矩阵的对角化及其应用
矩阵的可对角化及其应用

附件:分类号O15商洛学院学士学位论文矩阵的可对角化及其应用作者单位数学与计算科学系指导老师刘晓民作者姓名陈毕专业﹑班级数学与应用数学专业07级1班提交时间二0一一年五月矩阵的可对角化及其应用陈毕(数学与计算科学系2007级1班)指导老师刘晓民摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。
本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用.关键词:对角化;特征值;特征向量;相似;线性变换Matrix diagonolization and its applicationChen Bi(Class 1,Grade 2007,The Depart of Math and Calculation Science)Advisor:Lecturer Liu Xiao MinAbstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix analysis and generalization, and using higher algebra and linear algebra are given the relevant theory of matrix several conditions diagonolization, also discussed the matrix of the diagonal shape of solving method, and finally summarized; diagonolization matrix in high power, the policy of using eigenvalue beg determinant by characteristic value and value, feature vector reverse matrix, judgment matrix is similar, vector Spaces, the application of linear transformation, etc.Key words: The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
5.2 矩阵的相似对角化

五 章
对应的特征向量分别是 X1
1 1
,
X2
01
,
X3
1 1
,
相
似
求矩阵 A 和 A1.
0
1
2
矩
阵
解
(1)
令
P
(
X1,
X2,
X3
)
1 1
1 0
1 1,
0 1 2
则
P
可逆,且
P 1 AP
1
3
Λ,
4
17
§5.2 矩阵的相似对角化
第
(2) 因此有
五 章
相
A
P
ΛP 1
1 1
§5.2 矩阵的相似对角化
第 五
§5.2 矩阵的相似对角化
章
一、相似矩阵的基本概念与性质
相 似
二、矩阵相似对角化的概念与问题分析
矩 阵
三、矩阵相似对角化的方法步骤
四、矩阵相似对角化的应用
1
§5.2 矩阵的相似对角化
第 一、相似矩阵的基本概念与性质
五 章
1. 相似矩阵的概念
定义 对于 n 阶矩阵 A 和 B ,若存在可逆的 n 阶方阵 P 使得
的主对角线上的元素由 A 的全部特征值构成。
8
§5.2 矩阵的相似对角化
第 二、矩阵相似对角化的概念与问题分析
五 章
1. 问题分析
(2) P 如何构成?
相 似
设 P ( p1, p2 , , pn ), 则由 P 1 AP Λ 有 AP PΛ, 即
矩 阵
A( p1, p2 , , pn ) ( p1, p2 , , pn ) Λ,
相
矩阵的相似与对角化

矩阵的相似与对角化矩阵是线性代数中的重要概念之一,而相似性与对角化是矩阵理论中的两个关键概念。
本文将从相似性与对角化的概念入手,探讨它们的定义、性质以及在线性代数中的应用。
1. 相似矩阵的定义与性质相似矩阵是线性代数中一个重要的概念,它描述了两个矩阵具有相同的特征值,但其特征向量的基和矩阵元素可能不同。
具体来说,如果存在一个可逆矩阵P,使得矩阵A和矩阵B满足A = PBP^(-1),则可以称矩阵A和矩阵B是相似的。
相似矩阵的性质包括:1) 相似矩阵具有相同的特征值,即它们的特征多项式相同。
2) 相似矩阵的特征向量对应相同的特征值,但基可能不同。
3) 相似矩阵具有相同的迹、行列式和秩。
4) 相似矩阵具有相同的幂,即A^k与B^k相似。
2. 对角化的定义与性质对角化是线性代数中与相似性概念紧密相关的一个概念。
简而言之,对角化就是将一个矩阵通过相似变换变成对角矩阵的过程。
具体来说,如果一个n阶矩阵A相似于一个对角矩阵D,即存在一个可逆矩阵P,使得A = PDP^(-1),则称矩阵A是可对角化的。
对角化的性质包括:1) 可对角化矩阵与其特征值和特征向量有关,特征向量构成的基是将矩阵对角化的基。
2) 可对角化矩阵具有简洁的形式,对角线上的元素是矩阵的特征值,其他元素都为0。
