燃料电池的基本工作原理及主要用途

合集下载

燃料电池的基本原理和应用

燃料电池的基本原理和应用

燃料电池的基本原理和应用燃料电池是一种通过化学反应产生电能的设备,它是一种环保、高效、安全的新型能源装置。

与传统车辆的燃油发动机相比,燃料电池的排放几乎为零,可以有效地减少CArbon dioxide、NOx和其他有害物质的排放。

1. 燃料电池的基本原理燃料电池的基本原理是将氢气(或其它可燃气体)和氧气通过催化剂催化氧化反应,反应产生氧化电位差,使电子从负电极开始沿着电路流向正电极,产生电流,这就是所谓的燃料电池原理。

在燃料电池中,氢气可以通过制氢装置得到。

制氢装置利用天然气、煤、水等作为原料生产氢气。

随着技术的发展,制氢成本正在逐步降低,这将对燃料电池技术的应用产生积极的影响。

2. 燃料电池的应用燃料电池在交通领域和家用电器领域有广泛的应用前景。

在交通方面,燃料电池作为一种环保的动力设备,已经在国内外市场上掀起了一股革命,特别是在公交领域。

目前,世界上很多地方已经采用了燃料电池汽车、燃料电池公交车、燃料电池摩托车等,将燃料电池技术与交通运输系统有效地结合起来。

燃料电池汽车作为新能源汽车的代表,具有零排放、高效能、低能耗、长续航等特点,因此备受关注。

目前,很多国家都在加大燃料电池汽车的研发和应用力度,中国也在加快燃料电池汽车的产业化进程,逐步建立完善的供应链体系和发展国际竞争力。

在家用电器方面,燃料电池作为便携式的电源设备,越来越受到人们的关注。

燃料电池可以应用在笔记本电脑、手机、数码相机、手表和电视等电子设备上,为它们提供可靠的、长时间连续的电源。

对于停电或急救场所等特殊情况,燃料电池还可以发挥出很好的应用效果。

在停电时,燃料电池可以为人们提供照明、加热和通讯等服务,大大提高了生活质量。

在急救场所,燃料电池可以用于电子设备和呼吸器等医疗设备的供电,为医护人员提供便捷的工作条件。

3. 燃料电池的市场前景随着社会的进步,人们对环保、高效、安全的新能源需求越来越大。

燃料电池技术正是满足这一需求的理想方案,它是未来的主流能源技术之一。

燃料电池概念

燃料电池概念

燃料电池概念引言:- 燃料电池(FuelCell)被认为是一种清洁、高效、可持续的能源技术,被广泛应用于交通运输、能源供应和环境保护领域。

本文将介绍燃料电池的概念、原理、类型、应用以及未来发展方向。

一、燃料电池的概念:- 燃料电池是一种将化学能直接转化为电能的能量转换装置,通过氧化剂与还原剂间电化学反应来产生电力。

其核心原理是利用氢气或其他可燃气体与氧气相结合,通过电化学反应产生电能,并以水和热能为副产品。

二、燃料电池的工作原理:- 燃料电池的工作原理基于两个半反应:氧化半反应和还原半反应。

氧化半反应发生在氧化剂(通常是氧气)的一侧,其中氧分子分解成氧离子。

还原半反应发生在还原剂(如氢气)的一侧,其中氢离子经过反应产生电子和水。

通过将两个半反应结合在一起,燃料电池能够将化学能转化为电能。

三、燃料电池的类型:- 燃料电池根据不同的电解质和工作温度,可以分为不同类型:质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)等。

