高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第五节 函数的图象)
高中数学函数知识点归纳

高中数学函数知识点归纳高中数学函数知识点归纳在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
那么,都有哪些知识点呢?下面是小编为大家收集的高中数学函数知识点归纳,希望能够帮助到大家。
高中数学函数知识点归纳 11.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A->B为从集合A到集合B的一个函数,记作y=f(x),x∈A2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。
掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
高中数学函数知识点归纳 2(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.二次函数

2.4 二次函数1.二次函数解析式的三种形式(1)一般式:f(x)=________ (a≠0);(2)顶点式:f(x)=________ (a≠0);(3)零点式:f(x)=________ (a≠0).2.二次函数的图象与性质二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是:(1)对称轴:x=________;(2)顶点坐标:________;(3)开口方向:a>0时,开口________,a<0时,开口________;(4)值域:a>0时,y∈________,a<0时,y∈________;(5)单调性:a>0时,f(x)在________上是减函数,在________上是增函数;a<0时,f(x)在错误!上是________,在错误!上是________.3.二次函数、二次方程、二次不等式三者之间的关系二次函数f(x)=ax2+bx+c (a≠0)的零点(图象与x轴交点的横坐标)是相应一元二次方程ax2+bx+c=0的________,也是一元二次不等式ax2+bx+c≥0(或ax2+bx+c≤0)解集的________.4.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的________或二次函数的________处取得,可分别求值再比较大小,最后确定最值.5.一元二次方程根的讨论(即二次函数零点的分布)设x1,x2是实系数一元二次方程ax2+bx+c=0(a>0)的两实根,则x1,x2的分布范围与系数之间的关系如表所示.根的分布(m<n<p 且m,n,p均为常图象满足的条件数)x1<x2<m① 错误!m<x1<x2② 错误!x1<m<x2③f(m)〈0。
m<x1<x2<n④ 错误!m<x1<n<x2<p⑤ 错误!m<x1=x2〈n⑥ 错误!只有一根在区间(m,n)内⑦ f(m)·f(n)〈0.自查自纠1.(1)ax2+bx+c(2)a(x-h)2+k(3)a(x-x1)(x-x2)2.(1)—错误!(2)错误!(3)向上向下(4)错误!错误!(5)错误!错误!增函数减函数3.根端点值4.端点顶点已知函数f(x)=x2-2x+3在区间上有最大值3,最小值2,则m的取值范围是( )A.C.(—∞,2]D.解:由题可知f(0)=3,f(1)=2,f(2)=3,结合图象可知1≤m≤2。
高中数学函数知识点总结

高中数学函数(hánshù)知识点总结高中数学函数(hánshù)知识点总结高中数学函数(hánshù)知识点总结〔1〕高中(gāozhōng)函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系(guān xì)时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
〔2〕一次函数:①假设两个变量不等于0〕的形式,那么称,间的关系式可以表示成是的一次函数。
②当=0时,称〔为常数,是的正比例函数。
〔3〕高中函数的一次函数的图象及性质①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
0,0,O,那么经2、3、4象限;当0时,那么经1、3、4象限;当0,0,0时,那么0时,③在一次函数中,当经1、2、4象限;当那么经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
〔4〕高中函数的二次函数:①一般式:(),对称轴是顶点是②顶点式:③交点式:;((),对称轴是),其中〔顶点是〕,〔;〕是抛物线与某轴的交点〔5〕高中函数的二次函数的性质①函数的图象关于直线对称。
②时,在对称轴〔〕左侧,值随值的增大而减少;在对称轴〔〕右侧;的值随值的增大而增大。
当时,取得最小值③时,在对称轴〔〕左侧,值随值的增大而增大;在对称轴〔〕右侧;的值随值的增大而减少。
当时,取得最大值9高中函数的图形的对称〔1〕轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
〔2〕中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
高考数学 专题二 函数的概念与基本初等函数 1 函数及其表示课件 理

12/10/2021
解析 (1)解法一(换元法):设t= x+1(t≥1),则x=(t-1)2, ∴f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1, ∴f(x)=x2-1(x≥1). 解法二(配凑法):∵x+2 x=( )2x +2 +1x -1=( +1)x2-1,∴f( +1)=x ( + x 1)2-1, ∴f(x)=x2-1(x≥1). (2)(待定系数法):设f(x)=ax+b(a≠0),则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+b+5a=2x+17,
