半导体器件物理简答题

合集下载

半导体物理试题及答案

半导体物理试题及答案

半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。

A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。

A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。

A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。

A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。

A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。

答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。

答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。

答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。

答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。

答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。

答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。

掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。

2. 描述PN结的工作原理。

答案:PN结是由P型半导体和N型半导体结合而成的结构。

在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。

由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。

半导体器件物理与工艺复习题(2024)

半导体器件物理与工艺复习题(2024)

半导体器件物理复习题其次章:1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。

物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低2)什么是半导体的干脆带隙和间接带隙?其价带顶部与导带最低处发生在相同动量处(p =0)。

因此,当电子从价带转换到导带时,不须要动量转换。

这类半导体称为干脆带隙半导体。

3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。

即热平衡状态下的载流子浓度不变。

5)费米分布函数表达式?物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。

6本征半导体价带中的空穴浓度:7)本征费米能级Ei :本征半导体的费米能级。

在什么条件下,本征Fermi 能级靠近禁带的中心:在室温下可以近似认为费米能级处于带隙中心8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 29) 简并半导体:当杂质浓度超过肯定数量后,费米能级进入了价带或导带的半导体。

10)非简并半导体载流子浓度:且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为:p 型半导体多子和少子的浓度分别为: 第三章:1)迁移率:是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大。

定义为:2)漂移电流: 载流子在热运动的同时,由于电场作用而产生的沿电场力方向的定向运动称作漂移运动。

半导体物理学简答题及答案知识讲解

半导体物理学简答题及答案知识讲解

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。

半导体物理学简答题及答案.docx

半导体物理学简答题及答案.docx

复习思考题与自测题第一章1. 原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层, 和孤立原子一样 ; 然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入 " 有效质量 " 的概念 , 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说 , 对应于高能级的能带较宽 , 而禁带较窄 , 是否如此,为什么答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:" 有效质量愈大 , 能量密度也愈大 , 因而能带愈窄 .是否如此,为什么答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1( k)随 k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

半导体物理试题库及答案

半导体物理试题库及答案

半导体物理试题库及答案一、单项选择题(每题2分,共20分)1. 在半导体中,电子从价带跃迁到导带所需能量的最小值称为:A. 禁带宽度B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 下列哪种半导体材料的禁带宽度大于硅?A. 锗B. 砷化镓C. 硅D. 碳化硅答案:D3. PN结在正向偏置时,其导电性能主要取决于:A. 电子B. 空穴C. 杂质D. 复合答案:B4. 半导体器件中,二极管的导通电压通常为:A. 0.2VB. 0.7VC. 1.5VD. 3.3V答案:B5. 在半导体物理学中,霍尔效应可以用来测量:A. 载流子浓度B. 载流子迁移率C. 载流子类型D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响半导体的载流子浓度?(多选)A. 温度B. 光照C. 杂质浓度D. 材料类型答案:ABCD2. 半导体器件的能带结构包括:A. 价带B. 导带C. 禁带D. 费米能级答案:ABC3. 下列哪些是半导体材料的特性?(多选)A. 导电性介于导体和绝缘体之间B. 导电性随温度升高而增加C. 导电性随光照强度增加而增加D. 导电性随杂质浓度增加而增加答案:ABCD三、填空题(每空1分,共20分)1. 半导体材料的导电性可以通过掺杂来改变,其中掺入____类型的杂质可以增加载流子浓度。

答案:施主2. 在PN结中,当外加电压的方向与PN结内电场方向相反时,称为______偏置。

答案:反向3. 半导体材料的导电性随温度升高而______。

答案:增加4. 半导体器件的能带结构中,价带和导带之间的区域称为______。

答案:禁带5. 霍尔效应测量中,当载流子受到垂直于电流方向的磁场作用时,会在垂直于电流和磁场的方向上产生______。

答案:霍尔电压四、简答题(每题5分,共10分)1. 简述半导体材料的导电机制。

答案:半导体材料的导电机制主要涉及价带中的电子获得足够能量跃迁到导带,从而成为自由电子,同时在价带中留下空穴。

现代半导体器件物理复习题

现代半导体器件物理复习题

如对您有帮助,欢迎下载支持,谢谢!半导体器件物理复习题1.简述 Schrodinger 波动方程的物理意义及求解边界条件。

2.简述隧道效应的基本原理。

3.什么是半导体的直接带隙和间接带隙。

4.什么是 Fermi-Dirac 概率函数和 Fermi 能级,写出 n(E) 、p(E)与态密度和 Fermi 概率函数的关系。

5.什么是本征 Ferm 能级?在什么条件下,本征 Ferm 能级处于中间能带上。

6.简述硅半导体中电子漂移速度与外加电场的关系。

7.简述 Hall 效应基本原理。

解释为什么 Hall 电压极性跟半导体类型(N 型或 P 型) 有关。

8.定性解释低注入下的剩余载流子寿命。

9.一个剩余电子和空穴脉冲在外加电场下会如何运动,为什么?10.当半导体中一种类型的剩余载流子浓度突然产生时,半导体内的净电荷密度如何变化?为什么?11.什么是内建电势?它是如何保持热平衡的?12.解释 p-n 结内空间电荷区的形成机理及空间电荷区宽度与外施电压的关系。

