理正软件计算土石坝渗流稳定

理正软件计算土石坝渗流稳定
理正软件计算土石坝渗流稳定

用理正软件计算土石坝渗流稳定的方法

1渗流计算

1在CAD中绘制土石坝横断面图,图中坝坡下的长垫层为基岩,图例中有两种基岩,根据情况有几种画几种,长度为1.5-2倍坝长,注意不能使用镜像。

绘制时要注意

并另存为DXF文件(最好存为最低版本即2000)

2进行渗流计算

打开理正岩土软件,选择渗流分析计算

在选工程中选择软件生成结论的存储位置

如上例,计算结论存在e盘考博文件中,确认后弹出下图直接点确认即可。

确认后点增,选择系统默认例题,点确认

然后自动弹出下图中对话框

然后点击左上角的“辅助功能”选择“读入DXF文件自动生成坡面、节点、土层数据”,弹出以下对话框

选择已画好的CAD图打开

打开后出现如下对话框,在图上双击后可放大图形,放大后可看到起始点编号(起始点在图中用红圈标出,及上游坝坡起始点)。坡面线段数及坝坡分为几段,无马道土石坝坡面线段数为3,图例中有9条。

弹出以下对话框,在坡面形状中填写正确的上下游水位

节点坐标一栏为理正自动生成坐标,不用修改

土层定义一栏如下图,图中不同土性区域数为软件自动生成软件同时为不同区域编号,双击图中土石坝图形放大图形可以看到编号(如下附图2)Kx,Ky为土层的x,y向的渗透系数,同一土层两数相等且等于土层渗透系数,对应区号输入渗透系数(渗透系数由地质资料中查找)α值若无资料则都为0计算即可。

附图2

面边界条件中,同样双击放大土石坝剖面图可以看到节点编号,顺时针输入计算所需要的坡面信息(即始末节点编号),面边界个数及浸润线可能经过的面,即上游所有水面线以下的坡面加上坝基上表面,下游所有坡面加坝基上表面,如图,蓝色为已知水面线,红色为可能的浸出面.

点边界描述项数为2,节点即上下游水面线与坝体的交点,若下游无水则为下游坝脚,取值为0。

计算参数栏为系统默认,不用修改

输出结果栏目中,需注意流量计算截面的点数一栏和理正边坡文件接口一栏。

流量计算截面的点数即下游截面所有点和基岩上表面所有点,如本例有5个,且须在右边一栏输入5个节点的坐标,坐标从第二栏节点坐标中查找。

理正边坡文件接口一栏一定不要忘记填入合理命名,如正常蓄水位、校核洪水位等,否则无法进行稳定计算。

点击计算后等待计算完成后自动弹出以下对话框,点击加等势线后再点确认,计算完成如下图

3、结果处理

渗流会生成以下文件

其中word文件中有渗流量,&SL-0001-SL-JG1到&SL-0001-SL-JG18图中,可以用到的是17

和18图,18图可以复制到报告中,方法如下:插入-对象-CAD图形

17图中有渗透坡降,找出最大值写入报告。

注意:

计算完一个水位后先不要关掉理正,对水位进行修改就可以进行新的计算,可以节约时间。

2 稳定计算

在理正软件主界面上选择“边坡稳定分析”

选择复杂土层计算

点增后选择系统默认例题-确认

辅助功能中,选择读入理正渗流软件的坡线、底层数据、浸润线、孔隙水压力场,然后找出渗流计算时储存的文件打开,如下图所示

弹出以下对话框,都点确认

弹出下面对话框,然后按下图进行填写如需考虑地震,则填入地震烈度,如果坝体为粘土则选择瑞典条分法,如为沙土则选择简化Bishop法

坡面为软件自动生成,不需改动

土层一栏中,与渗流相同,双击土石坝查看土层编号,需要填入的是右下栏中的重度即容重,饱和重度等于容重加1-3,粘聚力和内摩擦角根据地质资料查找,水下值减1-3.。水面与加筋均不需要改动点计算即可。

等待计算完成点结束

算完成后形成文件有

Word中有安全系数K,DXF文件中有最危险滑裂面图,可附入报告中。

然后将生成的文件另存到一个新建的文件夹中,如果不另存,将会被覆盖。以上是上游坝坡计算。

下游坝坡计算

上游计算完毕后软件如下图:

然后点算-辅助功能-镜像原始数据如下图

点击

再点辅助功能-读入数据文件,弹出以下对话框

单击

土石坝被镜像了如图所示

镜像后所有参数都不用再重新填直接点计算就可以,结论就是下游安全系数点结束即可,生成的文件与上游坝坡相同。

理正边坡稳定分析

第一章功能概述 边坡失稳破坏是岩土工程中常遇到的工程问题之一。造成的危害及治理费用均非常可观。因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。 该软件具有下列功能: ⑴本软件具有通用标准、堤防规范、碾压土石坝规范三种标准,以满足不同行业的要求; ⑵本软件提供三种地层分布模式(匀质地层、倾斜地层、复杂地层),可满足各种地层条件的要求; ⑶本软件可计算边坡的稳定安全系数、及剩余下滑力; ⑷本软件提供多种方式计算边坡的稳定安全系数; ⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。一般情况下,都可以得到最优解。但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快、又准; ⑹对于圆弧稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu 法。集三种方法于一体,用户可以根据不同的要求采用不同的方法。用户需要注意的是采用后两种方法计算时,有时不收敛,也是正常的。需要用户调整相关的参数再计算或用第一种方法; ⑺软件可同时考虑地震作用、外加荷载、及锚杆、锚索、土工布等对稳定的影响; ⑻特别是针对水利行业做了大量工作,除按水利的堤防、碾压土石坝规范外,还参照了海堤等规范;提供按不同工况—施工期、稳定渗流期、水位降落期计算堤坝的稳定性(具有总应力法及有效应力法); 详细的分析、考虑水的作用,包括堤坝内部的水(渗流水)及堤坝外部的水(静水压力)的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况。 ⑼具有图文并茂的交互界面、计算书。并有及时的提示指导、帮助用户使用软件。 本软件可应用于水利行业、公路行业、铁路行业和其它行业在岩土工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。

(2020年整理)渗流稳定计算.doc

赤峰市红山区城郊乡防洪工程 5.6稳定计算 5.6.1渗流及渗透稳定计算 1)渗流分析的目的 (1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。 (2)估算堤身、堤基的渗透量。 (3)求出局部渗流坡降,验算发生渗透变形的可能。 概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。 2)渗流分析计算的原则 (1)土堤渗流分析计算断面应具有代表性。 (2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。 3)渗流分析计算的内容 (1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。 (2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。 (3)设计洪水位降落时临水侧堤身内自由水位。 4)堤防渗流分析计算的水位组合 (1)临水侧为设计洪水位,背水侧为相应水位。 (2)临水侧为设计洪水位,背水侧无水。 (3)洪水降落时对临水侧堤坡稳定最不利情况。 5)渗透计算方法 堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算 计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式: T H L T H H D 88.0m k q q 11210 ++-+=)( (E.3.1) H m m b 121+-+=)(H H L (E2.1-3) 111 1 2m m H L += ? (E2.1-4) 当K≤k 0时 h 0=a+H 2=q÷? ???? ?+++??????++++?T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(1220222 22 +H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定 X=k·T '0q h y -+k ' 22 2q h y - ……………(E.3.2-6) 式中:q'= )(021112 0211 m 2m 2k h m H L h H -++-+02110 10m k h m H L h H T -+-(E.3.2-7) k ——堤身渗透系数; k 0——堤基渗透系数; H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m ); q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;

渗流分析 稳定计算 理正

理正软土地基堤坝设计软件 计算项目:简单软土地基堤坝设计 1 计算时间: 2014-08-17 10:01:01 星期日 ============================================================================ 原始条件: 计算目标: 只计算稳定 堤坝设计高度: 10.000(m) 堤坝设计顶宽: 4.000(m) 竣工后左侧工作水位高: 9.000(m) 竣工后右侧工作水位高: 0.000(m) 竣工后经过 2.000 个月注水到工作水位 堤坝左侧坡面线段数: 1 坡面线号水平投影(m) 竖直投影(m) 1 20.000 10.000 堤坝右侧坡面线段数: 1 坡面线号水平投影(m) 竖直投影(m) 1 20.000 10.000 工后沉降基准期结束时间: 2(月) 荷载施加级数: 1 序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算 1 0.000 6.000 10.000 否 堤坝土层数: 1 超载个数: 1 层号层厚度(m) 重度(kN/m3) 饱和重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 水下内聚力(kPa) 水下内摩擦角(度) 1 10.000 14.000 18.500 25.000 20.000 20.000 15.000 超载号定位距离(m) 分布宽度(m) 超载值(kPa) 沉降计算是否考虑稳定计算是否考虑 1 4.000 12.000 80.000 否是 地基土层数: 1 地下水埋深: 1.000(m) 层号土层厚度重度饱和重度地基承载力快剪C 快剪Φ 固结快剪竖向固结系水平固结系排水层 (m) (kN/m3) (kN/m3) (kPa) (kPa) (度) Φ(度) 数(cm2/s) 数(cm2/s)

渗流分析

1 渗流分析 a.坝体渗流安全评价 由于坝体浸润线观测管损坏,无法给大坝渗流分析提供准确的依据。目前,当库水位达到122.00m时,在下游坡高程104.80m附近可见明显的渗水现象。在桩号0+051~0+105之间高程115.10m~120.30m 段,以低液限粉土为主含风化砂的心墙填筑碾压质量差,压实度不够,结构较疏松,渗水较严重,渗透系数为4.27×10-5~3.15×10-4cm/s,渗透级别为弱~中等透水。 ⑴计算断面选取 桩号0+105断面坝高最大,选择该断面为典型断面进行坝体渗流分析,该断面为下游无水的有限透水地基上的粘土心墙砂壳坝(下游排水体失效)。 ⑵渗流参数采用 大坝土层渗流参数见表5.3-2。 表5.3-2 大坝土层渗流参数表 ⑶计算工况及计算方法 计算工况取水库正常蓄水位122.37m、50年一遇设计洪水位124.07m、1000年一遇校核洪水位124.94m、校核洪水位骤降至正常

