非铂、低铂燃料电池催化剂的研究进展
质子交换膜燃料电池铂基电催化剂的电化学性能测试

质子交换膜燃料电池铂基电催化剂的电化学性能测试一、实验目的与内容1、了解质子交换膜燃料电池的工作原理和研究现状;2、掌握循环伏安法(CV)和旋转圆盘电极技术(RDE)评价质子交换膜燃料电池铂基电催化剂的电化学性能的基本原理和操作过程;3、掌握电化学中三电极体系的基本概念,学会利用CV法测定铂基电催化剂的电化学活性表面积(ESA);了解极限电流密度的概念,学会通过RDE技术研究铂基电催化剂的氧还原本征活性。
二、实验原理概述1、燃料电池技术进展及工作原理燃料电池(Fuel Cell)是一种在等温状态下直接将化学能转变成电能的电化学装置。
它不同于普通的二次电池,其工作过程是燃料和氧化剂分别在阳极和阴极上发生电化学反应,由电解质传导的离子和外电路的电子构成回路,从而将化学能直接转化成电能。
燃料电池作为一种高效、环境友好的发电装置,自1839年英国科学家William Grove首次发现氢气在铂黑电极上的电化学氧化现象以来,人们对它的研究已有100多年的历史,但除了用于航天领域外,并未受到广泛关注。
自上世纪90年代开始,随着化石能源的枯竭和环境的日益恶化,人们对燃料电池的研究热情也随之高涨,也取得了巨大的进步。
目前,全世界约有20多个国家已投入巨额经费用于燃料电池的研究开发,技术处于领先的国家为美国、日本和欧盟,其中美国把燃料电池列为国家发展的27个关键技术之一,《时代周刊》将燃料电池列为21世纪的高科技之首。
燃料电池之所以成为研究热点,主要是基于以下优点:(1) 能量转换效率高。
由于燃料电池反应过程中不涉及燃烧,不经过热机转换过程,因此其能量转换效率不受“卡诺循环”的限制,可高达60-80%。
(2) 环境友好。
由于燃料电池是按电化学原理发电,不经过燃烧过程,所以它几乎不排放NOx和SOx和颗粒物,减轻了对大气的污染。
而且燃料电池CO2排放量也比热机过程减少40%以上,这对缓解地球的温室效应有重大意义。
(3) 比能量或比功率高。
无机化学在能源领域的创新突破有哪些

无机化学在能源领域的创新突破有哪些能源问题一直是全球关注的焦点,随着社会的发展和科技的进步,对于高效、清洁、可持续能源的需求日益迫切。
无机化学作为化学的一个重要分支,在能源领域发挥着举足轻重的作用,为解决能源危机带来了一系列创新突破。
在新能源的开发方面,无机化学的贡献不容忽视。
以太阳能为例,无机化学材料在提高太阳能电池的效率和稳定性方面取得了显著进展。
传统的硅基太阳能电池虽然广泛应用,但由于成本较高和材料限制,其效率提升面临瓶颈。
而无机化学领域的新型半导体材料,如钙钛矿材料,为太阳能电池的发展带来了新的机遇。
钙钛矿材料具有优异的光电性能,其光电转换效率在短短几年内就从最初的几个百分点迅速提升到超过 20%。
此外,无机化学家们还通过对材料的结构设计和元素掺杂等手段,进一步优化钙钛矿太阳能电池的性能,提高其稳定性和耐久性,为实现大规模商业化应用奠定了基础。
除了太阳能,燃料电池也是能源领域的一个重要研究方向。
在燃料电池中,无机化学在催化剂的研发方面取得了关键突破。
例如,铂基催化剂是目前燃料电池中常用的催化剂,但铂的稀缺性和高昂的价格限制了燃料电池的广泛应用。
无机化学家们致力于寻找替代铂的催化剂,或者通过改进铂基催化剂的结构和组成来降低成本。
他们发现一些非贵金属,如铁、钴、镍等,在特定的化合物结构中表现出了较好的催化活性。
通过精确控制这些金属的配位环境和电子结构,能够有效地提高燃料电池的性能,降低成本,推动燃料电池技术的发展。
在能源存储方面,无机化学同样发挥着关键作用。
锂离子电池是当前最常见的储能设备之一,无机化学在提高锂离子电池的性能方面做出了重要贡献。
电池的正极材料是决定锂离子电池性能的关键因素之一,无机化学家们不断探索新型的正极材料,如三元材料(镍钴锰酸锂)和富锂锰基材料等。
这些材料具有更高的比容量和更好的循环性能,能够显著提高锂离子电池的能量密度和使用寿命。
同时,在电池的负极材料方面,硅基材料由于其超高的理论比容量而备受关注。
3铂碳催化剂

3铂碳催化剂引言:催化剂是一种可以加速化学反应的物质,它能够降低反应的活化能,提高反应速率。
在催化剂中,铂碳催化剂因其高效、稳定而备受研究者的青睐。
本文将介绍3铂碳催化剂的特点、合成方法以及应用领域。
1. 3铂碳催化剂的特点3铂碳催化剂是一种由铂、碳和其他辅助材料组成的复合催化剂。
其主要特点如下:1.1 高催化活性3铂碳催化剂具有较高的催化活性,能够在相对较低的温度下催化反应发生,提高反应速率。
这主要归功于铂的优良催化性能,铂在催化反应中起到了催化剂的关键作用。
1.2 良好的电化学性能3铂碳催化剂在电化学反应中表现出良好的性能,如催化氧还原反应(ORR)。
铂碳催化剂的高催化活性使其成为燃料电池中常用的催化剂。
同时,3铂碳催化剂还具有优异的耐久性和稳定性,能够在长时间使用过程中保持较高的催化活性。
1.3 丰富的材料组成3铂碳催化剂的组成可以根据具体需求进行调整。
除了铂和碳之外,还可以添加其他元素或材料,如金属氧化物、硫化物等。
这种丰富的组成使得3铂碳催化剂能够满足不同反应的需求,提高催化效果。
2. 3铂碳催化剂的合成方法常见的3铂碳催化剂合成方法主要包括化学还原法、溶胶凝胶法和电化学合成法。
2.1 化学还原法化学还原法是一种常用的3铂碳催化剂合成方法。
通常使用还原剂将铂盐还原成金属铂,然后与碳材料进行复合。
这种方法简单、成本较低,适用于大规模合成。
2.2 溶胶凝胶法溶胶凝胶法是一种通过溶胶和凝胶过程控制材料形成的方法。
在合成3铂碳催化剂时,可以通过溶胶凝胶法控制铂和碳材料的分散度和结构特征,以提高催化性能。
2.3 电化学合成法电化学合成法是一种利用电化学方法在电极表面沉积铂和碳材料的方法。
通过调节电位和电流密度,可以控制3铂碳催化剂的成分和形貌,进而调控催化性能。
3. 3铂碳催化剂的应用领域由于3铂碳催化剂具有高催化活性和良好的电化学性能,因此在许多领域具有广泛的应用前景。
3.1 燃料电池3铂碳催化剂是燃料电池中常用的催化剂之一。
18. 《新型能源材料的开发与应用》

18. 《新型能源材料的开发与应用》18、《新型能源材料的开发与应用》在当今社会,能源问题已经成为全球关注的焦点。
随着传统能源的日益枯竭和环境压力的不断增大,寻找和开发新型能源材料成为解决能源危机和环境问题的关键。