3) 可对角化矩阵的幂可以通过对特征值的幂进行对角化得到。
3. 相似与对角化的关系和应用相似的关系为矩阵的对角化提供了有力的理论基础。
具体而言,如果一个矩阵是可对角化的,那么它就必然与一个对角矩阵相似。
换句话说,对角化是相似的一种特殊情况。
相似与对角化的关系在线性代数中有广泛的应用,例如:1) 矩阵的相似性可以简化矩阵的计算,例如求解线性方程组、计算矩阵的幂等等。
2) 对角化可以简化矩阵的求幂运算,从而方便计算高阶矩阵的幂。
3) 对角化可以帮助我们理解矩阵的性质,例如特征向量的重要性、矩阵的谱分解等。
总结:本文从相似性与对角化的定义和性质出发,对相似矩阵与对角化的关系与应用进行了讨论。
矩阵相似和对角化

矩阵相似和对角化矩阵的相似和对角化是线性代数中重要的概念和技术。
它们在矩阵理论、线性变换和特征值理论等领域具有广泛的应用。
下面将对矩阵相似和对角化进行详细介绍和相关参考内容的分享。
1. 矩阵的相似性(Matrix Similarity):矩阵相似性是指两个矩阵具有相同的特征值与特征向量。
具体来说,对于n阶矩阵A和B,如果存在一个可逆矩阵P,使得P^(-1)AP=B,则称矩阵A与B相似。
矩阵相似性的特性包括:(1) 相似矩阵具有相同的特征值,但不一定有相同的特征向量;(2) 相似矩阵具有相同的迹、行列式和秩;(3) 相似矩阵表示相同的线性变换,只是在不同的坐标系下表示。
矩阵的相似性在计算机图形学、信号处理和网络分析等领域有广泛的应用。
下面是几篇相关的参考文献:- "Matrix Similarity and Its Applications"(作者:Yu Zhang)是一篇介绍矩阵相似性及其应用的综述文章。
它详细讨论了相似矩阵的定义、性质和计算方法,并列举了相似矩阵在网络分析和信号处理中的应用案例。
- "On Similarity of Matrices"(作者:Pe tar Rajković et al.)是一篇关于相似矩阵的形式定义和性质研究的论文。
它推导了相似矩阵的充要条件和相似变换的表达式,并给出了相似矩阵的几何解释和应用示例。
- "Graph Similarity and Matching"(作者:Michaël Defferrard et al.)是一本关于图相似性和匹配算法的专著。
它介绍了基于矩阵相似性的图匹配方法,包括谱聚类、图嵌入和子图匹配等技术,对于矩阵相似性的理解和应用具有参考价值。
2. 矩阵的对角化(Matrix Diagonalization):矩阵的对角化是指将一个可对角化矩阵相似转化成对角矩阵的过程。
矩阵的相似与对角化求解

矩阵的相似与对角化求解矩阵是线性代数中重要的概念之一,广泛应用于各个领域。
在研究矩阵的性质时,相似和对角化是两个关键的概念。
本文将为您介绍矩阵的相似性和对角化求解方法,并探讨它们在实际问题中的应用。
一、矩阵的相似性矩阵的相似性是指两个矩阵具有相同的特征值和特征向量。
当两个矩阵相似时,它们的性质也会类似。
在数学中,我们用矩阵P表示可逆矩阵,如果矩阵A和B满足P^-1AP=B,那么我们称A和B是相似矩阵。
矩阵的相似性具有以下三个性质:1. 相似性是一种等价关系。
即对于任意的矩阵A,A与自身相似;若A与B相似,则B与A相似;若A与B相似,B与C相似,则A 与C相似。
2. 相似矩阵具有相同的行列式、迹和秩。
这意味着相似矩阵在行列式、迹和秩等方面具有相似的性质。
3. 相似矩阵具有相似的特征值和特征向量。
这是矩阵相似性的核心概念,相似的矩阵具有相同的特征值和特征向量。
二、矩阵的对角化求解方法对角化是指将一个矩阵通过相似变换,转化为对角矩阵的过程。
对角化的求解可以简化矩阵的运算,方便研究矩阵的性质。
下面介绍一种常用的对角化求解方法——特征值分解。
特征值分解是将一个n阶矩阵A分解为A=PDP^-1的形式,其中D是对角矩阵,P是可逆矩阵,D的主对角线上的元素是A的n个特征值。
特征值分解的步骤如下:1. 求出矩阵A的特征值。
特征值可以通过求解特征方程det(A-λI)=0来获得,其中λ是特征值,I是单位矩阵。
2. 根据特征值求出对应的特征向量。
对于每一个特征值λ,通过求解(A-λI)x=0来获得对应的特征向量x。
3. 构造可逆矩阵P。
将所有的特征向量按列组成矩阵P,即P=[x1,x2,...,xn]。
4. 构造对角矩阵D。
将特征值按照对应的特征向量顺序放在D的主对角线上。
5. 得到对角化的矩阵A。
通过A=PDP^-1可以得到矩阵A的对角化形式。
三、应用示例矩阵的相似性和对角化在实际问题中具有广泛的应用。
以下是一些常见的应用示例:1. 线性系统求解:矩阵的相似性可以将一个复杂的线性方程组转化为一个简单的对角形式,从而求解线性系统变得更加方便。
矩阵相似与对角化应用实例

1
n
2
C2 x2
,
稳态向量将为 C1 x1 .为求 C1 ,可将方程 C1 x1 C2 x2 W0
1.1 期望问题
例题
写为一个线性方程组
32CC11
C2 C2
p, 10 000
p
,