蓄水位四种情况。该断面在四种工况下,下游均无水,排水体失效,地基为有限透水地基。采用理正岩土系列软件中的渗流分析计算程序进行坝体渗流计算。 ⑷计算成果及分析 大坝典型断面坝体渗流计算成果见表5.3-3。 从计算结果可以看出:在各种工况下,大坝下游坡出逸比降均大于允许出逸比降,渗漏量均较大,说明坝体渗流性态趋于不安全。 b.坝基渗流分析 坝体填筑前曾进行过清基,在心墙底部开挖有截渗槽与粘土心墙连接,其间无软弱夹层与废碴,并在上游侧坝基表层铺筑有粘土铺盖。经现场勘探及查阅以往资料发现,坝基粘土铺盖的土料稍差,含风化砂,经钻孔注水试验,渗透系数为2.64×10-6~2.31×10-5cm/s,渗透级别为微~弱透水。坝基表层为强风化片岩,裂隙较发育,往下渐变为中风化片岩,岩石较为新鲜完整。经钻孔压水试验,强风化片岩透水率4

第七章渗流分析

6.6.1渗流分析说明 渗流分析的目的在于:①土中饱和程度不同,土料的抗剪强度等力学特性也相应地发生变化,渗流分析将为土石坝中各部分土的饱水状态的划分提供依据;②检验坝的初选形式与尺寸,确定渗流力以核算坝坡稳定; ③进行坝体防渗布置与土料配置,根据坝内的渗流参数与逸出坡降,检验土体的渗流稳定,防止发生管涌和流土,在此基础上确定坝体及坝基中防渗体的尺寸和排水设施;④确定通过坝和河岸的渗水量损失,并计算排水系统的容量。 依据《碾压土石坝设计规范》(SL274-2001)中8.1.2,渗流计算应包括以下水位组合情况: ①上游正常蓄水位与下游相应的最低水位; ②上游设计洪水位与下游相应的水位; ③上游校核洪水位与下游相应的水位; ④库水位降落时上游坝坡稳定最不利的情况; 6.6.2渗流分析计算 积石峡库区周边均为不透水岩层,封闭条件良好,因此渗流分析计算模型为不透水地基均质坝。对均质坝在不透水地基上,有排水设备的情况,不考虑均质坝上游坝壳料部分对渗流的影响。对棱体排水,浸润线逸出部 分如图所示。

单宽渗流量和均质坝下游坡渗流水深h 可由下面两式联立解除: 22120[()]2' H H h q k L -+= 0'h L = 式中 k ——坝体的渗透系数,cm/s ,其中 k =0.45x 10-6cm/s ; H 1——坝前水深,m ; H 2——坝后水深,m ; H 0——棱体前水深,m ; L ‘——透水区域,m 。 1.正常蓄水位时的渗流分析 上游水位为1856m ,下游相应水位假设为1791m,则上游水深 1 H =1856-1782=74m,下游水深 2 H =1791-1782=11m. 111 2.5 7430.831212 2.5 m L H m m = =?=++? (1865.071856) 2.513(1865.071798)L =-?++- 2.5(17981791)1196.35m ?- -?= '42.59169.59227.18L L L m =+=+= 代入式0' h L = h 0=14.85m ,代入式22120[()]2'H H h q k L -+=,k=0.45x10-6cm/s 渗流量为: q =5.1x10-8m 3 /s,带入浸润线方程: y =将渗流曲线坐标值列入下表中 表6.6.2-1正常蓄水位渗流曲线坐标值

理正渗流分析软件

第一章 功能概述 渗流分析计算软件主要分析土体中的渗流问题。适用于勘察、设计等单位进行土堤、土坝的渗流分析、闸坝地基的渗流分析、堤防的渗流分析、基坑降水的流场分析等。并可以将流场的数据传递到稳定分析软件,以便分析考虑流场的稳定问题。 ⑴ 渗流的分析方法:公式方法和有限元方法。 ⑵ 公式方法依据《堤防工程设计规范》提供的计算公式。适用于下列情况: 一般稳定渗流计算; 双层地基稳定渗流计算; 水位上升过程中不稳定渗流计算; 水位降落过程中不稳定渗流计算。 ⑶ 有限元方法是依据非饱和土理论、根据基本的渗流理论――达西定律等,采用有限元方法分析稳定流及非稳定流中多种边界条件、多种材料的堤坝、或土体的渗流分析。但有限元法分析渗流问题是以线性达西定律为基础,因此不适应非线性达西定律的流场分析及不满足达西定律的流场分析。

第二章 快速操作指南 2.1 操作流程 图2.1-1 操作流程 2.2 快速操作指南 2.2.1 选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。 2.2.2 计算项目选择

选择渗流计算所采用的方法(有限元分析法与公式法): 图2.2-2 计算项目选择 2.2.3 增加计算项目 点击【工程操作】菜单中的【增加项目】菜单或“增”按钮来新增一个计算项目。 图2.2-3 增加计算项目界面 2.2.4 编辑原始数据 录入或选择渗流分析所需的各种原始数据,有限元法和公式法交互窗口分别如图2.2-4和2.2-5。

图2.2-4 有限元数据交互对话框 图2.2-5 公式法数据交互对话框 注意: 1. 集中的参数交互界面,即把几乎所有的参数置于一个界面上,操作简单,大大提高了人机交互的效率,这是理正岩土系列软件的一个共性特征。 2. 同时提供了有关参数的即时弹跳说明信息,方便用户理解参数的意义。 2.2.5 计算结果查询

