高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1
高中数学2.2.1对数的运算_换底公式素材新人教A版必修1-经典通用宝藏文档

《对数与对数运算------换底公式》一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修1第二章《基本初等函数(I)》中2.2.1节《对数与对数运算》的第三课时,次要内容是探求换底公式并会用其进行简单的证明和计算.在此之前,先生曾经学习过了对数的概念、指数与对数之间的关系,并且利用指数与对数的关系推导出了对数的运算性质,本节课就是在此基础上,探求讨论对数的换底公式.从指数与对数的关系出发,证明对数换底公式,有多种途径,在教学中要让先生去探求,对先生的正确证法要给予肯定;证明得到对数的换底公式以后,要引导先生利用换底公式得到一些常见的结果,并处理一些求值转化的成绩.教学的重点:对数的换底公式的运用.本节内容具有很强的灵活性,换底公式在以后的学习中有着非常重要的运用,对数的运算法则是在同底的基础上,就使得其有很强的局限性,因而利用对数换底公式把不同底数的对数转化为同底显得非常重要.特别是在解决理论成绩,计算具体的对数数值时,换底公式更是不可或缺.因而要反复训练,强化记忆.本节内容由两部分构成,其一探求对数的换底公式并对其进行证明,并在探求过程中学会研讨某些数学成绩的过程与方法;其二利用换底公式去进行具体的求值和运算.本节课内容是表现新课程让先生积极自主探求、合作交流学习方式的良好素材.本节课包含了丰富的数学思想及方法,特别是在探求换底公式的过程中,以特殊例子为引入,然后逐渐的普通化,表现了从特殊到普通和转化的数学思想.本节的实例,可以让先生领会数学知识在理论生活中的运用,从而向先生浸透学好数学、用好数学的思想,能让先生对数学知识的学习产生浓厚的兴味.也能给先生一些科普方面的教育.同时,本节课又教给先生如何利用计算器去算对数的方法,加强了本节课的适用性,也给了先生动手操作的机会.二、目标和目标解析(一)教学目标1.掌握对数的换底公式,并能利用换底公式解决对数成绩.2.在探求换底公式过程中,领会转化与化归和从特殊到普通的数学思想.3.培养先生运用已有知识发现成绩及解决成绩的能力,领会数学知识在理论生活中的运用,进步先生学习数学的热情.(二)教学目标解析1.掌握换底公式指的是:熟记换底公式,能够证明换底公式,并且要鼓励先生尝试不同的方法去证明,拓展思想;对数的换底公式是进行对数运算的重要基础,这里要求先生能够利用它将对数转化为常用对数或自然对数来计算.2.领会数学思想指的是:经过成绩1、成绩2和成绩3的逐渐的推进和普通化,领会数学从特殊到普通的解决成绩的数学思想方法,同时,利用指数对数的转化或者标题中底数的化归分歧等,加深对转化和化归的理解.3.对于具体的求值成绩,可以运用不同的性质来解决,非常灵活,但不困难,标题做起来非常风趣;经过这部分内容,培养先生的数学能力,感受数学学科的特点.如例2是一道跟历史、科普知识有关的标题,而且还要用到计算器,这些都将吸引先生,并且激发先生学习数学的兴味.三、教学成绩诊断分析(一)成绩诊断分析(1)个别同学在求解时会存在无从下手的感觉,其根本缘由是先生对于利用指数与对数转化探求对数性质的过程理解不深化,教学中以小组合作探求式的学习方式来弥补这一不足.(2)在解决具体成绩时,先生不能选择适当的底数来运用换底公式.出现这一成绩的缘由是:先生对换底公式尚不太熟习,转化的能力也有待进步。
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1

2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2020浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 第1课时 对数课件 新人教A版必修1