13.什么是突变结和线性剃度结。

14.分别写出 p-n 结内剩余少子在正偏和反偏下的边界条件。

15.简述扩散电容的物理机理。

16.叙述产生电流和复合电流产生的物理机制。

17.什么理想肖特基势垒?用能带图说明肖特基势垒降低效应。

18.画出隧道结的能带图。

说明为什么是欧姆接触。

19.描述npn 三极管在前向有源模式偏置下的载流子输运过程。

20.描述双极晶体管在饱和与截止之间开关时的响应情况。

21.画出一个 n-型衬底的 MOS 电容在积聚、耗尽和反型模式下的能带图。

22.什么是平带电压和阈值电压23.简要说明 p-沟道器件的增强和耗尽型模式。

24.概述 MESFET 的工作原理。

25.结合隧道二极管的 I-V 特性,简述其负微分电阻区的产生机理。

26.什么是短沟道效应?阐述短沟道效应产生的原因及减少短沟道效应的方法。

短沟道效应(shortchanneleffect):当金属 -氧化物-半导体场效应晶体管(MOSFET) 的沟道长度 L 缩短到可与源和漏耗尽层宽度之和 (WS WD)相比拟时,器件将发生偏离长沟道(也即 L 远大于WS WD)的行为,这种因沟道长度缩短而发生的对器件特性的影响,通常称为短沟道效应。

半导体物理学简答题及答案(精)

半导体物理学简答题及答案(精)

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子那么参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比拟宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1〔k〕随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。

半导体物理学简答题及答案知识讲解

半导体物理学简答题及答案知识讲解

半导体物理学简答题及答案知识讲解第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简答题答案:1.空间电荷区是怎样形成的。

画出零偏与反偏状态下pn结的能带图。

答:当p型半导体和n型半导体紧密结合时,在其交界面附近存在载流子的浓度梯度,它将引起p区空穴向n区扩散,n区电子向p区扩散。

因此在交界面附近,p区留下了不能移动的带负电的电离受主,n区留下了不能移动的带正电的电离施主,形成所谓空间电荷区。

PN结零偏时的能带图:PN结反偏时的能带图:2.为什么反偏状态下的pn结存在电容?为什么随着反偏电压的增加,势垒电容反而下降?答:①由于空间电荷区宽度是反偏电压的函数,其随反偏电压的增加而增加。

空间电荷区内的正电荷与负电荷在空间上又是分离的,当外加反偏电压时,空间电荷区内的正负电荷数会跟随其发生相应的变化,这样PN结就有了电容的充放电效应。

对于大的正向偏压,有大量载流子通过空间电荷区, 耗尽层近似不再成立,势垒电容效应不凸显。

所以,只有在反偏状态下的PN结存在电容。

②由于反偏电压越大,空间电荷区的宽度越大。

势垒电容相当于极板间距为耗尽层宽度的平板电容,电容的大小又与宽度成反比。

所以随着反偏电压的增加,势垒电容反而下降。

3.什么是单边突变结?为什么pn结低掺杂一侧的空间电荷区较宽?答:①对于一个半导体,当其P区的掺杂浓度远大于N区(即N d>>Na)时,我们称这种结为P+N;当其N区的掺杂浓度远大于N区(即Na >> N d)时,我们称这种结为N+P。

这两类特殊的结就是单边突变结。

②由于PN结空间电荷区内P区的受主离子所带负电荷量与N区的施主离子所带正电荷的量是相等的,而这两种带电离子是不能自由移动的。

所以,对于空间电荷区内的低掺杂一侧,其带电离子的浓度相对较低,为了与高掺杂一侧的带电离子的数量进行匹配,只有增加低掺杂一侧的宽度。

因此,PN结低掺杂一侧的空间电荷区较宽。

4.对于突变p+-n结,分别示意地画出其中的电场分布曲线和能带图:答:①热平衡状态时:突变p+-n结的电场分布曲线:突变p+-n结的能带图:注:画的时候把两条虚线对齐。

5.画出正偏时pn结的稳态少子浓度分布图。

答:6.画出正偏pn结二极管电子和空穴电流图。

答:7.解释pn结二极管扩散电容形成的机制;解释产生电流和复合电流的形成机制。

答:①在扩散区中存在有等量的非平衡电子和空穴的电荷,在直流电压下的少子浓度会随其中的交流成分的改变而改变。

随着外加电压的变化,由于少子浓度变化而形成的少子电荷存储量的变化△Q不断地被交替充电与放电,从而表现为电容效应,少子电荷存储量的变化与电压变化量的比值即为扩散电容。