新型能源材料的出现不仅为能源的高效存储和转化提供了可能,也为可持续发展开辟了新的道路。
新型能源材料的种类繁多,包括但不限于太阳能电池材料、锂离子电池材料、燃料电池材料、超级电容器材料等。
这些材料在性能、效率、成本和环境友好性等方面都具有独特的优势。
太阳能作为一种取之不尽、用之不竭的清洁能源,其开发和利用一直备受关注。
太阳能电池材料是实现太阳能转化为电能的关键。
目前,主流的太阳能电池材料包括硅基材料、碲化镉、铜铟镓硒等。
硅基材料是最为成熟的太阳能电池材料,但由于其制备成本较高,限制了其大规模应用。
碲化镉和铜铟镓硒等薄膜太阳能电池材料具有制备工艺简单、成本低等优点,但也存在着一些问题,如镉元素的毒性和铟元素的稀缺性。
为了进一步提高太阳能电池的效率和降低成本,科学家们正在不断探索新型的太阳能电池材料,如钙钛矿太阳能电池材料。
钙钛矿材料具有优异的光电性能,其光电转换效率在短短几年内就从最初的 38%迅速提升到了 25%以上,展现出了巨大的应用潜力。
锂离子电池作为一种高效的储能设备,已经广泛应用于手机、笔记本电脑、电动汽车等领域。
锂离子电池的性能主要取决于电极材料。
常见的正极材料有钴酸锂、锰酸锂、磷酸铁锂和三元材料等。
钴酸锂具有较高的比容量和良好的循环性能,但钴资源稀缺且价格昂贵。
锰酸锂成本较低,但比容量和循环性能相对较差。
磷酸铁锂安全性高、寿命长,但比容量较低。
三元材料综合了钴酸锂、锰酸锂和镍酸锂的优点,具有较高的比容量和较好的循环性能,但成本相对较高。
负极材料主要有石墨、硅基材料和金属锂等。
石墨是目前应用最广泛的负极材料,但由于其比容量较低,难以满足高能量密度的需求。
硅基材料具有极高的比容量,但在充放电过程中会发生巨大的体积变化,导致电池性能下降。
质子交换膜燃料电池电催化材料研究综述

质子交换膜燃料电池电催化剂的研究综述[摘要] 概述了质子交换膜燃料电池(PEMFC)的工作原理及电催化剂的特殊性质,总结了近年来的相关研究资料,综述了质子交换膜燃料电池用催化剂在国内外研究现状及目前的研究热点。
归纳了近年来提高催化剂稳定性的改进方法,包括改变合金组成、选择高稳定性催化剂载体、制备新型催化剂材料;最后提出了该催化剂材料研究中存在的问题和今后的发展方向。
[关键词] PEMFC;催化剂;载体;性能衰减;稳定性1.引言随着全球能源的减少以及环境恶化的加剧,开发环保的新能源逐渐引起了人们的广泛关注。
燃料电池(FuelCell)因具有高效、环保、燃料来源广及可靠性高等优点成为各国研究的热点。
燃料电池是一种能直接将存储在燃料和氧化剂中的化学能转化为电能的电化学装置。
而其中的质子交换膜燃料电池(PEMFC)除了具备燃料电池一般的特点之外,还具有可室温快速启动、无电解液流失、无腐蚀、寿命长、比功率与比能量高、重量轻、体积小等突出特点[1]。
无论是PEMFC还是其它类型的燃料电池,其关键材料与部件都包括电极、电解质隔膜与双极板三部分。
电极是其核心组成部分,而电极性能是由电催化剂性能、电极材料与制作工艺来决定的。
其中,电催化剂的性能又决定着电流密度放电时的电池性能、运行寿命及成本等[2]。
所以,电催化剂的性能是关系到PEMFC能否真正走向商业化的重要因素,制备出性能优异、成本低、稳定性好的电催化剂将会有力促进PEMFC走向商业化,最终为发电技术开辟新的途径。
2 .质子交换膜燃料电池及其电催化材料质子交换膜燃料电池(PEMFC)也称固体聚合物电解质燃料电池。
以高分子聚合物为电解质,以Pt/C或Pt-Ru/C为电催化剂,以氢气或催化重整气为燃料,以空气或纯氧为氧化剂,以带有气体流动通道的石墨或表面改性金属板为双极板的一种燃料电池,低温燃料电池单体主要由四部分组成,即阳极、阴极、电解质和外电路,如图1所示。
硅氢加成反应用铂催化剂的研究进展_管雁

第21卷第2期化学研究中国科技核心期刊2010年3月CH EM ICA L R ESEA RCH hx y j@硅氢加成反应用铂催化剂的研究进展管雁1,2,吴清洲1,陈关喜1*,冯建跃1,莫卫民2(1.浙江大学分析测试中心,浙江杭州310027; 2.浙江工业大学化学工程与材料学院,浙江杭州310014)摘要:系统综述了铂催化剂体系研究的几个主要发展阶段及目前存在的问题;介绍了铂催化烯烃硅氢加成反应合成有机硅的机理.指出有机硅产品在我们的生活和生产中越来越重要,是不可或缺的化工材料;不饱和烃的硅氢加成反应是合成有机硅的重要途径之一,主要利用过渡金属作为催化剂进行加成.关键词:硅氢加成反应;铂;催化剂;反应机理;研究进展中图分类号:O643.3文献标识码:A文章编号:1008-1011(2010)02-0100-06 Research Progress of P-t Catalyst for HydrosilationGU AN Yan1,2,WU Qing-zhou1,CH EN Guan-x i1*,FENG Jian-y ue1,MO We-i min2(1.Center of A nalysis and Measurement,Zhej iang U niv ersity,H angz hou310027,Zhej iang,China;2.College of Chemic al Engineering and Material Science,Zhej iang University of Technology,H angz hou310014,Zhej iang,China)Abstract:A rev iew is provided of the r esearch pr ogress of Pt-catalyst fo r hydrosilation.Severalimportant developm ent stag es of Pt-cataly st system are sum marized,and the existing problemsin Pt-cataly st sy stem are discussed.M oreover,the mechanism of synthesizing or ganic siliconvia hy dro silatio n reactio n of alkene catalyzed w ith Pt-catalysts is intro