知识点二 对数与指数的关系
思考
loga1(a>0,且a≠1)等于? 答案 设loga1=t,化为指数式at=1,则不难求得t=0,即 loga1=0.
答案
梳理
一般地,有对数与指数的关系: 若a>0,且a≠1,则ax=N⇔logaN= x .
对数恒等式:aloga N = N;logaax=x (a>0,且a≠1).
对数的性质: (1)1的对数为 零 ; (2)底的对数为 1 ; (3)零和负数 没有对数 .
题型探究
类型一 对数的概念
例1 在N=log(5-b)(b-2)中,实数b的取值范围是
A.b<2或b>5
B.2<b<5
C.4<b<5
D.2<b<5且b≠4
b-2>0, 解析 ∵5-b>0, ∴2<b<5 且 b≠4.
解答
反思与感悟
应用对数恒等式注意: (1)底数相同.
(2)当N>0时才成立,例如y=x与y=aloga x 并非相等函数.
跟踪训练5 设25 log5 (2x-1) =9,则x=__2__.
解析 ∵25 log5 (2x-1)=(52) log5 (2x-1)= (5log5 (2x-1) )2
解答
反思与感悟
本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问 题.logaN=0⇒N=1;logaN=1⇒N=a使用频繁,应在理解的基础上 牢记.
跟踪训练2 若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的 值为
A.9
B.8
C.7
D.6
解析 ∵log2(log3x)=0, ∴log3x=1. ∴x=3.同理y=4,z=2. ∴x+y+z=9.
高中数学 第二章基本初等函数(Ⅰ)2_2- 对数与对数运算课件新人教版必修

9 (2) 原式= log5(5×7) - 2(log57 - log53) + log57 - log5 5 =log55+log57-2log57+2log53+log57-2log53+log55= 2log55=2.
类型 3 换底公式的应用 [典例 3] (1)计算下列各式的值: ①(log43+log83)log32; ② log5 2×log79 3 1 log5 ×log7 4 3 .
第二章
基本初等函数(Ⅰ)
2.2 对数函数 2.2.1 对数与对数运算
[学习目标] 1.理解对数的概念,掌握对数的基本性 质(重点). 2.掌握指数式与对数式的互化,能应用对数 的定义和性质解方程(重点、难点).
[知识提炼· 梳理] 1.对数的概念 (1)定义:一般地,如果 ax=N(a>0,且 a≠1),那么 数 x 叫作以 a 为底 N 的对数,记作 x=logaN,其中 a 叫 作对数的底数,N 叫作真数.
x x
logaa 1 1 (3)对,log4a= = = . loga4 2loga2 2m 答案:(1)√ (2)× (3)√
2.若 a>0,a≠1,x>0,y>0,x>y,下列式子正确的 个数为( )
①logax·logay=loga(x+y); ②logax-logay=loga(x-y); x ③logay=logax÷logay; ④loga(xy)=logax·logay. A.0 B.1 C.2 D.3
2.对数的运算性质 如果 a>0,且 a≠1,M>0,N>0,那么: (1)loga(M· N)=logaM+logaN; M (2)loga N =logaM-logaN; (3)logaMn=nlogaM(n∈R).
高中数学第2章基本初等函数Ⅰ2.2.1对数与对数运算第1课时对数课件新人教A必修

知识点三 知识点四
对数与指数的关系 对数的基本性质
当a>0,且a≠1时,ax=N⇔x= logaN . (1) 负数 和 零 没有对数. (2)loga1= 0 (a>0,且a≠1). (3)logaa= 1 (a>0,且a≠1).
答案
思考 答 答
(1)lg 10,lg 100,lg 0.01,ln 1,ln e分别等于多少? lg 10=1,lg 100=2,lg 0.01=-2,ln 1=0,ln e=1. 由于对数式x=logaN中的a来自于指数式ax=N中的a,所以当规定了
第二章 2.2.1 对数与对数运算
第1课时 对
数
学习 目标
1.理解对数的概念,掌握对数的基本性质. 2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习
重点突破
自查自纠
知识梳理
自主学习
知识点一
对数的概念
一般地,如果ax=N (a>0,且a≠1) ,那么数x叫做以a为底N的对数,记
到对数就应想到它的指数形式,看到指数就应想到它的对数形式.
(1)对数运算时的常用性质:logaa=1,loga1=0.
(2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对
于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.
反思与感悟 解析答案
跟踪训练3
利用指数式、对数式的互化求下列各式中的x值.
故 x=(3 ) =3 =81.
4
解析答案
4 3 3
(3)log2(log5x)=0;
解 由log2(log5x)=0得log5x=20=1, 故x=51=5. (4)log3(lg x)=1. 解 由log3(lg x)=1得lg x=3, 应熟练进行指数与对数间的相互转化,在解题过程中,看 故x=103=1 000. 反思与感悟
高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13

log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.
高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数

〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2006浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。