理正软件使用手册

理正软件使用手册 一、渗流计算 1.打开Auto CAD 绘图软件,将断面图修正简化,或将所需分析的图形直接画 出,通过移动将黄海高程系调整到和绘图的纵坐标一致,并将图形放在原点附近,绘图时以米为单位,线与线之间要连接精确,确保各分区为封闭单元。 图形画完后以DXF文件保存在工作路径文件夹下。 2.打开理正岩土计算——渗流分析计算——渗流问题有限元法——在界面选择 “增”工具栏——系统默认例题——辅助功能——读入DXF文件自动形成坡面、节点和图层数据。 3.通过移动、放大图形界面找到左下坡脚的节点编号输入坡面起始节点号,坡 面数为从迎水面坡脚到背水面坡脚之间的线段数。点击确定,首先粗略的查看所显示的图形和数据是否基本正确,主要查看闭合区域的个数和线段、节点的个数。 4.若为稳定流分析,输入第一上游水位和下游水位,第二上游水位和下游水位 取-1000。若为非稳定流分析要输入上游第二水位数据。(这个只是图形显示需要,除了流态其它参数对计算完全不起任何影响,) 5.进入面边界条件界面,输入左边边界条件和右边的边界条件,包括已知水头, 可能的浸出面。在非稳定流分析中会有第一项水头随时间变化曲线工具栏,点击它并输入上游水位变化曲线。此时要保证图形界面显示的图形正确;输

入点边界条件,上下游必须要存在边界条件,可以是面边界条件,也可以是点边界条件。 6.输入土层参数,注意渗透系数单位。 7.在输出结果里的理正边坡分析接口文件输入文件名。若为非稳定流分析还需 输入渗流分析的第几步,此时所保存的数据即为此步渗流场的计算数据,这些数据用于边坡稳定分析中计算水位降落期的最小安全系数。文件自动保存工作路径下。 8.在计算参数界面中输入参数,对非稳定渗流取填入时间分段数,初始渗流的 稳定方法一般取稳定渗流的计算方法。 9.点击计算,在主界面图形查询——显示简图为DXF文件,将显示的图形保存, 修改后,供打印使用。 10.若显示计算失败,可在计算参数界面中将有限元网格剖分长度减小,或者将 判断误差增大。或将最大迭代次数减少(不推荐)。 二边坡稳定分析 11.打开理正边坡分析软件——边坡稳定分析——复杂土层稳定计算——“增” 工具条——系统默认例题——辅助功能——读入理正渗流软件数据。 12.在参数选择中选择计算方法。 13.输入土层参数,根据实际情况选用特定剪切试验的试验指标,根据具体情况 选择有效应力法或总应力法,如有需要输入下游坝坡低水位,输入加筋材料。 14.计算,在主界面图形查询——显示简图为DXF文件,将显示的图形保存,修 改后供打印使用。 注意:因为滑坡之计算左边的边坡,如果要计算右边坡,要在辅助功能里镜像原始数据,选文件名保存,然后读入此文件计算即可。

渗流稳定计算

赤峰市红山区城郊乡防洪工程 稳定计算 渗流及渗透稳定计算 1)渗流分析的目的 (1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。 (2)估算堤身、堤基的渗透量。 (3)求出局部渗流坡降,验算发生渗透变形的可能。 概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。 2)渗流分析计算的原则 (1)土堤渗流分析计算断面应具有代表性。 (2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第条及本规范附录E的有关规定执行。 3)渗流分析计算的内容 (1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。 (2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。 (3)设计洪水位降落时临水侧堤身内自由水位。 4)堤防渗流分析计算的水位组合 (1)临水侧为设计洪水位,背水侧为相应水位。 (2)临水侧为设计洪水位,背水侧无水。 (3)洪水降落时对临水侧堤坡稳定最不利情况。

5)渗透计算方法 堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。 6)土堤渗流分析计算 计算锡泊河左岸(0-468)横断面,堤高米(P=2%),半支箭左岸(0+)横断面,堤高米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式: T H L T H H D 88.0m k q q 11210++-+=)( () H m m b 121+-+=)(H H L () 1111 2m m H L +=? () 当K≤k 0时 h 0=a+H 2=q÷? ?????+++??????++++?T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(122022222+H 2 ……………() 对于各种情况下坝体浸润线均可按下式确定 X=k·T '0q h y -+k '22 02q h y - ……………() 式中:q'= )(021112 0211m 2m 2k h m H L h H -++-+0211010m k h m H L h H T -+-() k ——堤身渗透系数; k 0——堤基渗透系数;