duced.It is po inted outthat o rganic silicon pr oducts,as indispensable chemical raw m aterials,play a more and mo reimportant r ole in our daily life and production.A nd hydrosilation is one of the m ajo r ro utes tosy nthesizing o rganic silicon compounds,w ith w hich transition m etals are usually used as cata-lysts to pro mote additio n reactio ns.Keywords:hydrosilation;Pt;cataly st;reactio n mechanism;resear ch prog resses随着有机碳化学的发展,以及SiF4、SiCl4、SiH4的相继出现,极大地激发了人们对与碳处于同一主族的硅进行深入研究的兴趣,以期获得与碳化学相似的新型硅材料.于是,化学家们开始了探索纯硅化学以及硅-碳结合的化学.现在,有机硅化合物及由其制得的有机硅材料品种众多,性能优异,并已在工农业生产、新兴技术、国防军工、医疗卫生以及人们的日常生活中获得广泛的应用,有机硅产品业已成为化工新材料中发展最快的品种之一,是社会和人们发展生产和改善生活不可或缺的化工材料.1硅氢加成反应1.1碳官能有机硅烷及制备方法碳官能有机硅烷是一类硅原子上连接了含非水解性活性基团)))烃基的有机硅化合物,同时硅原子上还可连接有机基团及可水解基.它具有新的反应活力,并赋予产品优异的物理化学特性,特别是在改善两种收稿日期:2009-10-29.作者简介:管雁(1984-),女,硕士生,主要从事有机硅的合成与分析.*通信联系人,E-m ail:gu anx i@.第2期管雁等:硅氢加成反应用铂催化剂的研究进展101不同性能材料间的粘接,实现弹性偶联,从而有效提高制品的机械、电气及耐老化等性能方面具有特殊的意义.它们已成为连接有机与无机以及有机硅与非有机硅材料的桥梁.制备碳官能团有机硅的方法主要有[1]:(1)直接合成法:在加热及铜催化剂作用下,卤代烷烃直接与硅粉反应,一步得到有机硅.此方法适合工业化生产,但产物单一.(2)有机金属化合物法:含烃基的有机金属试剂,与含S-i X(X为卤素)键或Si-OR键的硅烷进行取代反应,使烃基与硅原子连结.此方法在产物中能引入特殊官能团,但由于要用到大量有机溶剂,不适合工业化生产.(3)热缩合法:含硅氢键的化合物,在高温(>450e)下可与烷烃,特别是与氯代烷烃发生脱H2或脱H Cl的缩合反应,使链烃基与硅原子连结.此反应简单,但要求的温度高,且只适合于某几个反应,应用狭隘.(4)硅氢加成法:含有硅氢键的有机硅化合物和不饱和烃在催化剂的作用下进行加成反应.其中硅氢加成反应是制备碳官能团有机硅单体和有机硅聚合物的重要手段,许多含官能团的有机硅单体和有机硅聚合物都是通过该反应合成的.与其他方法相比,硅氢加成可以合成的产物品种最丰富,且具有反应温和,易于控制,副反应少,产物纯净等优点,因此硅氢加成反应是有机硅化学中研究最多、应用最广的一类反应.六十多年来,碳-碳和碳-杂原子多重键的硅氢加成反应不仅在实验室得到广泛研究,还已经广泛应用于工业生产领域.1.2硅氢加成的催化剂对硅氢加成反应具有催化活性的物质多为Ø族金属的化合物或络合物,后来的一些研究表明,×族金属化合物和一些稀土金属化合物对硅氢加成反应也具有较好的催化活性,常用的金属有铂、钯、铑、钌、铜、铁、锰、镍、钴、钨、钼、锕系和镧系金属.自1947年Som mer等[2]发现硅氢加成反应以来,人们已对此反应特别是对过渡金属催化的硅氢加成反应进行了大量的研究,并取得了很大进展[3,4].但由于反应选择性不高,尤其是在一些体系中难以避免不饱和化合物的聚合反应发生,使得其应用受到许多限制,对此科学家围绕该反应展开了一系列研究.目前,在硅氢加成反应催化剂的研究中,铂催化剂是研究最全面、应用最广的一类催化剂.本文主要介绍铂催化剂的研究进展.2铂催化剂的研究进展2.1第一阶段:过渡金属催化剂的发现用铂等金属及其盐作为硅氢加成的催化剂在很多专利中提及,最早涉及此方面研究的是一篇法国专利[5],它称可以从元素周期表的IIIA、IVA、IB和IIB族中选择元素,用它们的化合物及其盐可以作为硅氢加成反应的有效催化剂,VIII族中的金属及其盐也能有效地催化硅氢加成反应,但是该文献并没有给出具体的例子.1953年,Wagner和Stro ther对铂作为催化剂进行了详细的研究[6],报道称用铂黑、铂石棉和铂硅都能有效地催化烯烃和三氯硅烷的加成反应.随后,Wagner报道[7]指出把铂吸附到炭上有超乎寻常的催化活性,它能催化三氯硅烷和乙炔、乙烯、丁二烯、氯丙烯和偏氟乙烯的加成反应,有的反应在130e就能进行,但大多数反应只有在高温下才能进行.虽然确定了过渡金属能有效地催化硅氢加成反应,但是由于存在催化剂用量大、催化选择性不高、转化率低等缺陷,该反应并不适合投入工业生产.因此,人们寻求一种理想的催化剂,它能使官能团加成到预想位置,且过程温和,反应温度足够低以减少副反应的发生.2.2第二阶段:均相催化剂的发现1957年,Speier[8]发现氯铂酸水合物(H2PtCl6#6H2O)的异丙醇溶液可以催化硅氢加成反应,是一种非常有效的均相硅氢加成反应催化剂(后被命名为Speier催化剂).在此之前,硅氢加成反应通常采用过氧化物和贵金属作催化剂,使用这类催化剂时存在收率低、相容性差等问题,Speier催化剂的发现极大地提高了硅氢加成反应的收率和反应速度.但是,Speier催化剂仍然存在催化剂用量大,对目标产物的选择性较低,且对有些反应不具有催化活性102化学研究2010年等缺点.研究发现,加入一些助剂能够提高硅氢加成反应的速率和选择性.但是,这些对硅氢加成有利的助剂种类各异,以至于无法确定哪种结构或性质的助剂对反应起到了促进作用.甚至难以确定一种助剂确切对哪个特定的反应起作用,因为反应还和硅氢试剂、不饱和试剂以及催化剂的结构和性质有关.如:弱碱性胺(如吩噻嗪)可以促进三氯硅烷和氯丙烯的加成反应[9],但是甲基二氯硅烷和氯丙烯反应则需要一种碱性较强的胺(如三丁基胺)才对反应有促进作用[10],碱金属碳酸盐或重碳酸盐的存在有利于烯丙基胺和烷氧基硅烷反应[11].