②反偏产生电流的形成机制:反偏电压下,空间电荷区产生了新的电子—空穴对,由于反偏空间电荷区的电子浓度与空穴浓度为零,这些新产生的电子—空穴对会重新建立新的热平衡。

电子—空穴对一经产生,就会被电场扫出空间电荷区。

这些被扫出电荷流动产生的电流即为反偏产生电流。

正偏复合电流的形成机制:当PN结外加正偏电压时,电子与空穴会穿过空间电荷区注入到相应的区域,电子与空穴在穿越空间电荷区时有可能会发生复合,这部分复合的电子与空穴的相对运动形成的电流即为复合电流。

8.什么是存储时间?答:P区与N区均存在过剩载流子。

空间电荷区边缘的过剩载流子由正偏PN结电压维持。

当外加电压由正偏变为反偏时,空间电荷区边缘处的少子浓度就不能再维持,于是就会慢慢衰减,如下图所示。

空间电荷区边缘少子浓度达到热平衡值时所经历的时间ts即为存储时间。

存储时间内,反向电流大小是基本不变的。

9.为什么随着掺杂浓度的增大,击穿电压反而下降?答:随着掺杂浓度的增大,杂质原子之间彼此靠的很近而发生相互影响,分离能级就会扩展成微带,会使原来的导带底下移,造成禁带宽度变窄,不加外加电压时,能带的倾斜处隧道长度∆x变得更短,当∆x短到一定程度,当加微小电压时,就会使P区价带中的电子通过隧道效应穿过窄窄的禁带而到达N区导带,使得反向电流急剧增大而发生隧道击穿。

所以,掺杂浓度越大,禁带宽度越窄,也就越容易发生隧穿,击穿电压也就越小。

10.画出有偏压时理想金属半导体结的能带图,在图上标出肖特基势垒。

答:注:左边是N型金属半导体结能带图,右边是P型金属半导体能带图,肖特基势垒图中已标出。

11.比较肖特基二极管和pn结二极管正偏时的I-V特性。

答:1.I-V关系式形式相同,由于电流输运机制不同,肖特基二极管的电流要比pn结的大几个数量级。

2.相应的肖特基二极管的导通压降也比较低。

3.因为肖特基二极管是单极性器件,只有多子,少子很少,可认为无少子存储电荷,高频特性好,开关时间短,一般在ps数量级。

pn结开关时间在ns数量级。

12.什么是异质结?答:用两种不同材料组成的一个结叫做异质结,它可以按照不同的分类标准又分为由导电类型相同的两种不同材料所形成的同型异质结和由导电类型相反的两种不同材料所形成的反型异质结,以及突变异质结和缓变异质结。

13. 对于n+pn晶体管(基区宽度<<少数载流子扩散长度),分别示意画出其中各个区域中的少数载流子浓度的分布曲线:①正向放大工作状态;②截止状态;③临界饱和状态;注:该图C区的少子电子的浓度应维持在平衡浓度上,临界饱和的条件就是(Vbe>0,Vbc=0).④深饱和状态。

14共基极电流增益的三个限制因素(发射极注入效率系数、基区输运系数和复合系数)的定义和对共基极电流增益的影响。

答:发射极注入效率系数:考虑了发射区中的少子空穴扩散电流对电流增益的影响。

该电流是发射极的一部分,但它对晶体管的工作没有作用,因为J pE 不是集电极电流的一部分,它的存在会降低共基极电流的增益。

基区输运系数:考虑了基区过剩少子电子的复合作用的影响。

理想情况下,我们是希望基区中没有复合的,不过复合是不可避免的,所以复合的存在使基区输运系数小于1,也就降低了共基极电流的增益。

复合系数:考虑了正偏B-E 结中的复合的影响。

电流J R 对发射极电流有贡献,但对集电极电流没有贡献,所以它的存在也降低了共基极电流的增益。

15.什么是基区宽度调制效应?该效应的另一个称呼是什么?答:事实上,晶体管的基区宽度是B-C 结电压的函数,因为随着结电压的变化,B-C 结空间电荷区会扩展进基区。

随着B-C 结反偏电压的增加,B-C 结空间电荷区宽度增加,使得交流共基极电流增益: pE R nE nC E C J J J J J J ++=∂∂≡α基区宽度减小。