渗流分析

大坝的渗流与防渗 摘要:本文概述了渗流的形成、渗流的危害、渗流计算原理以及在水利工程施工中进行渗流控制常用的工程措施,总结目前渗流和防渗的研究成果,认为渗流或多或少的会存在于各种挡水、蓄水建筑以及土木工程施工中,无法避免渗流发生。但是随着研究手段、工艺的不断进步,对渗流研究程度不断深入,已能够对不同工程环境下渗流进行定性和定量的分析,并相应采取合适的措施控制渗流,虽然无法避免也掌控之,也能将渗流控制在工程安全的范围之内。 关键字:渗流防渗渗流原理 渗流和渗透控制是水利工程中的一项非常重要的课题,直接关系到工程的安全和投资。许多水工建筑物的失事都与渗流有关,例如1964年鲍德温山(Baldwin Hills)坝由于铺盖与基础接触面产生渗透破坏而失事,1976年堤堂(Teton)坝由于右岸一个窄断层发生渗透破坏,不到6h就发生了跨坝事故。 1 渗流概述 水在土体孔隙中流动的现象称为渗流。水在土中的存在状态有,气态水、附着水、薄膜水、毛细水和重力水,其中重力水是渗流理论研究的对象 [1]。在水利工程中,常见到的渗流类型主要 有四个方面: ①通过挡水建筑物的渗流。目前已经建 成的水工建筑物和许多挡水建筑物,如大坝、 围堰等,广泛采用有一定透水性的材料(如 土、堆石)筑成,因此水可以通过建筑物中 的孔隙流动,形成了渗流。 ②水工建筑物地基中的渗流。若挡水建筑物的地基是 透水的,如土砂砾石、岩石地基等,都会不同程度的产生 渗水。 ③集水建筑物的渗流。在土壤改造 及建筑物施工中,为了降低地下水位, 常常采用集水井或集水廊道,集中地下 水,并将其排走,以降低地下水 位,防止土壤盐碱化和创造施工 条件。 ④水库及河渠的渗流。水库

毕业设计_堆石坝渗流分析数值模拟GEOstudio

坝体计算分析 渗流分析 模型建立和参数取值 坝顶的结构有所简化,防浪墙相对坝体的较小,为了避免由于划分单元格的缘故,而出现计算结果的不合理,将其简化,把坝顶高度提升到防浪墙相应高程。这样的简化将不会对渗透计算造成影响。上下游的护坡材料,由于渗透性很大,且厚度较小,也做简化处理。对于坝基,上部为灰岩,下部为泥岩,属相对不透水层,为准确模拟坝址处实际渗流情况,将坝基分别向上下游延伸约45m,坝基深到400m高程处。河床底高程418m,开挖到弱风化层高程为417m,修建大坝后,上下游需回填至原地面高程,为简化模型,回填部分在渗流模块中略去。 材料的渗透系数为渗流分析的关键性参数,参考相关文献获得个材料的渗透系数,材料参数取值表5-1。在模型中材料定义时,由于基岩始终处于饱和状态,采用饱和渗透率即可。其余四种材料渗透特性使用饱和非饱和材料模型,输入渗透函数,渗透函数末端为估计值。对于材料渗透性的各向异性,规范建议计算渗流量时采用土层渗透系数的大值平均,计算水位降落时的水位线采用小值平均。由于使用有限元软件计算方便,渗透系数的各向异性可以设置,能够准确计算。对于坝壳料和过渡区考虑分层填筑的缘故,和各施工层面接触不良好的影响,结合经验取值0.2。 表5-1材料渗透参数(单位:cm/s) 分析方式为稳态分析,包含以下三种工况:上游正常蓄水位对应的下游相应最低水位、上游设计洪水位对应的下游相应水位、上游校核洪水位对应的下游水位。对于规范要求的库水位降落时的上游坝坡稳定最不利的情况,这是一个瞬态分析过程,由于掌握的用水资料不足同时时间紧迫,而没有计算这种情况。 有限元计算结果 正常蓄水位稳定渗流分析,图5-1为总水头等势线分布图,从图中可以看出,浸润线在沥青混凝土心墙部位快速降落到相对较低水位,浸润线到下游坝壳平稳过渡,在坡脚较低高程岀溢。经过沥青心墙后势能极大的减小,等势线整体分布

渗流计算实例

5 闸坝段基础渗流计算结果及分析 本次闸坝段基础渗流计算选取了7~8个典型剖面进行计算。图5为所选计算剖面,其设计的防渗布置方案及各地层覆盖层和基岩分布情况也示于图中。 对各坝段在上游水位为正常蓄水位1797m下游水位1774m运行工况进行了无防渗墙、防渗墙封闭至基岩(原防渗方案)、防渗墙插入砂质粉土层1m、防渗墙插入砂质粉土层 5m和防渗墙插入砂质粉土层10m等防渗方案的各剖面的渗流模拟计算,各方案的计算工况和内容列于下表2,其中,9-9剖面仅对防渗墙插入砂质粉土层10m和5m的防渗方案进行了的计算。 5.1 闸坝基础各防渗方案计算参数 覆盖层透水性:本阶段设计院对第②层漂(块)卵(碎)石进行了4段钻孔抽水试验,平均值渗透系数为7.26×10-2cm/s,属为强透水层;第②-1层泥质粉砂层进行了1段的抽水试验,渗透系数为 1.67×10-3cm/s,属中等透水层,第③层砂质粉土,室内试验渗透系数为2.66×10-7~6.74×10-5cm/s,属微透水~极微透水;第③-1层粉质粘土室内试验渗透系数为1.55×10-6~3.74×10-6cm/s,属微透水。 基岩透水性:据钻孔的压水试验资料,弱风化岩体以弱透水层为主,仅ZK18孔深51.5~66.5m为中等透水,透水率14.71~35.12,微风化岩体以微透水为主,局部为弱透水。下闸址区岩体相对隔水层(q≤5Lu)顶板埋藏较深,分别为:左岸为2.19~33.10m,相应高程为1799.37~1761.36m;右岸大于11.90m,相应高程在1834.50以下;河中为50.10~66.00m,相应高程为1726.21~1710.51m。 计算中该坝段基础覆盖层和基岩的渗透系数根据设计院试验建议值计算,其余均参照已建或已设计工程取值,渗流计算参数见表3,其中允许坡降为设计院提供。 表3 闸坝段渗流计算参数表