将这两个方程相加,得到 C1 2 000 .因此,对 0 p 10 000 范围内的任意整数 p ,稳
乘以
A
0.7 0.3
0.2 0.8
,
即 1 年后结婚女性和单身女性的人数为
0.7
W1
AW0
0.3
0.2 0.8
8 2
000 000
6 4
000 000
.
1.1 期望问题
例题
为求得第 2 年结婚女性和单身女性的人数,计算
W2 AW1 A2W0 ,
一般地,对于第 n 年来说,需要计算Wn AnW0 .
An x(0)
(
x(n) 1
,x2(n) ) .
为了计算 An ,注意到 A 有特征值 1 和 1 ,因此它可分解为乘积: 2
A
1 1
2 1
1 0
0 1 2
1 3 1 3
2
3
,
1 3
1.3 伴性基因
例题
故Байду номын сангаас
x (n)
1 1
21
1 0
0 1 2
n
1 3 1 3
2 3 1 3
身女性开始,则W0 (10 000 ,0) ,然后可以用前面的方法将W0 乘以 An 计算出Wn .在这种 情况下,可得W14 (4 000 ,6 000) ,仍终止于相同的稳态向量.
矩阵对角化问题总结

矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。
对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。
本文将对矩阵对角化的定义、条件以及计算方法进行总结。
首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。
其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。
为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。
2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。
当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。
2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。
3. 将特征向量按列组成矩阵P。
4. 求出特征值构成的对角矩阵D。
需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。
在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。
2. 矩阵A不可对角化。
这意味着矩阵A无法被相似变换为对角矩阵。
这可能发生在矩阵A的特征向量不足以构成一组基的情况下。
矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。
对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。
此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。
总之,矩阵对角化是一个重要而又广泛应用的概念。
本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。
了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。
矩阵的相似与对角化

矩阵的相似与对角化矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。
对于一个给定的矩阵,我们可以通过相似变换来得到一种新的矩阵,其具有相似的特性。
相似变换可以理解为在某种意义上对矩阵进行了重新标定、旋转或扩张。
而对角化是一种特殊的相似变换,能够将一个矩阵变为对角矩阵,使得矩阵的运算更加简便。
首先,让我们来了解一下相似变换的概念。
对于两个矩阵A和B,如果存在一个可逆矩阵P,使得B = P^(-1) * A * P,那么我们称A和B是相似的,P为相似变换矩阵。
相似矩阵具有许多相似的性质,包括特征值和特征向量等。
具体来说,如果v是矩阵A的特征向量,那么Pv就是矩阵B的特征向量,特征值也有相应的关系。
这种相似变换在许多问题中都发挥着重要作用,例如线性变换和空间旋转等。
接下来,我们来介绍一下对角化的概念。
对角化是一种特殊的相似变换,将一个n阶矩阵A变为对角矩阵D。
换句话说,D是一个n阶对角矩阵,且存在一个可逆矩阵P,使得D = P^(-1) * A * P。
对角化的好处在于对角矩阵的运算更加简单。
由于对角矩阵只有对角线上有非零元素,其他位置都是零,所以矩阵乘法和求幂等运算都可以简化为对角元素的运算。
这种简化过程对于一些数值计算问题非常有用,例如求矩阵的幂和指数函数等。
那么对角化的条件是什么呢?首先,一个矩阵A能够被对角化,必须要有n个线性无关的特征向量。
这意味着A的特征向量都是不同的,并且它们可以组成一个完整的基。
