原理。

(2)测试工作波形,了解电流控制原理。

二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK09 单相调压与可调负载3 DJK23 单端反激式隔离开关电源4 双踪示波器自备5 万用表自备三、实验线路及原理单管反激式开关电源原理电路如图4-10所示。

图4-10 单管反激式开关电源原理图交流输入经二极管整流后的直流电压U dc经变压器初级绕加到功率三极管Q1之C极,同时经电阻R9、R10加到Q1之b极使Q1开通。

Udc电压加到变压器初级使磁通逐渐上升,初级电流也线性增大,变压器反馈绕组3-4上的感应电势的极性使Q1的b-e之间正向偏置增大,使Q1完全饱和导通,这是一个正反馈自激过程。

Q1饱和导通之后变压器初级承受Udc电压,变压器磁路中的磁通Φ正比于U dc*t中的伏秒积分,t是Q1开通的时间长度。

在变压器磁通达到饱和值之前,Φ是线性增长,Q1中的电流是线性增长。

为了保证Q1中的电流不超过其元件最大值,因此必须将此电流在适当的时候进行切断,这个电流峰值的控制由三极管Q2实现。

当R7中的电流大到一定允许值Q2导通,强迫将Q1之b极变为零电平,使Q1关断,而Q2的通断受三极管Q4的通断来控制;而Q4的通断由三极管Q3和4N35中的三极管的导通情况来决定。

Q3的通断由来自电流C端R反馈采样电阻R 7上的电压来控制。

当R 7上的电流大到一定值,使Q 3的b-e 极正偏加大,使Q 3导通。

本线路对 5V 直流输出电压有自动稳压调节功能,当负载减小5V 输出电压增大时,输出电压的采样电阻分压后加到TL431的R 端的电压增大。

由TL431的作用原理可知其C 端电压会自动下降,结果造成4N35的二极管中电流增大,从而使4N35的三极管的等效内阻减小,结果使Q 4提前导通最终使Q 1提前关断,即负载减小时Q 1的开通/关断占空比减小,这从Q 1-e 极的波形可以明显看到。

当输入交流电压减小,Udc 下降时,Q 1导通后变压器中的磁通上升速率减小,结果Q 1的开断周期延长。

开关频率下降,例如从180V AC 输入时的62KHz 下降到100V AC 输入时的44.8KHz 。

当Q 1中的电流被切断之后,变压器电感贮能释放,磁通下降,变压器副边绕组的感应电势经整流滤波后输出。

这就是一般反激式(Fly back )的原理。

TL431的原理框图如下:的原理图C 3R 5D 1R 8为缓冲电路,减小Q 1关断时Q 1管c-e 极的电压。

四、实验内容(1)电路波形的测试。

(2)输入电压变化时主电路波形的测试。

(3)输出负债电流变化时主电路波形的测试。

(4)开关电源稳压特性的测试。

五、思考题(1) 什么叫反激式开关电源,它与正激式有何区别? (2)什么叫自激式与他激式开关电源?(3)变压器的磁路在制作时为什么必须留有气隙? (4)开关管的选择原则是什么? 六、实验方法 (1)系统接线:①将DJK09的交流调压输出接至DJK23的交流输入端。

②将DJK09上的两个电阻并接成可调负载电阻。

(2)波形观察①接入DJK09单相自藕调压器的220V 交流电源,并开启DJK01控制屏的电源开关。

②调节DJK09的交流输出为180V ,并调节DJK09上的负载电阻,使DJK23上5V 直流输出的电流为2A 。

③用示波器观测电路相应各点的波形。

Q 1的e 极(即电流采样电阻R 7两端)的波形 三极管Q 1的b 级波形变压器反馈绕组3-4端的电压波形 三极管Q 2的b 级波形 三极管Q 3的b 级波形三极管Q3的C级波形开关频率与占空比的测定并记录数据④改变交流输入电压为100V,负载不变,重复步骤③。

⑤令5V直流输出负载电流为0.3A,交流输入为180V,重复步骤③。

(3)开关电源稳压特性的测试①保持负载不变(5V、2A;±12V,0.5A),改变DJK23的交流输入电压,从70V~250V,测定5V和12V直流输出电压的变化及纹波系数。

②保持DJK23交流输入电压不变,改变负载从(5V,0.15A~2.6A;±12V,0.15~0.5A),测定5V和12V直流输出电压的变化及纹波系数。

七、实验报告(1)整理典型情况下的各点波形。

(2)说明电流控制原理。

(3)分析5V直流输出负载变化时输出电压不变的原理?(4)当12V直流输出的负载改变时,输出12V电压能够保持不变吗?为什么?(5)分析交流输入电压改变时,5V直流输出电压保持不变的原理?八、注意事项(1)交流输入电压必须大于60V,小于250V。

(2)用示波器观察电路波形时,必须要注意共地问题。

(3)+5V的最大负载电流为5A,±12V的最大负载电流为1A。

实验二 PS-ZVS-PWM软开关技术实验一、实验目的(1)熟悉移相控制零电压开关PWM(PS-ZVS-PWM)的结构与工作原理。

(2)了解全桥软开关电源移相PWM控制芯片的使用方法和工作原理。

三、实验线路及原理RL图4-31 实验线路图实验线路主要有控制电路、驱动电路、移相控制零电压开关PWM (PS-ZVS-PWM)变换器和稳压反馈电路组成。

1、PS-ZVS-PWM变换器简介PS-ZVS-PWM变换器利用变压器的漏感或原边串联电感和功率管的寄生电容或外接电容来实现零电压开关,它的电路结构及主要波形如图4-32所示。