理正边坡稳定分析系统

理正边坡稳定分析系统 理正边坡稳定分析系统最初是针对铁路、公路路基设计而开发的专业设计软件,经半年多的推广应用已经得到行业内的认可,并于99年12月通过了铁道部的鉴定,证明是高效的计算机辅助设计软件。该软件同时引起其他行业,尤其是水利、港工等行业的关注,在使用中迫切希望补充完善相关内容。在此基础上开发的《理正边坡稳定分析系统》在内容和功能上都作了较大的调整和改进,发展成为面向各个行业,能够处理各种复杂情况的通用边坡稳定分析系统,并且于2002年通过水利部水规总院的鉴定。 功能特点 1、利用CAD快速建模 ?可在AutoCAD中快速绘制边坡模型,再读入边坡软件进行分析计算。 2、水的作用 ?选择“考虑”或“不考虑”水的作用。 ?可设置任意形式水面浸润线; ?自动施加静水压力;自动计算水浮力、渗透压力; ?可按《堤防工程设计规范》、《碾压土石坝设计规范》方法进行计算; ?可自动读取理正渗流软件原始数据及浸润线;镜像功能自动转换数据后,依次计算临水侧、背水侧的边坡稳定; 3、其他荷载的作用 ?施加水平垂直或任意方向的作用力,真实反应水压力及其他荷载的作用;自动计算地震荷载。 4、计算方法的选择 ?瑞典条分法; ?简化Bishop法; ?JanBu法。 5、计算公式及参数的选择 ?与滑动方向相反的土条切向力,可按抗滑力(分子项)或负的下滑力(分母项)考虑; ?选择“有效应力法” 或“总应力法”。 ?采用十字板剪切强度进行稳定计算。 6、滑动破裂面 ?直线、圆弧、折线和圆弧任意组合; ?水面、滑动面、土层层面与土条的交点,自动作为计算控制点。 7、计算剩余下滑力 ?自动搜索最危险滑动面形状; ?指定安全系数,反推C、ф参数值。 8、开放式专业设计模板 系统提供分不同土层情况的高路堤、陡坡路堤、路堑、浸水堤基等例题,并可由用户不断扩充。 9、三种土层模型 ?等厚土层--土层分界线互相平行(水平); ?不等厚土层--土层分界线倾斜; ?任意复杂土层--土层任意分布,处理断层、夹层、互层、透镜体等各种复杂情况。 10、加筋材料对稳定的贡献 ?锚杆 ?土工布 11、输入输出 ?操作简单直观,输入动态指示;

渗流计算内容

三、渗流计算内容 (一)不透水地基均质坝渗流分析 (1)下游有水而无排水或设贴坡排水情况 (2)下游设有褥垫排水的情况或下游设有棱体排水且下游无水的情况 (2)下游有堆石棱体排水且下游有水的情况 (二)不透水地基心墙坝渗流分析 计算时忽略上游坝壳段的水头损失,并将心墙简化为等厚的矩形断面,下游坝壳段与均质坝同样处理。 心墙简化为矩形,心墙段的单宽渗流量为: (1) 假定下游坝壳逸出点位于下游水位与堆石内坡的交点A ,则坝壳内单宽流量表达式为: (2) 由q= q1=q2,联立方程(1)和(2),可求出q 和h 。 下游坝壳的浸润线方程为: (三)有限深度透水地基土石坝渗流分析 计算有限深透水地基上土石坝的渗流时,为简化计算,坝体内渗流仍可用上述不透水地基上土石坝的渗流计算方法确定渗流量及浸润线,坝基渗流则按有压渗流计算。坝体渗流量与坝基渗流量之和即为总渗流量。 1、均质坝 假设坝体的单宽流量为q1,坝基的渗透系数为kT ,透水地基深度为T ,单宽流量为q ′,上下游水头分别为H1和t 。 由达西定理可得地基内单宽流量q ′: 将上式从上游面(x=0,y=H1)到下游面(x=L ,y=t )积分得: )2/()(2211δh H k q c -=L t h k q 2/222)(-=)2/(22q y h k x )(-=

L L可表 示为L= L0+0.88T,式中0.88T为考虑进出口流线弯曲的影响的修正系数。 则通过坝体与坝基的总单宽流量为: 2、心墙坝 ①地基上有混凝土防渗墙的心墙坝 设心墙、砼防渗墙、下游坝壳、透水地基的渗透系数分别为kc、kD、k、kT 。 通过防渗心墙和地基砼防渗墙的渗流量为: (1) 通过防渗心墙后的坝壳和地基防渗墙后的地基的渗流量为: (2) 由q=q1=q2,联立求解式(1)和(2)即可得q和h 。 ②地基上有截水槽的心墙坝,截水墙与心墙材料相同。 通过防渗心墙和地基截水墙的渗流量为: 通过防渗心墙后的坝壳和地基截水墙后的地基的渗流量与地基中有混凝土防渗墙的心墙坝相同。 3、带截水槽的斜墙坝 (四)总渗漏量计算 (五)抗渗稳定验算 (1)渗透变形的形式及其判别 (2)渗透破坏标准 (3)防止渗透变形措施