其次,对应于不同特征值的特征向量也应该是线性无关的。
当满足了这些条件后,我们就可以通过特征向量构建一个可逆矩阵P,从而对矩阵A进行对角化。
在实际操作中,对角化的步骤如下。
首先,我们需要求出矩阵A的特征值和特征向量。
特征值可以通过解矩阵特征方程来得到,而特征向量则可以通过将特征值带入到(A - λI)x = 0中求解。
接下来,将求得的特征向量组成一个矩阵P,然后计算出其逆矩阵P^(-1)。
最后,我们可以得到对角矩阵D = P^(-1) * A * P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的对角化及其应用
湖北民族学院理学院2016届 本科毕业论文(设计)
矩阵的对角化及其应用 学生姓名: 赵远安 学 号: 021241015 专 业: 数学与应用数学 指导老师: 刘先平 答辩时间: 2016.5.22 装订时间: 2016.5.25
A Graduation Thesis (Project) Submitted to School of Science, Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016
Diagonalization of the Matrix and its Applications Student Name: ZHAO Yuanan Student No.: 021241015 Specialty: Mathematics and Applied Mathematics Supervisor: Liu Xianping
Date of Thesis Defense:2016.5.22 Date of Bookbinding: 2016.5.25
摘 要 矩阵在大学数学中是一个重要工具,在很多方面应用矩阵能简化描述性语言,而且也更容易理解,比如说线性方程组、二次方程等. 矩阵相似是一个等价关系,利用相似可以把矩阵进行分类,其中与对角矩阵相似的一类矩阵尤为重要,这类矩阵有很好的性质,方便我们解决其它的问题. 本文从矩阵的对角化的诸多充要条件及充分条件着手,探讨数域上任意一个n阶矩阵的对角化问题,给出判定方法,研究判定方法间的相互关系,以及某些特殊矩阵的对角化,还给出如幂等矩阵、对合矩阵、幂幺矩阵对角化的应用.
关键词:对角矩阵,实对称矩阵,幂等矩阵,对合矩阵,特征值,特征向量,最小多项式 I II III
目 录 摘要…………………………………………………………………………………………I Abstract……………………………………………………………………………………II
绪言…………………………………………………………………………………………1
课题背景……………………………………………………………………………………1
目的和意义……………………………………………………………………………… 1
国内外概况……………………………………………………………………………… 1
预备知识……………………………………………………………………………………2
相关概念……………………………………………………………………………………2
矩阵的对角化………………………………………………………………………………4
特殊矩阵的对角化……………………………………………………………………… 14
矩阵对角化的应用……………………………………………………………………… 22
总结……………………………………………………………………………………… 24
致谢……………………………………………………………………………………… 25
参考文献………………………………………………………………………………… 26
独创声明………………………………………………………………………………… 28 0
1 绪言 本课题研究与矩阵的对角化相关的问题,从对角化的判定展开论述,结合其它学术期刊的结论加上自己的体会,希望能让读者更好的理解矩阵及其对角化的妙处.
1.1 课题背景 在由北京大学数学系几何与代数教研室前代数小组编、王萼芳与石生明修订、高等教育出版社出版的《高等代数》一书中,我们为了方便线性方程组的运算引入了矩阵的概念. 在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,还有大量的各种各样的问题也提出矩阵的概念,并且这些问题的研究常常反应为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结为矩阵问题以后却是相同的. 在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在向量空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.本文主要由矩阵定义和向量空间研究矩阵的对角化,从不同角度揭示矩阵对角化的判定及其性质,还给出特殊矩阵的对角化及其相应的应用.