其它的助剂还有:磷化氢、氧气[12]、含氧的有机物包括醛和不饱和酮[13-14]、有机或无机的锡钴化合物以及其他的一些有机物如醇、二醇、醚、酯[14]等等.很多助剂都可以促进硅氢加成反应,但是这些助剂的用途却很狭隘,大多只能对一种硅氢试剂与一种不饱和试剂发生的一种反应起作用.副反应的发生也会降低反应的产率和选择性,如聚合反应和异构化.人们想提高反应产率、速率及选择性,就要减少这些副反应的发生.某些助剂的加入可以减少一些副反应的发生,如:在用铂催化三甲氧基硅烷和环氧烯烃的加成反应时,加入甲醇可以有效减少B-异构体的产生[15].2003年,Westmeyer提出[16],在用铂做催化剂催化硅氢加成反应时,加入一种弱亲核性质的胺,如:苯胺、吩噻嗪、嘧啶等,可提高多数烯烃硅氢加成反应的产率.2.3第三阶段:零价催化剂的发现1973年,Karstedt发现了零价铂络合物催化剂[17],大大提高了铂催化剂在硅氢加成反应中的催化效率及应用范围.零价铂络合物催化剂通常称为Karstedt催化剂,是在醇中用铂卤化物和Si上连有乙烯基的硅氧烷或聚硅氧烷反应,然后用碳酸钠中和、苯洗涤后制得的铂配合物.Speier催化剂和Karstedt催化剂都是均相催化剂,但后者比前者的催化效率高,使用范围广且用量少,所以目前应用非常广泛.Karstedt催化剂的发现,是硅氢加成反应催化剂研究领域的又一重大进步.目前广泛使用的均相铂催化体系难以从反应体系中分离回收,且腐蚀金属容器,对某些反应催化活性不高,诱导期不易控制,应用受到一定限制.2.4第四阶段:负载型催化剂的发明至今,人们对铂配合物催化剂及其催化硅氢加成反应的研究取得了一定的理论和实际应用成果,我国在这方面的研究异常活跃,一些成果已经达到国际先进水平.开发能克服上述均相催化剂缺点的负载型铂族金属配位催化剂,有着重要的工业价值,并已引起广泛的注意.负载型铂配合物催化剂种类繁多,报道的主要有:硒醚铂配合物[18-20]、硫铂配合物[21-24]、硒杂冠醚铂配合物[25-28]、螯合型铂配合物[29]、富勒烯及其衍生物铂配合物[30-32]、烯丙基硅(氧)烷铂配合物[33]等.这些非均相催化剂提高了催化剂的回收率及循环使用次数,但是,非均相催化剂大多仍存在催化效率不高、易失活、循环使用次数不多的缺点,所以,非均相催化剂有待于进一步的研究与改善,这也是当今研究的一大热点.铂为贵金属,价格昂贵.要使硅氢加成反应实现工业化,必须降低使用催化剂的成本,措施之一是降低铂催化剂的用量,研究发现使用氯铂酸或铂络合物做催化剂可大大减少催化剂用量而达到有效的催化效果;其二是循环使用催化剂,现在有很多人研究的把铂负载到担体上制成非均相催化剂,提高了催化剂的回收率及循环使用次数.但是,这两方面的研究仍然存在各自的缺陷,还有待完善.3硅氢加成反应机理3.1自由基加成机理因为Si-H键键能相对于C-H键键能要低,所以早期的报道认为硅氢加成反应为自由基加成机理,因为此原因,早期的硅氢加成反应和机理方面的探索都致力于自由基引发加成反应的研究.硅氢加成反应的自由基引发过程类似于硼氢化物与烯烃的加成,且为反马氏加成[34-35].硅氢化合物可在紫外光照射或高温条件下产生自由基引发反应,也可直接加入过氧化物等作为自由基引发剂,达到硅氢加成反应的目的[1].但是,由于自由基加成反应选择性不高,副反应多,特别是在一些体系中不可避免的发生不饱和烃聚合等,所以使用受到限制,现在已较少研究.3.2配位加成机理近二十年来,对新型硅氢加成反应催化剂的研究取得了较大进展,在催化剂研究发展的同时,有关硅氢第2期管雁等:硅氢加成反应用铂催化剂的研究进展103加成反应催化机理的研究也取得了一定的进展.一般认为,过渡金属催化剂催化硅氢加成反应属于配位加成机理,目前人们对此反应的机理主要持两种观点:一种为Chalk-H arrad机理[36];另一种认为真正的催化活性物种是/胶体铂0,以Pt(COD)Cl2等催化剂为代表[38].3.2.1Chalk-H arrad机理1965年,Chalk和H ar rad共同提出了硅氢加成反应的Chalk-H ar rad机理[36],基于对氯铂酸的研究,从分子水平探讨催化硅氢加成反应机理,提出了过渡金属络合物催化硅氢加成反应的机理.由于该机理比较合理、系统,所以也为其他过渡金属络合物的催化机理提供了理论依据.图1Chalk-Har rad机理示意图F ig.1T he schemat ic diag r am f or the Chalk-H arrad mechanism该机理认为过渡金属催化剂先与烯烃结合,形成过渡金属-烯烃配合体,再由硅氢试剂进攻,进行加成,得到硅氢加成产物.该反应历程同时还解释了烯烃的异构化、低聚反应及还原消除反应等副反应,如图1所示,当k3>k-2时,烯烃不会产生异构化,而当k-2>k3时,异构化就会产生了.Chalk和H arrad还提到在烯烃进行硅氢加成反应时需要O2及反应液会出现黄色,但对O2是如何起作用以及反应液为何会有颜色的变化等,没有给出解释.3.2.2胶体铂机理随着具有高催化活性的Karstedt催化剂的出现,说明零价铂络合物是硅氢加成反应的有效催化剂,这时无法用Chalk-H arrad机理来解释了,人们开始探索新的反应机理.20世纪80年代,Lew is等人对硅氢加成反应的催化剂进行了深入的研究[37],并用透射电镜分析硅氢加成反应后的溶液时,发现了胶体铂的存在,于是提出了胶体铂机理.该机理认为在反应中真正起催化作用的是胶体铂,胶体铂是由三乙氧基硅烷还原形成,反应历程如图2所示.胶体铂机理主要内容为:(1)铂反应有明显的诱导期,是因为反应前先要形成真正起催化作用的胶体.(2)反应出现Chalk-H arrad机理中提到的/特征性黄色0,是因为胶体铂的形成,随着胶体铂分子量的增大,颜色越来越深.(3)硅氢试剂先与胶体铂结合形成中间体2,再由烯烃进攻2进行硅氢加成(这正好与Chalk-H ar rad机理相反).(4)在进行加成反应时,中间体2可看作是一个亲核试剂,不饱和烃则是亲电试剂,所以当硅氢试剂上连有吸电子基团而不饱和烃上连有供电子基团时,更容易进行加成反应.(5)O2在反应中实际上起到的是一个助催化剂的作用,在反应中并没有消耗掉.综上可见,这两个机理的共同点是催化剂都要先和一种试剂反应形成中间体,再由另一种试剂进攻这个中间体得到硅氢加成产物.