渗流分析

7 渗流稳定计算 7.1 渗流场分析 1、渗流计算 1.1计算依据、条件及计算断面 本次根据地勘资料和大坝的渗漏现象,采用北京理正软件设计研究所编著的《渗流分析软件》程序按二维有限元数值方法对大坝的渗流场进行计算。。根据试验测定并结合工程类比选用参数采用有限元计算.计算主要进行上游正常蓄水位与下游相应最低水位、库水位降落时上游坝坡稳定最不利的不同工况坝体的渗流稳定计算,为时家村水库大坝加固断面设计提供依据。 大坝为粘土心墙砂壳坝,坝顶宽度2.50米,现状坝顶高程210.00米,(黄海高程,下同)坝长80.00米,最大坝高12.00米,无裂缝,坝顶平均沉降0.15米;大坝上游坝坡1:1.63,下游坝坡成阶梯分布自上而下为:1:2.35、1:1.49、1:1.54,设2道戗台,宽1.50米。坝前库中有部分淤积,根据以上资料,计算断面可以简化为5个区域: ①前砼面板;②砂石料垫层;③坝体戈壁填筑;④坝基砂砾石;⑤基岩; 1.1.1计算断面及参数的选取 根据地质勘探大坝纵横剖面图中坝体及坝基的地质情况,渗流计算取大坝最大坝高断面作为典型断面进行渗流计算,该断面的渗流状况可较全面的反应大坝实际渗流状况。计算参数以本次地勘资料分析选用,土层的渗透系数根据现场坝体钻探取芯土质观察结合室内土工实验成果,大坝典型计算断面共11个区,详见图1,渗透系数取值见表1。

1.1.2计算工况 考虑到小⑵型水库流域面积小,属山区河流,洪水陡涨陡落,洪峰历时短,高水位时坝体不能形成稳定渗流,根据《小型水利水电碾压式土石坝设计导则》(SL189-96)规定,渗流计算选择以下水位组合情况: 1)上游正常蓄水位与下游相应的最低水位。 2)库水位由校核洪水位降至正常蓄水位时上游坝 坡稳定最不利的情况。 3)库水位由正常蓄水位降至死水位时上游坝坡稳 定最不利的情况。 时家村水库正常蓄水位为76.10m,校核洪水标准为 76 年一遇,校核洪水位为 77.31m,死水位60.10m,下游均无水。校核洪水位降至正常蓄水位需要0.75d,正常蓄水位降至死水位需要20d。 大坝断面渗流计算结果 m/天。占总库容的12%。 7.2 渗流稳定性分析 1、坝体的渗流稳定性分析 参用规范为:中华人民共和国行业标准SL189-96《小型水利水电工程碾压

理正岩土边坡稳定分析系统

理正岩土边坡稳定分析系统 ◆采用瑞典条分法、简化Bishop法、JanBu法进行圆弧破裂面稳定计算。 ◆采用摩根斯顿-普赖斯法、简化Bishop法、简化JianBu法进行折线破裂面稳定计算。 ◆自动搜索最危险滑动面,输出安全系数彩色云图;可完成直线破裂面稳定计算; ◆计算直线、圆弧组合滑动面的剩余下滑力; ◆考虑水浮力、渗透压力、地震力、任意方向的附加力; ◆提供三种土层模型。 关键词:多规范;多种算法;计算安全系数和剩余下滑力; 1、规范:《堤防工程设计规范GB50286-98》;《碾压式土石坝设计规范SDJ218-84》、 《碾压式土石坝设计规范SL274-2001》;《浙江省海塘工程技术规定》 ◆ 5.6版新增规范: 《水利水电工程边坡设计规范》《水电水利工程边坡设计规范》 《建筑边坡工程技术规范》《有色金属矿山排土场设计规范》 新增内容与规范对照: 《水利水电工程边坡设计规范》(SL386-2007) 参见规范15页,当滑动面呈圆弧形时,宜采用简化毕肖普法和摩根斯顿-普莱斯法,当滑面呈非圆弧时,宜采用摩根斯顿-普莱斯法和不平衡推力法进行抗滑稳定计算。 《水电水利工程边坡设计规范》(DL/T5353-2006) 简化毕肖普法(附录E.1.1)同水利水电2007圆弧法中的简化毕肖普法 摩根斯顿-普莱斯法同水利水电2007规范中的对应部分 不平衡推力法对应程序的“剩余下滑力计算”时,安全系数计算方法采用“降低抗剪强度” 《建筑边坡工程技术规范》(GB50330-2002) 圆弧滑动法——瑞典条分法平面滑动法——直线滑动法 折线滑动法——“剩余下滑力计算”时,安全系数计算方法采用“扩大自重下滑力” 《有色金属矿山排土场设计规范》(GB50421-2007) 完全同建筑边坡规范2002。 2、算法: 在进行边坡稳定分析时,破裂面形状可选择圆弧、直线、折线三种; ◆圆弧滑面对应的计算方法有:瑞典条分法、简化Bishop法、及Janbu法; ◆折线滑面对应方法有:简化Bishop法、简化Janbu法、摩根斯顿-普赖斯法等。 ◆ 5.6版新增新增“三点圆弧”指定滑面计算安全系数;

渗流分析

渗流分析

————————————————————————————————作者:————————————————————————————————日期: ?