每种类型的燃料电池都有其特定的优点和适用场景,例如PEMFC适合用于交通工具和移动设备,而SOFC适合用于电力供应和大型工业设备。

四、燃料电池的应用:- 燃料电池被广泛应用于各个领域,包括交通运输、能源供应和环境保护等。

在交通运输领域,燃料电池驱动的电动汽车可以提供零排放、长续航里程和快速加注等优势。

在能源供应领域,燃料电池可以作为替代传统燃料的可再生能源,提供可靠的电力供应。

在环境保护领域,燃料电池可以减少有害气体排放,降低温室气体的影响。

五、燃料电池的未来发展:- 随着技术的进步和成本的降低,燃料电池有望在未来得到更广泛的应用。

研究人员正在努力改进燃料电池的效率、稳定性和可靠性,以满足不同领域和应用的需求。

同时,开发更便捷、经济的氢气储存和分配系统也是未来发展的研究重点。

结论:- 燃料电池作为一种清洁、高效、可持续的能源技术,拥有广泛的应用前景。

燃料电池储能系统工作原理

燃料电池储能系统工作原理

燃料电池储能系统工作原理燃料电池储能系统是一种利用化学能转换为电能并将其储存以备后续使用的先进能源技术。

本文将介绍燃料电池储能系统的工作原理,并探讨其在能源领域中的应用前景。

第一部分:燃料电池的基本原理燃料电池是将化学能转化为电能的装置。

它通过将氢气(H2)与氧气(O2)在催化剂的作用下进行电化学反应,产生水(H2O)和电能的过程。

燃料电池内部的核心是由阳极、阴极和电解质层组成的膜电极组件。

在燃料电池中,氢气通过阳极侧进入电解质层,在催化剂的作用下,氢气分解成阳离子(H+)和电子(e-)。

阳离子通过电解质层传导到阴极,而电子则通过外部电路实现电流输出。

在阴极侧,氧气进入电解质层,并与阳离子和电子反应,形成水。

第二部分:燃料电池储能系统的结构燃料电池储能系统通常由燃料电池堆、氢气储存器、氧气储存器、电池管理系统和配套部件等组成。

燃料电池堆是系统的核心,负责将氢气和氧气转化为电能。

氢气储存器和氧气储存器用于储存氢气和氧气,在需要时供给燃料电池堆。

电池管理系统用于控制和监测系统的运行情况,确保系统的安全性和性能稳定性。

配套部件包括气路、液路、冷却系统等,用于提供燃料和氧气的供应以及对系统进行冷却。

第三部分:燃料电池储能系统的工作过程燃料电池储能系统的工作过程分为两个阶段:供能和储能。

供能阶段是指燃料电池堆通过化学反应将能量转化为电能,并输出给负载。

储能阶段是指在供能阶段之外,将未能够用于供能的电能转化为化学能并储存起来。

在供能阶段,氢气和氧气经过储气器供给燃料电池堆,其中氢气经过负载后转化为水,同时产生电能。

在储能阶段,电池管理系统将电能通过逆向反应将水分解为氢气和氧气,并将氢气和氧气分别输送到氢气储存器和氧气储存器中。

第四部分:燃料电池储能系统的应用前景燃料电池储能系统具有许多优势,例如高能量密度、零排放、长寿命和快速响应等。

因此,它在能源领域中具有广阔的应用前景。

燃料电池储能系统可以用于移动应用,如电动汽车和混合动力车,提供可靠的动力来源。

燃料电池技术

燃料电池技术

燃料电池技术燃料电池技术是一种利用化学反应转化燃料能为电能的先进能源技术。

它以可再生能源和常规能源为燃料,通过在氧气电极和氢电极上的电化学反应来产生电能和热能。

燃料电池技术具有高效节能、无污染、资源可持续利用等特点,被广泛应用于交通运输、家庭能源和工业领域。

一、燃料电池的原理燃料电池是利用氧化还原反应来实现能量转换的设备。

它由阳极、阴极、电解质和电极反应催化剂等组成。

在燃料电池工作过程中,燃料(常见的有氢气和甲醇)在阳极侧被氧化成为电子和离子,电子经过外部电路传递形成电流,离子穿过电解质传递到阴极侧,与氧气发生还原反应生成水和热能。