如果按照某一个确定的对应关系f,使对于集 合A中的⑤ 任意一个元素x ,在集合B中都
有唯一确定的元素y与之对应
称f:A→B为从集合A到集合B的一个函数
称对应关系f:A→B为从集合A到集合B的一个映射
记法
y=f(x),x∈A
对应关系f:A→B
12/10/2021
2.函数的有关概念 (1)函数的定义域、值域: 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑥ 定义域 ,与 x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的 ⑦ 值域 . (2)函数的三要素:⑧ 定义域 、⑨ 值域 和⑩ 对应关系 . (3)相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这 两个函数相等. (4)函数的表示方法:表示函数的常用方法有 解析法 、 图象法 、
列表法 .
12/10/2021
考向突破
考向 求函数定义域
例 (1)(2017山西名校9月联考,5)设函数f(x)=lg(1-x),则函数f(f(x))的定
高中函数知识点归纳总结

高中函数知识点归纳总结一、函数的概念和性质1.1 函数的定义函数是一个数学概念,它是一种特殊的关系。
如果对于集合D中的每一个元素x,都有一个确定的元素y与之对应,那么这个对应关系就叫作函数。
其中,x是自变量,y是因变量。
1.2 函数的记法函数一般用f(x)表示,其中f是函数的名称,x是自变量。
1.3 函数的性质函数有很多性质,包括定义域、值域、奇偶性、周期性等。
1.3.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.3.2 奇偶性如果对于所有x∈D,都有f(-x) = f(x),那么函数f是偶函数;如果对于所有x∈D,都有f(-x) = -f(x),那么函数f是奇函数。
1.3.3 周期性如果存在一个正数T,使得对于所有x∈D,都有f(x+T) = f(x),那么函数f是周期函数,T 称为函数的周期。
1.4 函数的图象函数的图象是函数在平面直角坐标系中的图形,它显示了函数的变化规律。
1.5 函数的运算函数有四则运算、复合运算、反函数运算等。
二、基本函数2.1 一次函数一次函数的一般形式是f(x) = kx + b,其中k和b是常数,k≠0。
一次函数的图象是一条直线。
2.2 二次函数二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。
二次函数的图象是抛物线。
2.3 幂函数幂函数的一般形式是f(x) = x^n,其中n是常数。
2.4 指数函数指数函数的一般形式是f(x) = a^x,其中a是正数且不等于1。
2.5 对数函数对数函数的一般形式是f(x) = loga(x),其中a是正数且不等于1,x是正数。
2.6 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
2.7 反比例函数反比例函数的一般形式是f(x) = k/x,其中k是常数且不等于0。
三、函数的性质和应用3.1 函数的性质函数有很多性质,如单调性、极值、最值、奇偶性、周期性等。
高中数学知识点总结——函数_高三数学知识点总结

高中数学知识点总结——函数_高三数学知识点总结函数是高中数学中的一个重点知识点,涉及到的内容包括函数的定义、函数的性质、函数的图像、函数的求导、复合函数、反函数等。
下面为大家总结一下高中数学中与函数相关的重要知识点。
一、函数的基本概念1.定义:函数是一种数学关系,将自变量的每一个取值都对应一个唯一的因变量的取值。
2.记法:常用的记法有f(x)、y、φ(x)、g(t)等。
3.定义域和值域:对于函数f(x),定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
4.相等和相同的函数:当函数定义域相同时,若任意x值下f(x)和g(x)相等,则称f(x)和g(x)相等,在定义域和值域都相同的前提下,若在每个x值下f(x)和g(x)相等,则称f(x)和g(x)相同。
二、函数的性质1.奇偶性:对于定义在整个实数集上的函数f(x),若对任意x值都有f(-x)=-f(x),则称f(x)为奇函数;若对任意x值都有f(-x)=f(x),则称f(x)为偶函数;否则称为既不是奇函数也不是偶函数。
2.周期性:对于函数f(x),若存在一个正数T使得对于任意x值都有f(x+T)=f(x),则称f(x)是周期为T的周期函数。
3.单调性:设函数f(x)在区间I上有定义,若对于任意x1,x2∈I,当x1<x2时,有f(x1)<f(x2),则称f(x)在I上是单调递增的;若对于任意x1,x2∈I,当x1<x2时,有f(x1)>f(x2),则称f(x)在I上是单调递减的。
4.最值:若在一个有限区间上函数f(x)的值有上下界,且有至少一个点使得f(x)的值达到了上界或下界,则称上界和下界分别为函数f(x)在该区间上的最大值和最小值,该点称为函数的最值点。
5.奇偶性、周期性、单调性和最值的使用场景:在分析函数的图像时,通过对其奇偶性、周期性、单调性和最值的分析,可以快速得到函数的大致形状和特点。
三、函数的图像1.基本图像:y=x(一次函数)、y=x^2(二次函数)、y=x^3(三次函数)等。
高二数学函数与图像知识点

高二数学函数与图像知识点1. 函数的定义与性质函数是一种特殊的关系,每个自变量对应一个唯一的因变量。
函数可以用符号表示为f(x),其中x为自变量,f(x)为因变量。
函数有以下几个基本性质:1.1 定义域与值域定义域是自变量可能取值的范围,值域是因变量可能取值的范围。
1.2 奇偶性如果对任意x,有f(-x) = f(x),则函数为偶函数;如果对任意x,有f(-x) = -f(x),则函数为奇函数。
1.3 单调性如果对于定义域内的任意x₁和x₂,当x₁<x₂时,有f(x₁)<f(x₂),则函数为递增函数;如果对于定义域内的任意x₁和x₂,当x₁<x₂时,有f(x₁)>f(x₂),则函数为递减函数。