但是,这两个机理也存在截然不同的观点,Chalk-H arrad机理认为催化剂先与烯烃配位形成中间体,再由硅氢试剂进攻这个中间体完成加成反应;而胶体铂机理认为催化剂先与硅氢试剂配位形成中间体,再由烯烃进攻这个中间体完成加成反应.104 化 学 研 究2010年这两个机理各自解释了硅氢加成反应中出现的一些现象,但又不能解释所有的现象.因此,硅氢加成反应机理还有待于进一步的研究和完善,只有弄清硅氢加成反应的微观机理,才能有助于新型、高效催化剂的筛选.图2 胶体铂机理示意图F ig.2 T he schemat ic diagr am for t he P t -colloid mechanism 4 结论与展望自发现过渡金属铂可催化硅氢加成反应以来,科学家围绕该反应展开了反应机理、催化剂筛选、提高产率以实现工业化等一系列研究.随着科技的进步,这些研究都有了不同程度的进展,如反应机理和反应现象方面大多有了合理的解释,工业化方面产率也得到了相当大的提高,催化剂的用量和循环再生方面也有了较大的进展.然而,随着有机硅产业化的发展,该反应研究所存在不完善的地方逐渐显现出来.如反应机理方面,有些问题还存在争议及不能解释的地方.另外,尤为重要的一点是,该反应的工业化成本太高等难题有待于更好地解决.相信通过不断的努力,通过进一步研究铂催化剂及其催化硅氢加成反应的催化机理,找到具有用量少、活性高、选择性好且易从反应体系中分离的可重复使用的催化剂,可以使该反应的研究更加完善,并推动整个有机硅产业化的快速发展.参考文献:[1]幸松民,王一璐.有机硅合成工艺及产品应用[M ].北京:化学工业出版社,2000:25.[2]Sommer L H ,Pietr usza E W,W hitmo re F C.Pero xide catalyzed addit ion of trichloro silane to 1-o ct ene [J].J A m ChemS oc,1947,69:188-191.[3]Speier J L.H omog eneo us catalysis of hy dr osilation by tr ansit ion metals [J].A dv Or ganomet Chem ,1979,17:407.[4]M ar ciniec pr ehensive handbook o n hydro silylat ion [D].O x ford:Perg amon,1992.[5]M acK enzie C A,Spialter L ,Scho ffman R I.Reaction of silanes w ith unsatur ated aliphatic compounds:Fr ench,961816[P].1949.[6]Wag ner G H ,St rother C O.P ro cess of pro ducing o rg ano silico n co mpo unds:U SA ,2632013[P].1953.[7]Wag ner G H.React ion of silanes w ith aliphatic unsatur ated com pounds:U SA,2637738[P].1953.[8]Speier J L ,Webster J A ,Bar nes G H.T he addition of silico n hydrides t o olefinic double bonds,par t Ò.T he use of g roupØmetal catalysts [J].J A m Chem Soc ,1957,79(4):574-580.[9]Chuang V T.T he reactio n o f chlor osilanes w ith unsaturated or ganic compounds:U SA ,3925434[P].1975.[10]K o er ner D G,R ossmy D G ,Wassermeyer D J.Ver fahren zur H erstellung von siliciumhalt igen K o hlenw asser stoffver bind -ung en:German,1156073[P ].1963.[11]Chu N S,Kanner B,Schilling J C L,et al .Pr epar atio n o f aminopro pylt rialkox ysilanes and/or aminoalkylalkox ysilanes:U SA ,4481364[P].1984.[12]K leyer D L ,Ng uyen B T ,H auenstein D E,et al .M ethod fo r contro lling hydrosily latio n in a r eaction mixtur e:U SA,第2期管雁等:硅氢加成反应用铂催化剂的研究进展1055359111[P].1994.[13]Reitmeier R,Braeunling H,Lindner T,et al.P rocess for pr epar ing alkylsilanes hav ing bulky alkyl radicals:U SA,5663400[P].1997.[14]Bank H M,Roy A K.U nsaturated accelerato rs for hydrosilation:U SA,5756795[P].1998.[15]T aka i H,Sakiyama T,M atsuzaki K,et al.Pr ocess for preparing epox y gr oup-co ntaining silanes:U SA,4966981[P].1990.[16]W estmeyer M D,H ale M B,Childr ess R S,et al.P ro moted hy dr osilatio n r eact ions:U SA,6590117[P].2003.[17]K ar stedt B D,P latinum co mplex es o f unsaturated silox anes and platinum co nta ining or ganopo lysilox anes:U SA,3775452[P].1973.