图4-32 主电路结构和主要波形其中,D 1∽D 4分别是Q 1∽Q 4的内部寄生二极管,C 1∽C 4分别是Q 1∽Q 4的寄生电容或外接电容。

L r 是谐振电感,它包括了变压器的漏感。

每个桥臂的两个功率管(Q 1、Q 3和Q 4、Q 2)成180°互补导通,两个桥臂的导通角相差一个相位,即移相角,通过调节移相角的大小来调节输出电压。

Q 1和Q 3分别超前于Q 4和Q 2一个相位,称Q 1和Q 3组成的桥臂为超前桥臂,Q 4和Q 2组成的桥臂为滞后桥臂。

在一个开关周期中,PS-ZVS-PWM 全桥变换器有12种开关状态。

假设: ①所有元器件均为理想器件; ②C 1=C 3=C lead ,C 2=C 4=C lag ;③L f 》L r /K 2,K 是变压器原副边匝比, L f 为输出电感。

图4-33到图4-39给出了该变换器在不同开关状态下的等效电路。

各开关状态的工作情况描述如下。

(1)开关模态0在t 0时刻,对应于图4-33。

Q 1和Q 4导通。

原边电流由电源正经Q 1、变压器原边绕组、谐振电感L r 以及Q 4,最后回到电源负。

副边电流回路由副边绕组L s1的正端,经整流管DR1、输出滤波电感L f 、输出滤波电容C f 与负载R L ,回到L s1的负端。

(2) 开关模态1[t 0∽t 1],对应于图4-34。

在t 0时刻关断Q 1,原边电流从Q 1中转移到C 3和C 1支路中,C 1充电,C 3放电。

由于C 1的存在,Q 1是零电压关断。

在这个时段里,谐振电感L r 和滤波电感L f 是串联的,而且L f 很大,因此可以认为原边电流i p 近似不变,类似于一个恒流源。

R LdQ1Q2Q3Q4Q1Q4012345678910111213t t t t t t t t t t t t t t i PV AB 0V rectV INI 2V INV /K INI 1QttttR L在t 1时刻,C 3的电压下降到零,Q 3的反并二极管D 3自然导通,从而结束开关模态1。

图4-34 开关模态1(3)开关模态2[t 1∽t 2],对应于图4-35。

D 3导通后,开通Q 3。

虽然这时候Q 3被开通,但并没有电流流过,原边电流由D 3流通。

由于是在D 3导通时开通Q 3,所以Q 3是零电压开通。

Q 3&Q 1驱动信号之间的死区时间t d(lead)>t o1。

在这段时间里,原边电流等于折算到原边的滤波电感电流。

在t 2时刻,原边电流下降到I 2。

图4-35 开关模态2(4)开关模态3[t 2∽t 3],对应于图4-36。

在t 2时刻,关断Q 4,原边电流i p 由C 2和C 4两条路径提供,也就是说,原边电流i p 用来抽走C 2上的电荷,同时又给C 4充电。

由于C 4的存在,Q 4是零电压关断。

此时,V AB =-V C4, V AB 的极性自零变为负,变压器副边绕组电势下正上负,整流二极管DR2导通,副边绕组L s2中开始流过电流。

整流管DR1和DR2同时导通,将变压器副边绕组短接,这样变压器副边绕组电压为零,原边绕组电压也为零,V AB 直接加在谐振电感L r 上。

因此在这段时间里实际上谐振电感和C 2 、C 4在谐振工作。

R LR L图4-36 开关模态3在t 3时刻,当C 4的电压上升到V IN ,D 2自然导通,结束这一开关模态。

(5)开关模态4[t 3∽t 4],对应于图4-37。

在t 3时刻,D 2自然导通,将Q 2的电压箝位在零电位,此时就可以开通Q 2,Q 2是零电压开通。

Q 2&Q 4驱动信号之间的死区时间t d(lag)>t 23,虽然此时Q 2已开通,但Q 2不流过电流,原边电流由D 2流通。

原边谐振电感的储能回馈给输入电源。

由于副边两个整流管同时导通,因此变压器副边绕组电压为零,原边绕组电压也为零,这样电源电压V IN 加在谐振电感两端,原边电流线性下降。

图4-37 开关模态4到t 4时刻,原边电流从I p (t 3)下降到零,二极管D 2和D 3自然关断,Q 2和Q 3中将流过电流。

(6)开关模态5[t 4∽t 5],对应于图4-38。

在t 4时刻,原边电流由正值过零,并且向负方向增加,此时Q 2和Q 3为原边电流提供通路。

由于原边电流仍不足以提供负载电流,负载电流仍由两个整流管提供回路,因此原边绕组电压仍然为零,加在谐振电感两端的电压为电源电压V IN ,原边电流反向增加。

到t 5时刻,原边电流达到折算到原边负载电流-I Lf (t 5)/K 值,该开关模态结束。

此时,整流管DR1关断,DR2流过全部负载电流。

R LR L图4-38 开关模态5(7)开关模态6[t 5∽t 6],对应于图4-39,在这段时间里,电源给负载供电。

在t 6时刻,Q 3关断,变换器开始另一半个周期的工作,其工作情况类似于上述的半个周期。

图4-39 开关模态62、UCC3895简介图4-40 UCC3895引脚排列图Q1Q3TRC1C3R D1D3Q2Q4C2C4D2D4LrDR1DR2L C ffLLs1Ls2V INi PABQ1Q3TRC1C3R D1D3Q2Q4C2C4D2D4LrDR1DR2L C ffLLs1Ls2V INi PAB图4-41 UCC3895内部功能框图UCC3895的各引脚功能(引脚排列见图4-40)ADS :自适应延迟时间设置端。

相关文档
最新文档