1.4 周期性如果存在正数T,使得对任意x,有f(x+T) = f(x),则函数具有周期性。
2. 常见函数的图像及性质2.1 一次函数一次函数的形式为f(x) = kx + b,在坐标系中表示为一条直线。
其中k为斜率,b为函数在y轴上的截距。
当斜率k大于0时,函数为递增函数;当斜率k小于0时,函数为递减函数。
2.2 二次函数二次函数的形式为f(x) = ax^2 + bx + c。
二次函数的图像为抛物线,开口的方向和抛物线的开口方向由二次项系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.3 幂函数幂函数的形式为f(x) = x^a。
幂函数在定义域的左侧和右侧的变化趋势不同。
当a>0时,幂函数为递增函数;当a<0时,幂函数为递减函数。
2.4 指数函数指数函数的形式为f(x) = a^x,其中a为常数且a>0且a≠1。
指数函数的图像为以点(0, 1)为底的指数曲线。
指数函数具有特殊的性质:当x取无限大时,指数函数趋于正无穷大;当x取无限小时,指数函数趋于0。
2.5 对数函数对数函数的形式为f(x) = logₐ(x),其中a为底数,且a>0且a≠1。
高中数学必修一第二章基本初等函数知识总结.docx

高中数学必修一第二章基本初等函数复习学案一、指数函数(-)指数与指数幕的运算1・根式的概念:一般地,如果= a,那么兀叫做Q的斤次方根,其中H >1,且nE N*.♦负数没有偶次方根;o的任何次方根都是o,记作Vo = 0o当〃是奇数时,历=a,当斤是偶数时,^=\a\=\a (6Z-0)[-a (a < 0)2. 分数指数幕正数的分数指数幕的意义,规定:m ____a n -> 0,m,n ^N ,n> 1) ,I ——(a > 0, m, ne N\n > 1)tt♦0的正分数指数幕等于0, 0的负分数指数幕没有意义3. 实数指数舉的运算性质r y f4-5,(1) a• a = a (a>0/,$ wR);(2) S Y = a" (tz>0,r,5G/?);(3) (")' =aS (a>0,r,s^R).《二)指数函数及其性质1、指数函数的概念:一般地,函数y = d'(G > 0,且d H 1)叫做指数函数,其中X是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>10<a<1<i 1・1• 0 [• •定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定函数图象都过定点(0, 1)点(0, 1〉注意:利用函数的单调性,结合图象还可以看出:<1)在[a, b]上,f(x) = a x(a>()Ma^l)值域是[f(a),f(b)]或[f(b),f(a)J ;(2) 若XH O,则f(x )Hl ; f(x)取遍所有正数当且仅当xwR ; (3) 对于指数函数f(x) = a 34(a >0且a 工1),总有f(1) = a :二、对数函数 (一〉对数1 .对数的概念:一般地,如果o' = N (Q > O,Q H 1),那么数尢叫做 些a 书唇N 的对数,记作:x = log f/ N ( a — 底数,N — 真数, log “ N —对数式〉说明:①注意底数的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 函数的图象一、基础知识1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f x 整体上加减.(2)对称变换①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)伸缩变换①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1a 纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax )的图象. ②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象. (4)翻折变换 ①y =f (x )的图象――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;②y =f (x )的图象――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.二、常用结论1.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称;(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x );(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.2.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称;(2)函数y =f (x )的图象关于(a,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a 2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称; (4)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )对称. 考点一 作函数的图象[典例] 作出下列函数的图象.(1)y =⎩⎪⎨⎪⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2; (3)y =x 2-2|x |-1.[解] (1)分段分别画出函数的图象,如图①所示.(2)y =2x+2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,其图象如图③所示.[变透练清]1.