[18]孟令芝,柯爱青,陈远荫.聚苯乙烯负载硒醚铂配位硅氢化催化剂[J].应用化学,1997,14(1):107-109.[19]舒红群,蔡明中.聚X-甲硒基十一烷基硅氧烷铂配合物的合成及其催化烯烃硅氢化性能[J].江西师范大学学报,2005,29(3):199-202.[20]陈远荫,孟令芝,柯爱青.聚苯乙烯负载氨基硒醚铂配合物的合成及其催化性能[J].催化学报,1997,18(2):144-148.[21]陈远荫,卢雪然,钟振林.聚-4,7-二硫杂壬基倍半硅氧烷铂配合物的合成及其对烯烃硅氧加成反应的催化性能[J].应用化学,1992,9(3):26-30.[22]M aco sko C W,Saam J C.T he hydro sily lation cur e o f polyisobutene[J].P oly m Pr ep r,1985,26(2):48-49.[23]蔡明中,宋才生,陈江敏.聚C-(B-氰乙硫基)丙基硅氧烷铂配合物的合成与催化性能[J].应用化学,1997,14(4):37-41.[24]陈远荫,卢雪然,梅嘉.聚-X-(甲硫基)十一烷基硅氧烷铂络合物的合成与催化性能[J].有机化学,1988,8(6):502-506.[25]李卫平,刘秀芳,卢雪然,等.杂元素冠醚的研究(Ö)-7,11-二硒杂苯并-13-冠-4铂配合物的合成及其催化硅氢化性能[J].高等学校化学学报,1994,15(7):947-950.[26]Pinto B M,Johnston B D,Batchelo r R J.A nov el confor matio nal pair[J].Can J Chem,1988,66:2956-2958.[27]K umagai T,Akabor is S.Pr epar atio n o f no vel selenacro wn ethers and their complex ing abilities w ith transitio n metal andheavy cations[J].Chem Lett,1989:1667-1670.[28]刘秀芳,李卫平,张立峰,等.10-硒杂苯并-15-冠-5铂配合物的合成及其催化硅氢化性能[J].化学学报,1993,51(6):575-577.[29]卢雪然,胡旭波,陈远荫.有机硅聚合物负载硫、硫、氮三齿配体铂配合物的合成与催化性能[J].高分子学报,1992,(4):398-402.[30]陈远荫,方鹏飞,朱绫,等.C(60)乙二胺衍生物铂配合物的合成及其催化硅氢化性能[J].高等学校化学学报,1998,7:1011-1015.[31]方鹏飞,黄驰,龚淑玲,等.聚硅氧烷负载富勒烯铂配合物的合成及其催化性能[J].分子催化,2002,16(2):147-152.[32]陈远荫,盛蓉生,刘英.富勒烯的金属配合物及其催化性能[J].分子催化,1997,10(5):394-400.[33]赵红,陈健,才明中.聚C-甲硒基丙基硅氧烷铂配合物的合成与催化硅氢化性能[J].江西师范大学学报(自然科学版),2000,24(4):333-338.[34]M arciniec, prehensive handbook on hydro silylat ion[D].O x ford:Perg amon Pr ess,1993[35]M arciniec B,Gulinski J.R ecent adv ances in cataly tic hydro sily lation[J].J O rg anomet Chem,1993,446:15-23.[36]Chalk A J,H arr ad J F.H omo geneous catalysis.I I.T he mechanism of the hy dr osilation of o lefins catalyzed by g ro upØmetal co mplexes[J].J A m Chem Soc,1965,87:16-21.[37]L ar ry N,L ew is L N,L ew is N,et al.Platinum-catalyzed hy dr osilylation-collo id for matio n as the essential step[J].JA m Chem S oc,1986,108(23):7228-7231.。
能源新秀_“氢”装上阵——记上海交通大学材料科学与工程学院长聘教轨副教授种丽娜

2023年8月 科学中国人 59能源新秀 “氢”装上阵——记上海交通大学材料科学与工程学院长聘教轨副教授种丽娜 郑 心 李文博曾经,在人类走向工业化、现代化的进程中,不少国家选择了一条“先发展再治理”的道路,在创造出巨大物质财富的同时加剧了对自然资源的攫取。
但所幸随着人类环保意识的觉醒,今天世界各国已经纷纷将“绿色”“可持续”奉为高质量发展的要义,由此,新能源发展逐步走上“快车道”。
而在一众清洁能源之中,氢能以其绿色、高效、可持续的多重优势为人类带来了高效拉动绿色发展进度条的美好希望,却又以易燃、易爆、易扩散的特点考验着每位能源、材料、化学等相关领域学者的耐心与“功底”。
虽然,中国无论是在工业化建设还是氢能制备与储存方面都较西方发达国家起步晚,但这并不会成为阻挠行业进阶的桎梏。
眼下,政府一再强调的“两山”理念和“双碳”战略不仅为无数从业者指明了前进的方向,也吸引着远赴各国深造积累经验的人才回流祖国,他们聚沙成塔、奋起直追,坚定奔跑在人与自然和谐共生的道路上,“以我之笔”共同绘就一幅新时代的“千里江山图”,上海交通大学材料科学与工程学院长聘教轨副教授种丽娜正是其中一员。
坚定投身科研道路回归母校前,种丽娜在美国阿贡国家实验室担任化学科学与工程领域的研究员。
虽然她对5年的研究经历只用轻描淡写的几句话作为总结概括,但还是不难捕捉到其中光点——两获美国科技创新奖、两次荣登《科学》(S c i e n c e )期刊,又打破了美国物理学会玛丽亚·格佩特-梅耶奖史上没有中国女性科学家摘取桂冠的20年空白……当这些事情相继发生在种丽娜身上时,连她自己都不敢相信是真的。
“梅耶奖公示当天,有两个人分别跟我说了结果,我始终认为他们在跟我开玩笑,直到亲眼看到正式通知我才信了。