中性基区宽度的变化使得集电极电流发生变化,基区宽度的减小使得少子浓度梯度增加,这种效应称为基区宽度调制效应,又称厄尔利(Early)效应。

16.什么是大注入效应?答:我们确定少子分布时所用的双极传输方程默认采用了小注入。

但随着V BE的增加,注入的少子浓度开始接近,甚至变得比多子浓度还要大。

如果我们假定准电荷中性,那么p 型基区中在靠近发射区的那一侧由于过剩空穴的存在,多子空穴浓度将会增加。

此时发生大注入,促使晶体管发生两种效应①发射极注入效率降低( Webster效应);②集电极电流增大速率变慢。

这种效应就是大注入效应。

17.晶体管的截止频率是如何定义的?限制双极型晶体管的频率响应的延时因素有那些?答:①. α截止频率fα:共基极电流放大系数减小到低频值的1/√2 时所对应的频率.β截止频率f β:共发射极电流放大系数减小到低频值的1/√2 时所对应的频率.②.晶体管的频率参数与晶体管的载流子渡越时间有关,它包括电子从发射极到集电极的有效渡越时间、发射结充电时间、发射极扩散电容充电时间、集电结耗尽区渡越时间等。

18.大致绘出p沟道pnJFET的截面图,标明器件工作时的电压极性。

答:注:这是n沟道的,类似的p沟道可画出,并标明工作电压极性。

19.定性阐述n沟道耗尽型pnJFET的基本工作原理。

答:基本工作原理:如上图1,显示了一个当栅极零偏时的n沟道pnJFET。

如果源极接地,并在漏极上加一个小的正电压,这漏极产生一个漏电流I D。

n沟道实质上是个电阻,因此,对于小的VDS,ID与VDS的曲线接近于线性变化,如上图1所示。

当我们给pnJFET的栅极与源极之间加一个电压后,沟道电导系数就会发生变化,如上图2所示,当在栅极加一个负压时,栅极与沟道形成pn结反偏,其空间电荷区增宽,沟道宽度变窄,沟道电阻增加。

当反偏电压达到一定程度时,空间电荷区会将沟道完全填满,这种情况称为沟道夹断,此时漏电流几乎为零,因为耗尽层隔离了源端与漏端。

当栅电压为零,漏电压变化时,如上图,随着漏源电压的增大(正值),栅与沟道形成的pn结反偏,空间电荷区向沟道区扩展。

随着空间电荷区的扩展,有效沟道电阻增大。

此时沿沟道长度方向,沟道电阻随位置的不同而变化,而沟道电流是一个常数,所以沟道压降将随位置的不同发生相应的变化。

如果漏极电压进一步升高,沟道将在漏极处夹断。

漏电压继续增大,漏电流将保持不变,此时晶体管工作在饱和区,漏电流与V DS无关,将体现为栅压控制。

20.分别绘出工作在堆积、耗尽和反型模式下的n型衬底MOS电容的能带图。

答:堆积模式:耗尽模式:反型模式:21.为什么当反型层形成时MOS电容器的空间电荷区认为达到最大宽度?答:当反型层形成时,表面处的的少子浓度等于半导体体内多子的浓度,此时所加电压称为阈值电压。

如果栅压大于这个阈值,导带会轻微向费米能级弯曲,表面处导带的变化只是栅压的函数。

然而表面少子的浓度是表面势的指数函数。

表面势增加数伏特(KT/e),将使电子浓度以10的幂次方增加,但是空间电荷区的宽度的变换却非常微弱,这种情况下,空间电荷区已经达到了最大值。

22.绘出低频时n型衬底MOS电容器的C-V特性曲线。

当高频时曲线如何变化?答:低频时:高频时:23.定性阐述MOSFET的基本工作原理。

答:对于较小的VDS,当VGS<VT时,漏电流为零。

当VGS>VT时,反型层的厚度会定性的表明相对电荷密度,这时的相对电荷密度在沟道长度方向上为一常数,相应的特征曲线如左上角图所示。

随着漏电压的增大,漏端附近的反型层电荷密度也将减小,漏端的沟道电导减小,I D-V DS特性曲线的斜率也将减小,如右上角图所示。

当VDS增大到漏端的氧化层压降等于VT时,漏端的反型层电荷密度为零,此时漏端的电导为零,即I D-V DS特性曲线的斜率也为零,如左下角图所示。

当VDS继续增大,使其大于VDS(sat)时,沟道中的反型电荷为零的点移向源端。

这时,电子从源端进入沟道,通过沟道流向漏端。

在电荷为零的点处,电子被注入空间电荷区,并被电场扫向漏端。

如果假设沟道长度的变化△L相对于初始沟道长度L而言很小,那么VDS>VDS(sat)时漏电流为一常数,如右下角图所示。

24.衬底加偏置电压会对器件工作造成怎样的影响?答:当在衬底加偏置电压时,氧化层下面的空间电荷区宽度将从初始值X dT开始增加,对于n沟道MOSFET,当有V SB>0时,将会有更多的电荷与此区有关。

相关文档
最新文档