整个过程中产生的电能可被外部电路利用。

二、燃料电池的分类根据不同的电解质种类和工作温度,燃料电池可以分为若干种类。

常见的几种燃料电池包括质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)等。

它们在不同应用场景下有各自的特点和优势,适用于不同的需求。

三、燃料电池技术的应用1. 交通运输领域:燃料电池被广泛用于汽车和公共交通工具的动力系统。

与传统的内燃机相比,燃料电池具有零排放、高效能等优势,能够有效减少空气污染和温室气体排放,并提升车辆的能效和驾驶体验。

2. 家庭能源:燃料电池可用于家庭能源系统,如供暖和电力供应。

通过利用天然气等燃料产生电能和热能,可以满足家庭的供暖需求,并为家庭提供稳定的电力供应,减少对传统能源的依赖。

3. 工业领域:燃料电池可用于工业过程中的电力供应和废气处理等方面。

利用废气中的氢气等燃料产生电能,不仅能满足工业生产的能源需求,还能有效减少废气的排放和处理成本。

四、燃料电池技术的挑战与展望虽然燃料电池技术在环保和节能方面具有巨大潜力,但也面临着一些挑战。

首先,燃料电池的成本较高,需要进一步降低生产成本才能推广应用。

其次,燃料电池的稳定性和寿命问题仍待解决,需要改进催化剂和材料的稳定性以延长燃料电池的使用寿命。

此外,燃料电池的燃料储存和运输等问题也需要解决。

燃料电池的应用领域

燃料电池的应用领域

燃料电池的应用领域一、燃料电池的基本原理燃料电池是一种将化学能直接转化为电能的设备,其基本原理是利用氢气和氧气在催化剂的作用下发生氧化还原反应,产生水和电能。

燃料电池具有高效、清洁、静音等特点,是一种新型的能源转换设备。

二、燃料电池的分类根据不同的工作原理和使用场景,燃料电池可以分为以下几类:1.质子交换膜燃料电池(PEMFC):主要用于车辆动力系统、舰船动力系统等领域。

2.固体氧化物燃料电池(SOFC):主要用于发电、工业加热等领域。

3.碱性燃料电池(AFC):主要用于空间站、卫星等领域。

4.直接甲醇燃料电池(DMFC):主要用于便携式设备、无人机等领域。

三、燃料电池的应用领域随着技术的不断进步和环保意识的提高,燃料电池在各个领域得到了广泛的应用,以下是燃料电池的主要应用领域:1.交通运输领域燃料电池汽车是目前最为成熟的应用领域之一。

由于其具有零排放、高效、静音等特点,被视为未来汽车发展的方向。

目前,世界各大汽车厂商均在积极开发燃料电池汽车,并推出了相关产品。

2.能源领域燃料电池可以直接将化学能转化为电能,因此被广泛应用于发电和工业加热等领域。

固体氧化物燃料电池是其中最为常见的一种类型,可用于发电站、工业加热等场景。

3.便携式设备领域直接甲醇燃料电池是一种便携式设备常用的能源来源。

相对于传统锂离子电池,其具有更长的续航时间和更快的充电速度,因此被广泛应用于无人机、便携式充电器等场景。

4.航空航天领域由于空间站和卫星等设备需要长期运行而无法进行加油换气等操作,因此燃料电池被广泛应用于航空航天领域。

碱性燃料电池是其中最为常见的一种类型。

四、燃料电池的优势相对于传统的化石能源和锂离子电池,燃料电池具有以下优势:1.高效:燃料电池直接将化学能转化为电能,效率高达50%以上,远高于传统发动机和锂离子电池。

2.清洁:燃料电池只产生水和少量氧气,不会产生任何有害气体和颗粒物,因此对环境无任何影响。

3.静音:由于没有内燃机的噪音和振动,燃料电池汽车非常静音。

高中燃料电池的原理应用

高中燃料电池的原理应用

高中燃料电池的原理应用简介燃料电池是一种利用化学能直接转化为电能的装置,它具有高能量转化效率、零排放、低噪音等优点,被广泛应用于交通工具、家庭能源以及航天航空等领域。