[变条件]若本例(2)变为y =⎝⎛⎭⎫12x -2,试作出其图象.解:y =⎝⎛⎭⎫12x -2的图象是由y =⎝⎛⎭⎫12x 的图象向右平移2个单位长度得到的,其图象如图 所示.2.[变条件]若本例(3)变为y =|x 2-2x -1|,试作出其图象.解:y =⎩⎨⎧x 2-2x -1,x ≥1+2或x ≤1-2,-x 2+2x +1,1-2<x <1+2,其图象如图所示.考点二 函数图象的识辨[例1] (2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )[解析] ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项;当x =1时,f (1)=e -1e >0,排除D 选项;又e>2,∴1e <12,∴e -1e >1,排除C 选项.故选B.[答案] B[例2] 已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )[解析] 法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.[答案] D [解题技法]1.函数图象与解析式之间的4种对应关系(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;(2)从函数的单调性,判断图象的升降变化趋势;(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y 轴对称,在对称的区间上单调性相反;(4)从函数的周期性,判断图象是否具有循环往复特点. 2.通过图象变换识别函数图象要掌握的两点(1)熟悉基本初等函数的图象(如指数函数、对数函数等函数的图象); (2)了解一些常见的变换形式,如平移变换、翻折变换. 3.借助动点探究函数图象解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象,也可以采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[题组训练]1.(2019•郑州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图象是( )解析:选D 法一:由题设得函数g (x )=-f (-x )=⎩⎪⎨⎪⎧-x 2,x ≤0,1x ,x >0,据此可画出该函数的图象,如题图选项D 中图象.故选D.法二:先画出函数f (x )的图象,如图1所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x ),即g (x )的图象,如图2所示.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )解析:选C 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.考点三 函数图象的应用考法(一) 研究函数的性质[典例] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)[解析] 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.[答案] C[解题技法] 利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.考法(二) 在不等式中的应用[典例] 若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2] B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].[答案] A [解题技法]当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合法求解.[题组训练]1.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -x x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数, 所以不等式f x-f -xx<0可化为f xx<0, 即xf (x )<0,f (x )的大致图象如图所示. 所以xf (x )<0的解集为(-1,0)∪(0,1).2.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R)的最小值是________.解析:函数f (x )=max{|x +1|,|x -2|}(x ∈R)的图象如图所示, 由图象可得,其最小值为32.答案:323.已知函数f (x )=⎩⎨⎧log 2⎝⎛⎭⎫-x2,x ≤-1,-13x 2+43x +23,x >-1,若f (x )在区间[m,4]上的值域为[-1,2],则实数m 的取值范围为________.解析:作出函数f (x )的图象,当x ≤-1时,函数f (x )=log 2⎝⎛⎭⎫-x2单调递减,且最小值为f (-1)=-1,则令log 2⎝⎛⎭⎫-x 2=2,解得x =-8;当x >-1时,函数f (x )=-13x 2+43x +23在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f (2)=2,又f (4)=23<2,f (-1)=-1,故所求实数m的取值范围为[-8,-1].答案:[-8,-1][课时跟踪检测]A级1.为了得到函数y=2x-2的图象,可以把函数y=2x的图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动1个单位长度C.向左平行移动2个单位长度D.向左平行移动1个单位长度解析:选B因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度,即可得到y=2(x-1)=2x-2的图象.2.