”她说。
然而,就是这样一名以昂扬姿态奋斗出厚重人生底色的科研工作者,却说自己一开始的目标根本不是从事科研。
“应家里人的建议,最开始我是想要成为一名教师的。
燃料电池的发展与应用

燃料电池的发展与应用燃料电池是一种直接将化学能转化为电能的能量转换器,它是一种新型的高效能源转换技术,被广泛应用于电动汽车、备用电源、航空航天、生命医学和海洋探测等领域。
燃料电池的优点在于高效、清洁、静音、可靠、环保,是未来能源转型的重要选择之一。
本文将探讨燃料电池的发展历程、种类以及应用现状。
一、燃料电池的发展历程燃料电池的历史可以追溯到1839年,英国化学家威廉·格罗夫发现了一种用硫酸和钯作为催化剂的化学电池,该电池可以将氢气和氧气转化为电能。
从此,人们开始了解和研究燃料电池。
20世纪60年代,NASA开始尝试使用燃料电池驱动宇宙飞船。
1978年,美国能源部成立了一个燃料电池研究计划,投入大量资金用于燃料电池的研究和开发。
随着技术的不断进步,燃料电池的成本不断降低,性能不断提升,应用领域也不断拓展。
二、燃料电池的种类燃料电池主要分为若干种类,根据不同的电解质和催化剂可分为以下几类。
1、质子交换膜燃料电池(PEMFC)质子交换膜燃料电池是目前应用最为广泛和发展最为成熟的燃料电池,其催化剂通常为铂。
它采用质子交换膜来分离正负极,氢气在阳极上被氧化成水,在电极上释放出电子,水分子被分解成氧气和质子。
质子通过膜进入阴极,在那里与电子结合形成水。
PEMFC在电动汽车、便携式电子设备、船舶等领域得到广泛应用。
2、直接甲醇燃料电池(DMFC)直接甲醇燃料电池以甲醇为燃料,采用铂和铂铑合金作为催化剂。
它能够直接将甲醇和氧气转化为电能和水。
DMFC成本低、能量密度高,是一种极具潜力的燃料电池。
然而,由于甲醇的扩散和物质传输过程中的限制,DMFC 在实际应用中面临一些挑战。
3、碳酸盐燃料电池(MCFC)碳酸盐燃料电池是一种利用碳酸盐的离子传递电子的电池,电池中的主要反应是氢氧气与氢气碳酸盐的反应。
MCFC的催化剂通常为镍,它可以直接利用从煤、石油等化石能源中提取的氢气作为燃料,不需要对氢气进行纯化处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非铂、低铂燃料电池催化剂的研究进展 低温燃料电池是直接以化学反应方式将燃料的化学能转换为电能的能量转换装置,是一种绿色的能源技术,对解决目前我们所面临的能源危机和环境污染问题具有重要意义,美国《时代周刊》将燃料电池列为 21 世纪的高科技之首;在我国的科技发展规划中,燃料电池技术也被列为重要的发展方向之一。 催化剂是燃料电池中关键材料之一,催化剂的成本占到燃料电池成本的 1/3。铂被证明是用于低温燃料电池的最佳催化剂活性组分,但使用铂做为燃料电池催化剂也存在如下严重问题:(1)铂资源匮乏;(2)价格昂贵;(3)抗毒能力差。目前通过合金来改善催化剂的研究有碳负载的铂钌合金催化剂PtRu/C,以及添加有其他促进成分的 Pt/C 和 PtRu/C 催化剂等。为了有效降低燃料电池的成本,主要采用集中两个方面研究来降低铂载量:(1)开发非铂电催化剂;(2)开发研制低铂电催化剂。本文就此对近年来的研究现状进行综述。 1 非铂催化剂 1.1 非铂催化剂在酸性直接醇类燃料电池中的研究非铂催化剂的研究,主要采用钯基或钌基掺杂其他金属制备催化剂,近年来,研究人员用了多种方法制备了各种活性组分高度分散的钯基催化剂,在催化燃料电池的阴极氧还原反应(ORR)中显示了可与铂基催化剂相媲美的效果。同时,作为直接甲酸燃料电池(DFAFC)和直接乙醇燃料电池(DAFC)的阳极催化剂,也显示了诱人的应用前景。以下从影响催化剂性能的几个因素对近年来的相关工作进行讨论。 催化剂的组成直接影响其性能。Colmenares 等合成用 Se修饰的 Ru/C 催化剂 (RuSey/C) 应用于直接甲醇燃料电池(DMFC)阴极催化,结果表明在 0.6~0.8 V 电压下,Se 的加入促进了氧还原并减少了生成 H2O2的趋势;少量甲醇的存在对于 RuSey/C 催化氧还原影响较小,说明这类催化剂具有较好的抗甲醇性能。Jose' 等合成了两种非铂催化剂 Pd-Co-Au/C 和Pd-Ti/C,在质子交换膜燃料电池氧还原中的活性与现在常用的 Pt 催化剂活性相当。Shao 等制备了 Pd-Fe/C 系列催化剂用于氧还原反应,结果表明 Pd3Fe/C 氧还原活性比商业催化剂Pt/C (ETEK)好。Wang 等采用有机溶胶法合成了 PdFeIr/C 催化剂,研究表明 Fe 和 Ir 的添加,大大增加了催化剂的分散性,从而提高了催化剂的活性,该催化剂表现出较高的氧还原能力和较好的耐甲醇性能。Mayanna 等合成了不同组成的 Ni-Pd合金膜催化剂,并研究了在硫酸环境中的甲醇电氧化性能,发现与纯 Ni 相比其阳极峰电流明显增大,合金化以后其表面积增加了近 300 倍。 制备方法与合成条件对催化剂性能的影响显著。Shen 等利用微波交替加热法制备了 Pd/MWCNT 电催化剂,发现在碱性溶液中显示了良好的甲醇催化氧化性能,与 Pt/C 相比,氧化电位负移了 100 mV 左右。同时他们还研究了多种氧化物对Pd/C 催化氧化多种醇类(甲醇、乙醇、乙二醇等)的促进作用,发现在碱性溶液中 Pd-NiO/C 对乙醇的氧化与 Pt/C 相比负移了 300 mV 左右。他们用类似方法合成了 AuPd-WC/C 复合催化剂,并研究了在碱性条件下对乙醇氧化的电催化行为。发现与相同催化剂载量的 Pt/C 催化剂相比,乙醇氧化 的起始电位负移了 100 mV 左右,峰电流密度增加了 3 倍左右,而且还显示了良好的稳定性。徐常威等用水热法分解蔗糖制备出表层富含羟基功能基团的碳微球, 再利用羟基把 Pd 离子固定在碳微球表面, 然后使用化学还原方法, 使 Pd 纳米颗粒还原后附着在碳微球上。研究了碳载 Pd 对甲醇和乙醇在碱性溶液中的电化学氧化活性, 结果显示, 乙醇于碱性溶液中在碳载 Pd 上其催化活性好于甲醇, 同时碳微球负载的催化剂的催化活性也远远好于碳粉负载的催化剂。他还利用阳离子化氧化铝为模板电沉积法合成了 Pd 纳米系列,发现其乙醇氧化的催化活性不但要比传统的 Pd 膜电极高,而且其稳定性和活性也远高于商业化的 E-TEK PtRu/C 电催化剂。