1.2 课题研究的目的和意义 课题研究的意义: (1) 研究矩阵对角化的判定定理及应用,为其它学术研究提供便捷的工具;
(2) 比较全面的介绍矩阵的对角化,方便读者的整体理解和应用; 1.3 国内外概况 实数域、复数域等数域上的矩阵的对角化研究已经很成熟,涉及特征值、最小多项式、线性变换方面的对角化证明也已完善,四元素体上矩阵的广义对角化也有小有成就,矩阵对角化与群环域的结合方面的研究也有所突破. 实对称矩阵、正交矩阵、分块儿矩阵的对角化已完善,矩阵的应用也渐渐出现在更多的学科和科研当中. 矩阵的同时对角化、同时次对角化,以及对角化与秩的恒等式等方面的研究基本完善.
1 2 预备知识
给出本文内容所涉及的一些定义,方便对后面定理证明的理解. 定义1 常以nmP表示数域P上nm矩阵的全体,用E表示单位矩阵.
定义2 n阶方阵A与B是相似的,如果我们可以找到一个n阶非奇异的方阵矩阵TnnP,使得ATTB1或者BTTA1 .
根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:AEEA1; ②对称性:若A相似于B,则B相似于A; ③传递性:如果A相似于B,B相似于C,那么A相似于C.
定义3 n阶方阵A与B是合同的,如果我们可以找到一个n阶非奇异方阵TnnP,使得B=TTAT或者BTTAT. 根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A=AEET;②对称性:由ATTBT即有11)(BTTAT;③传递性:由111ATTAT和2122TATAT
有)()(21212TTATTAT.
定义4 式为mbbb000000021的m阶方阵叫对角矩阵,这里ib是数(),2,1mi. 定义5 方阵AnnP,若BTTA1,T非奇异,B是对角阵,则称A可相似对角化.
定义6 方阵AnnP,若BTTAT,T非奇异,B是对角阵,则称A可合同对角化.
定义7 矩阵的初等变换:⑴互换矩阵的第i行(列)于j行(列); ⑵用非零数cP
乘以矩阵第i行(列);⑶把矩阵第j行的t倍加到第i行.
定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三
2 种初等矩阵:①单位矩阵经过初等变换⑴得),(jiP且),(),(1jiPjiP;②单位矩阵经
过初等变换⑵得))((tiP且)/1(())((1tiPtiP;③单位矩阵经过初等变换⑶得))(,(tjiP
且))(,())(,(1tjiPtjiP.
定义9 设方阵nnPB,若EB2,就称B为对合矩阵. 定义10 设方阵nnPA,若AAm,就称A为幂幺矩阵. 定义 11 设方阵CnnP,若CC2,就称C为幂等矩阵. 定义 12 设方阵nnPA,P,若存在向量,满足XAl,我们就称是A
的特征值,X是A属于特征值的特征向量.
定义13 nnPA,定义)(Am为矩阵A的最小多项式 ,)(Am的一个根为A而且比其他以A为根的多项式的次数都低,)(Am首项系数是1.
3 3 矩阵的对角化
本章介绍数域P上n阶方阵阵的对角化问题. 先给出矩阵对角化几个一般的充要、充分条件及其证明. 引理1 如果1,…,k是矩阵Q的不同的特征值,而,1i…,iir是属于特征值i的线性无关的特征向量,2,1i…,k,那么,11…,11r,…,1k,…,kkr也线性无关. 证明:假设12121111tt…1111rrt…11kkt…kkkrkrt=0,Ptij,令11iit…+iiiikkt=i,则
iiiQ(2,1i…k,), 且 21…k=0 ……(1) 分别用,,,2QQE…1,kQ左乘以(1)两端,再由引理4得:iiimQ,(1...2,1km;ti,...,1),由此有
.0......................................,0...,0...,0...
12121112222121221121kkkkkkKkKk
该线性方程组的系数矩阵为
11211211111kkkkkD
,D为范德蒙行列式,又由)...2,1(kii互异有0D.
根据克拉默法则就有0i,即11iit…+iiiikkt=0,再由iiri,...,1线性无关得:)...2,1(0...21kitttiiiik ,故kikrirr...,...,,...,1111线性无关.
推论1 属于不同特征值的特征向量是线性无关的. 定理1 QnnP与对角阵相似Q有n个特征向量,它们是线性无关的.
证明:Q可以对角化可逆矩阵21,(TTT,…,)nT使得