大坝的渗流与防渗 摘要:本文概述了渗流的形成、渗流的危害、渗流计算原理以及在水利工程施工中进行渗流控制常用的工程措施,总结目前渗流和防渗的研究成果,认为渗流或多或少的会存在于各种挡水、蓄水建筑以及土木工程施工中,无法避免渗流发生。但是随着研究手段、工艺的不断进步,对渗流研究程度不断深入,已能够对不同工程环境下渗流进行定性和定量的分析,并相应采取合适的措施控制渗流,虽然无法避免也掌控之,也能将渗流控制在工程安全的范围之内。 关键字:渗流防渗渗流原理 渗流和渗透控制是水利工程中的一项非常重要的课题,直接关系到工程的安全和投资。许多水工建筑物的失事都与渗流有关,例如1964年鲍德温山(BaldwinHills)坝由于铺盖与基础接触面产生渗透破坏而失事,1976年堤堂(Teton)坝由于右岸一个窄断层发生渗透破坏,不到6h就发生了跨坝事故。1渗流概述 水在土体孔隙中流动的现象称为渗流。水在土中的存在状态有,气态水、附着水、薄膜水、毛细水和重力水,其中重力水是渗流理论研究的对象[1]。 在水利工程中,常见到的渗流类型主要有四 个方面: ①通过挡水建筑物的渗流。目前已经建 成的水工建筑物和许多挡水建筑物,如大坝、 围堰等,广泛采用有一定透水性的材料(如 土、堆石)筑成,因此水可以通过建筑物中的 孔隙流动, 形成了渗流。 ②水工建筑物地基中的渗流。若挡水建筑物的地基是 透水的,如土砂砾石、岩石地基等,都会不同程度的产生 渗水。 ③集水建筑物的渗流。在土壤改造 及建筑物施工中,为了降低地下水位, 常常采用集水井或集水廊道,集中地下 水,并将其排走,以降低地下水 位,防止土壤盐碱化和创造施工 条件。 ④水库及河渠的渗流。

VADOSE W 专业的综合渗流蒸发区分析和土壤表层分析软件

VADOSEW 专业的综合渗流蒸发区分析和土壤表层分析软件 ADOSE/W 分析外界环境中的水体通过地面和地下的非饱和土区域进入地下水体的有限元软件 VADOSE/W软件是一款革命性的软件,可以模拟环境变化、蒸发、地表水、渗流及地下水对某个区域的影响。 VADOSE/W软件是一种分析外界环境中的水体通过地面和地下的非饱和土区域进入地下水体的有限元软件。 VADOSE/W软件内包含了全面的模型公式,使用户可以对简单和复杂的环境状况和地下水渗流相结合的问题进行分析。比如,用户可以使用VADOSE/W软件对由于下雨而引起的地下水渗流问题进行简单的分析,也可以建立一种考虑了雪的融化、植物根部的蒸发、表面蒸发、流走、积聚、气体扩散等多种因素影响的 非常复杂的模型来进行分析。VADOSE/W软件可以应用于岩土工程、采矿、水文地质学、工业和民用工程项目的设计和分析中。 对非饱和土力学性能的理解对于,分析边坡稳定性、设计矿床或城市废弃设施的覆盖土层、农业或灌溉项 目中的地下水渗流等问题的研究都是非常重要的。地表的环境状况,如渗流、蒸发、蒸腾等对非饱和区域 和渗流区域内的土体性质有很大影响,这已经日益引起人们的关注和认识。事实上,“非饱和土力学行为受地表的水流通量状况的影响,远大于受非饱和土区域厚度的影响。”因此,如何确定环境状况对非饱和土区域的影响,就需要用VADOSE/W软件来进行建模分析了。

1.典型应用: VADOSE/W软件是一款革命性的软件,可以模拟环境变化、蒸发、地表水、渗流及地下水对某个区域的影响。应用VADOSE/W,可以对如下的二维热流边界条件问题进行分析: ?对单一或多层土体覆盖下的矿床和城市废弃物设施进行设计和监控。 ?在天然和人造边坡上用于稳定性分析的孔隙水压力分布状况,这样的孔隙水压力是由气候变化引起的。 ?由农业、灌溉项目或自然系统所决定的渗流、蒸发、蒸腾速度。 ?预测氧气或氡气在渗流区内的扩散和衰减问题。 ?设计和监测矿山、城市废弃物的单层或多层土壤问题; ?自然斜坡、路堤中气候对孔隙水压分布的影响,藉此,进一步分析其稳定度的变化; ?分析农业、灌溉项目中的蒸发、渗流及扩散相关的综合问题; ?预测氧气或氡气及污染物在渗流区的扩散问题。

相关文档
最新文档