Zhang等采用嵌电位沉积法将铂单层修饰到 Pd/C 表面,考察了催化剂在氧还原反应中的机理和性能,结果表明将铂单层修饰到合适的金属纳米表面将会得到非常好的氧还原催化剂,另外,采用这种方法,可以将铂载量大幅度降低,而 Pt/Pd/C 电极的 Pt 质量比活性比纯铂催化剂高出 5~8 倍;贵金属 Pt+Pt 质量比活性比纯铂催化剂高出 2 倍。Ma 等利用引入 PVP 聚合物的方法,合成了 Pd 纳米颗粒,发现合成的纳米颗粒与块状 Pd 循环伏安行为明显不同,热处理后显示了很高的甲醇电氧化活性。探寻好的催化剂的制备方法一直都是研究者所关注的方向。活性组分配比对催化剂性能的影响明显。Shao 等考察了将 Pd 单层修饰在不同的金属 M(Ru,Rh,Ir,Pt, 和 Au)制得催化剂的性能,在直接甲醇燃料电池中,表现在高甲醇溶液中具有高氧还原能力和很好的耐甲醇性能。Li等制备了Pt3Pd1/C 系列催化剂用于 ORR, 实验结果表明由于在 Pt-Pd/C表面有富含的 Pt ,从而大大提高了催化性能,这个结果与密度函数理论(DFT)计算结果,即在研究 O2在 Pt-Pd 簇和物表面吸附溶解过程中,由于 Pd 原子的存在使得 O2容易入溶于 Pt位的结果相吻合。Pd 的加入不仅仅增大了 Pt 的粒径,也改变了金属纳米颗粒在碳载体表面的分散情况,这样大大提高了ORR活性。合适的原子配比对催化剂活性影响重大。 1.2 Pd 基催化剂在甲酸氧化中的研究 Pd 基催化剂不仅比 Pt 便宜,而且 Pd 资源储量丰富,虽然Pd 对氧还原(ORR)催化活性不如 Pt 好,但是 Pt/Pd 合金能够在一定程度上缩小 CO 中毒作用。Capon 等很早就研究了Pd 对甲酸氧化的电催化性质,发现甲酸在 Pd 与 Pt 上电氧化最大的不同是在 Pd 上只有一个氧化峰,这是因为 Pd 对甲酸的氧化是通过直接反应途径进行的。Rice 等证实了用 Pd 做阳极催化剂的性能用于甲酸做燃料比用于甲醇氧化活性好很多。催化剂载体对催化剂活性影响很大。Masel 等发现非碳载 Pd 催化剂和 Pd/C 催化剂能够克服 CO 中毒效应,因此,对甲酸氧化有较高的电催化性能。非碳载 Pd 在 30 ℃的直接甲酸燃料电池(DFAFC)中,Pd 的载量高达 8 mg/cm2时,产生的最大功率密度为 271 mW/cm2。Zhu 等报道了非碳载的 Pd 和Pt 分别做阳极和阴极催化剂输出功率密度分别为 76 mW/cm2和 99 mW/cm2。制备方法对催化剂性能的影响显著。Liu 等通过微波辅助多羟基化过程制备了 Pt/C 和 Pd/C 催化剂,用透射电子显微镜法(TEM)和 X 射线衍射光谱法(XRD)对催化剂进行了表征,Pt 和 Pd 纳米粒子的平均粒径分别是 4 nm 和 5 nm,发现 Pd/C催化剂比 Pt/C 催化剂对甲酸表现更好的电催化氧化活性。Wang 等采用有机溶胶法制备催化剂 Pd2Co/C 和 Pd4Co2Ir/C,与 Pd/C 催化剂相比,Pd2Co/C 和 Pd4Co2Ir/C 催化剂的甲酸氧化峰电位分别负移了 140 mV 和 50 mV,显示出较高的电流密度。在电压为 0.05 V (vs.SCE)时,Pd4Co2Ir/C 催化剂电流密度高达 13.7 mA/cm2,是 Pd/C 催化剂的 2 倍,是商业 Pt/C 催化剂的6 倍。助剂的添加可以改善催化剂性能。Wang 等合成出合适原子比例的 Pd–Ir/C 催化剂,尽管 Ir 对甲酸氧化没有活性,但是掺杂了 Ir 的 Pd–Ir/C 催化剂对甲酸氧化活性高于纯 Pd/C催化剂 13%,而且甲酸氧化峰电位负移了 50 mV,这是由于 Ir可以减弱 CO 在 Pd 上的吸附,从而促进了 Pd 通过直接路线氧化甲酸的活性。甲酸浓度对催化剂性能有影响。Ha 等组装了 2 cm×2.4cm×1.4 cm 微型空气 DFAFC,燃料电池成功地在甲酸浓度为1.8~10 mol/L 间运行,而且性能几乎无衰减,室温下电极输出的电流密度高达 250 mA/cm2,功率密度高达 33 mW/cm2。Ha等研究了 Pd/C 和 Pd 黑随甲酸浓度性能的变化情况,当甲酸浓度由 5 mol/L 增加到 20 mol/L 时,Pd 黑的性能严重衰减,然而 40%Pd/C 催化剂在 DFAFC 中受甲酸浓度的影响非常小,当甲酸浓度由 5 mol/L 增加到 10 mol/L 时 40%Pd/C 催化剂在电极电位低于 0.45 V(vs.DEH)能量密度几乎没有衰减,甲酸浓度增加到 15.0 mol/L 时,活性有少量衰减,但没有 Pd 黑衰减的厉害,而且还发现 20%Pd/C 和 Pd 黑催化剂在甲酸浓度为15.0 mol/L 时能量密度相当,而 20% Pd/C 载量只是 Pd 黑(2.4 mg/cm2)的一半。 2 低铂电催化剂 由于非铂催化剂活性太低而无法取代铂基催化剂,很多研究工作集中到低铂电催化剂的研究,主要有两个方面降低铂载量:(1)采用 Pt 与其他金属的合金化;(2)采用 Pt 单层修饰其他金属或者核壳结构的方法。 2.1 Pt 与其他金属的合金化 Sasaki 等采用电沉积法制备了低铂含量的电催化剂PtRu/C。Liao 等制备了三组分合金化 PtRuIr/CNT 催化剂,由于 Ir 的加入不仅大大增加了分散性,也使得金属颗粒尺寸小至 1.1 nm,催化剂 PtRuIr/CNT 具有非常好的甲醇氧化活性。Wang 等合成了 Pt–Se/C 催化剂,元素 Se 的加入,大大促进了 Pt 的分散性,使粒子尺寸小到 1.8 nm,催化剂对氧还原活性可与 Pt/C 催化剂相当,更为重要的是 Pt-Se/C 催化剂具有很好的耐甲醇性能。Srivastava 等合成出 Pt-Cu-Co 三元合金纳米电催化剂,对于氧还原催化活性可以提高 4~5倍,达到 0.5 A/mgPt。Wen 等考察了低铂载量催化剂 AlxPty/C 不同颗粒尺寸在阴极催化时对单电池性能的影响。Neburchilov 等制备了四组元的 PtRuIrSn 催化剂,应用于直接甲醇燃料电池阳极催化,Pt 含量低至 0.1 mg/cm2。Zhang报道了一类新氧还原电催化剂,包含 Pt 和其他过渡金属 (M=Ir,Ru,Rh,Pd,Au,Re 或Os) 单层沉积在 Pd(111) 单晶或载 Pd/C 纳米颗粒, 这类新的电催化剂与纯 Pt 催化剂相比对于氧还原催化具有很高的活性和较低的 Pt 含