本文将详细介绍高中燃料电池的原理和应用,以帮助读者更好地了解和使用燃料电池技术。

燃料电池的原理燃料电池是一种通过氧化还原反应将燃料中的化学能转化为电能的装置。

其基本原理可以概括为以下几点:1.氢气供应:燃料电池的燃料主要为氢气,氢气可以通过水电解、天然气重整、氢气储存等方式得到。

2.氧气供应:燃料电池的氧气源可以是空气中的氧气。

氧气可以通过直接吸入空气的方式供应给燃料电池。

3.阳极反应:在燃料电池的阳极(负极)上,燃料(氢气)发生氧化反应,产生电子和水。

4.阴极反应:在燃料电池的阴极(正极)上,氧气发生还原反应,与电子和阳极产生的水结合,生成水和电能。

5.电子传导:电子在电极之间通过外部电路流动,从而形成电流流动。

6.离子传导:离子通过电解质质子交换膜在电极之间进行传导,维持电荷平衡。

燃料电池的应用燃料电池由于其高能量转化效率和无污染排放的特点,被广泛应用于以下领域:1. 交通工具燃料电池在交通工具中的应用,主要以氢燃料电池汽车为主。

氢燃料电池汽车使用氢气作为燃料,在氢燃料电池中与氧气发生反应产生电能,驱动电动机运行。

与传统燃油汽车相比,氢燃料电池汽车不产生尾气污染物,具有零排放的优势。

目前,全球范围内已经有多家汽车制造商开始生产和销售氢燃料电池汽车。

2. 家庭能源燃料电池可以作为家庭能源的替代品,用于供应家庭的电力需求。

燃料电池家庭能源系统通过将家庭燃料与氧气反应来产生电能和热能。

从而实现家庭的照明、供暖、供水等需求。

相比传统的发电设备,燃料电池家庭能源系统具有高能量转化效率、低噪音和低排放等优点。

3. 航天航空由于燃料电池具有高能量转化效率和轻量化的特点,它被广泛应用于航天航空领域。

燃料电池在航空器中可以提供可靠的电力供应,以满足电子系统、通信设备等的需求。

燃料电池的工作原理及应用

燃料电池的工作原理及应用

燃料电池的工作原理及应用燃料电池是一种新型的绿色能源技术,其工作原理是利用电化学反应将化学能转换为电能,而不像传统的燃烧发电方式一样产生废气和废水等污染物。

本文将介绍燃料电池的基本原理及其在不同领域的应用。

一、燃料电池的基本原理燃料电池的基本原理是通过化学反应将氢和氧转化为电能和水。

其由质子交换膜(PEM)、阴极和阳极三部分组成。

在阳极,燃料(通常是氢气)通过催化剂(如白金)的作用分解为电子和质子。

电子从阳极流出形成电流,而质子则穿过PEM向阴极传递。

在阴极处,氧通过催化剂与质子结合生成水,同时释放出电子。

这些电子与从阳极流出的电子共同构成了燃料电池的输出电流。

燃料电池有多种不同的类型,包括质子交换膜燃料电池(PEMFC)、碱性燃料电池(AFC)和固体氧化物燃料电池(SOFC)等。

其中PEMFC最为常见,因其能够在常温下工作,并且具有高效率和低排放等优点,被广泛应用于交通运输、航空航天和家庭电力等领域。

二、燃料电池在交通运输领域的应用燃料电池作为一种高效、环保、低噪音的新能源技术,具有广阔的应用空间。

特别是在交通运输领域,它可以提供更为清洁和可持续的能源解决方案。

目前,燃料电池汽车已经进入商业化阶段,如日本的丰田Mirai、韩国的现代Nexo和欧洲的戴姆勒GLC F-CELL等。

燃料电池汽车与传统燃油汽车相比,能够大幅减少车辆尾气排放、降低噪音和振动等,并且具有更长的续航里程和更短的加油时间。

此外,燃料电池还可以应用于公共交通系统、物流车辆和电动自行车等领域。

三、燃料电池在能源领域的应用燃料电池不仅适用于交通运输领域,还可以被广泛应用于能源供应领域。

例如,燃料电池可以与太阳能板、风电和生物质等可再生能源相结合,构成全球范围内的可再生能源系统。

燃料电池也可以被应用于独立供能系统,如街道灯、监控摄像头和移动通信基站等。

此外,燃料电池还可以为日益增长的数据中心提供可靠的备用电源,确保用户数据的安全。

在农业领域,燃料电池也可以被用于灌溉和农业机械等方面,促进农业现代化和可持续发展。

燃料电池工作原理原理

燃料电池工作原理原理

燃料电池工作原理原理
燃料电池是一种将化学能转化为电能的装置,采用化学反应的方式来产生电能。

它的工作原理如下:
1. 氢气供给:燃料电池的主要燃料是氢气(H2)。

氢气可以通过电解水产生,也可以从氢气储存罐中供应。

2. 催化剂:燃料电池中使用的常见催化剂是铂(Pt)。

这种催化剂能够加速氢气的电化学反应速率,促使氢气分解成质子(H+)和电子(e-)。

3. 质子传导:燃料电池中的质子交换膜(PEM)能够选择性地只允许质子通过,从而将质子传递到负极(阳极)侧。

电解质中的负离子也可能移动,但质子的迁移速度更快。

4. 电子流动:负极(阳极)上的电子开始流动,通常会通过一个外部电路来提供功率。

5. 氧气供应:在燃料电池中,氢气的氧化反应需要氧气
(O2),它可以来自空气中的氧气或者是外部提供的纯氧。

氧气会通过气体扩散层进入到负极(阳极)。

6. 氧化反应:在负极(阳极)上,氢气会与氧气和质子发生氧化反应,产生水蒸气(H2O)。

7. 电子与质子的再结合:在负极(阳极)侧,电子和质子再次结合形成水蒸气(H2O),同时释放出电子。

总体来说,燃料电池通过催化剂来加速氢气的电化学反应,将氢气的化学能转化为电能。

负极(阳极)上的电子流动通过外部电路提供功率,质子则通过质子交换膜传导。

最终的氧化反应产生水蒸气,并再次生成电子和质子。

整个过程中,燃料电池不会产生有毒废物,只产生水蒸气和热能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述燃料电池的基本工作原理及主要用途1.燃料电池的工作原理燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。