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()解析:选C要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.3.(2018·浙江高考)函数y=2|x|sin 2x的图象可能是()解析:选D 由y =2|x |sin 2x 知函数的定义域为R , 令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x . ∵f (x )=-f (-x ),∴f (x )为奇函数. ∴f (x )的图象关于原点对称,故排除A 、B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z),∴当k =1时,x =π2,故排除C ,选D.4.下列函数y =f (x )图象中,满足f ⎝⎛⎭⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝⎛⎭⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A 、B.在C 中,f ⎝⎛⎭⎫14<f (0)=1,f (3)>f (0),即f ⎝⎛⎭⎫14<f (3),排除C ,选D.5.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( ) A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:选A 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D.6.已知函数y =f (x +1)的图象过点(3,2),则函数y =f (x )的图象关于x 轴的对称图形一定过点________.解析:因为函数y =f (x +1)的图象过点(3,2),所以函数y =f (x )的图象一定过点(4,2),所以函数y =f (x )的图象关于x 轴的对称图形一定过点(4,-2).答案:(4,-2)7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0), ∵图象过点(4,0), ∴0=a (4-2)2-1,∴a =14.故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >0. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >0 8.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图所示.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 答案:{x |-1<x ≤1} 9.画出下列函数的图象. (1)y =e ln x ; (2)y =|x -2|·(x +1).解:(1)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图象如图所示. (2)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=⎝⎛⎭⎫x -122-94; 当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝⎛⎭⎫x -122+94. 所以y =⎩⎨⎧⎝⎛⎭⎫x -122-94,x ≥2,-⎝⎛⎭⎫x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(其图象如图所示).10.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解:(1)函数f (x )的图象如图所示.(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].(3)由图象知当x =2时,f (x )min =f (2)=-1,当x =0时,f (x )max =f (0)=3.B 级1.若函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在 (-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈(0,1)时,由xf (x )>0得x ∈∅;当x ∈(1,3)时,由xf (x )>0得x ∈(1,3).故x ∈(-1,0)∪(1,3).2.(2019·山西四校联考)已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(1,2)D .(1,2) 解析:选C 作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示,作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2).3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称. (1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0). (2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x2. ∵g (x )在(0,2]上为减函数,∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).4.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于a x -1<34x -1. 令f (x )=a x -1,g (x )=34x -1, 当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2),即a 2-1≤34×2-1, 解得a ≤12,所以a 的取值范围是⎝⎛⎦⎤0,12.。