其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。

以磷酸型燃料电池为例,其反应式为:燃料极(阳极) H2→2H++2e-空气极(阴极) 1/2O2+2H++2e-→H2O综合反应式H2+1/2O2→H2O以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。

2. 燃料电池的应用2.1能源发电燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。

分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。

燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。

各国工业界人士普遍对于燃料电池在发电站的应用前景看好。

2.2汽车动力目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。

于是人们要求开发新型的清洁、高效的能源来解决这一问题。

质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。

这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。

2.3家庭用能源天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。

家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。

2.4其它方面的应用碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。

此外,质子交换膜燃料电池还可用作野外便携式电源。

总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

关于核壳结构的纳米粒子燃料电池催化剂的研究摘要:燃料电池的性能好坏、寿命长短以及成本高低都受到催化剂这一关键材料的制约,近年来人们除了在提高催化剂活性方面做了大量工作以外,在降低催化剂成本方面也做了大量研究推进工作。

本文介绍了燃料电池非铂、低铂催化剂主要体系在低温燃料电池方面的最新研究进展,并提出了更加先进的燃料电池催化剂。

关键词:低温燃料电池;低铂催化剂;核壳结构正文: 低温燃料电池是直接以化学反应方式将燃料的化学能转换为电能的能量转换装置,是一种绿色的能源技术,对解决目前我们所面临的能源危机和环境污染问题具有重要意义,美国《时代周刊》将燃料电池列为21 世纪的高科技之首;在我国的科技发展规划中,燃料电池技术也被列为重要的发展方向之一。

催化剂是燃料电池中关键材料之一,催化剂的成本占到燃料电池成本的1/3。

铂被证明是用于低温燃料电池的最佳催化剂活性组分,但用铂做为燃料电池催化剂也存在如下严重问题:(1)铂资源匮乏;(2)价格昂贵;(3)抗毒能力差。

目前通过合金来改善催化剂的研究有碳负载的铂钌合金催化剂PtRu/C,以及添加有其他促进成分的Pt/C 和PtRu/C 催化剂等。

为了有效降低燃料电池的成本,主要采用集中两个方面研究来降低铂载量:(1)开发非铂电催化剂;(2)开发研制低铂电催化剂。

本文就此对近年来的研究现状进行综述。

非铂催化剂的研究,主要采用钯基或钌基掺杂其他金属制备催化剂,近年来,研究人员用了多种方法制备了各种活性组分高度分散的钯基催化剂,在催化燃料电池的阴极氧还原反应(ORR)中显示了可与铂基催化剂相媲美的效果。

同时,作为直接甲酸燃料电池(DFAFC)和直接乙醇燃料电池(DAFC)的阳极催化剂,也显示了诱人的应用前景。

另外,Pd 基催化剂不仅比Pt 便宜,而且Pd 资源储量丰富,虽然Pd 对氧还原(ORR)催化活性不如Pt 好,但是Pt/Pd 合金能够在一定程度上缩小CO 中毒作用。

Capon 等[1]人很早就研究了Pd 对甲酸氧化的电催化性质,发现甲酸在Pd 与Pt 上电氧化最大的不同是在Pd 上只有一个氧化峰,这是因为Pd 对甲酸的氧化是通过直接反应途径进行的。

但是必须要承认,由于非铂催化剂活性太低而无法取代铂基催化剂,很多研究工作集中到低铂电催化剂的研究,主要有两个方面降低铂载量:(1)采用Pt 与其他金属的合金化;(2)采用Pt 单层修饰其他金属或者核壳结构的方法。

就目前世界情况来说,在燃料电池催化剂方面,关于核-壳结构的研究是很有前途性的.由于贱金属容易溶于酸性介质,使掺杂了贱金属的催化剂的稳定性下降;为了避免这一现象,另一种降低铂载量的有效办法是制备核-壳结构双金属电催化剂,通过使用不同的金属做核,铂做壳,从而大大减少铂的使用量,由于这种特殊的核壳结构,两种金属之间的作用力会使催化剂的电催化活性以及稳定性大大提高。

已有研究报道了双金属核-壳结构催化剂的研究,将Pt 分散到另一种金属表面,提高Pt 利用率同时大大降低了Pt 的使用量,实验显示活性比较好[2]。

近几年来,核壳结构的纳米粒子的设计与可控制备已经成为纳米科学领域中的一个热点。

相对于单金属和传统双金属组分(合金或二元金属混合物)纳米颗粒, 核壳结构(记为“核@ 壳”)纳米金属颗粒具有特殊的电子结构及表面性质, 因而其在催化等领域日益受到重视。

目前具有核壳结构的Ag@Pt,Co@Pt[3], Ni@Pt, Fe@Pt, Pt@Co,Cu@Pt 等纳米粒子已经被成功的合成出来[4]。

Shao 将Pt 单层采用嵌电位沉积法修饰到具有核壳结构的Co-Pd /C 纳米颗粒表面,金属粒径3~4 nm,在ORR 催化活性中,其总金属质量比活性是商业Pt/C 催化剂的3 倍.Park 等采用氧化还原过渡金属的制备方法成功合成平均粒径6.4 nm 具有核壳结构Co@Pt。

Wu 等用两步高压有机溶胶法合成具有核壳结构PdPt@Pt/C 催化剂:该催化剂在载体表面均匀分布,粒径分布窄,其中PdPt 核大小约为4.2 nm,Pt 在PdPt 上的厚度约为0.15 nm。

电化学测试结果和单电池测试结果表明,与Pt/C 催化剂相比,PdPt@Pt/C 催化剂不论是对甲醇氧化还是对氧还原都具有非常高的电催化活性,并对甲醇氧化显示出非常好的抗中毒性。

另外, 还采用两步有机溶胶法成功地合成了具有核壳结构的Pt@Pd/C 催化剂用于甲酸氧化[5],电化学结果表明:与单纯Pt/C 和Pd/C 催化剂相比,相同金属量的Pt@Pd/C 催化剂对于甲酸氧化催化活性显示出很大提高,在0.1 V Pt@Pd/C 催化剂峰电流密度是Pd/C 的 5 倍多,并且Pt@Pd/C 对甲酸的催化是通过理想的直接机理进行的。

因此利用纳米尺度上对金属催化剂颗粒的纳米结构进行理性设计和化学裁剪,有可能显著地改变金属催化剂的物理化学性质,将纳米领域核壳结构引入燃料电池催化剂是很有前途的研究方向。

结语:燃料电池催化剂的研究对于燃料电池这种未来清洁能源的商业化具有非常重要的意义。

本文综述了近年来燃料电池催化剂在非铂、低铂催化剂方面的研究工作。

对影响其活性的催化剂组成、载体和制备方法等因素进行了系统的讨论。

并且提出了更加先进的燃料电池催化剂——核壳结构的纳米粒子。

目前,燃料电池催化剂面临的挑战主要集中在:需要将催化剂与燃料电池机理结合,考虑实际工作环境,设计实用的新催化剂;另外,从制备方法和催化剂结构出发,探索高活性、低铂载量的电催化剂以降低催化剂成本。

参考文献[1]CAPON A,PARSONS R. The oxidation of formic acid on noblemetal electrodes,(Ⅱ) a comparion of the behavior of pure elec-trode[J]. Electroanal Chem & Interfacial Electroanal Chem,1973,44(2):239-254.[2]SUN X M,LIYD. Colloidal carbon spheres and their core/shellstructures with noble-metal nanoparticles[J]. Angew Chem Int Ed,2004,43(5):597-601.[3]SHAO M,SASAKI K,MARINKOVIC N S,et al. Synthesis andcharacterization of platinum monolayer oxygen-reduction electro-catalysts with Co-Pd core-shell nanoparticle supports [J].Electro-chem Commun,2007,9(12):2848-2853.[4]KHAN A K,RAY B C,DOLUI S K. Preparation of core-shellemulsion polymer and optimization of shell composition with re-spect to opacity of paint film[J]. Progress in Organic Coatings,2008,62(1):65-70.[5]WU Y N,LIAO S J,SU Y L,et al. Enhancement of anodic oxida-tion of formic acid on palladium decorated Pt/C catalyst [J]. JPower Sources,2010,195(19):6459-6462.。

相关文档
最新文档