(完整版)试简述五大类燃料电池的工作原理和各自的特点

合集下载

简述燃料电池的工作原理

简述燃料电池的工作原理

简述燃料电池的工作原理
燃料电池是一种将化学能直接转化为电能的装置,其工作原理基于氧化还原反应。

燃料电池通常由阳极、阴极和电解质层组成。

电解质层是一个具有离子传导性质的薄膜,常用的材料包括固体聚合物膜或液体电解质。

阳极和阴极则是两种催化剂负责催化反应。

燃料电池的工作过程如下:
1. 燃料(例如氢气、甲醇或乙醇)在阳极一侧经过催化剂的作用进行氧化反应。

在氢气燃料电池中,氢气分子被催化剂分解成质子(H+)和电子(e-)。

2. 质子通过电解质层向阴极端移动,而电子则通过外部电路流动,从而产生电流,并在外部电路中进行工作。

3. 在阴极一侧,通过催化剂催化剂的作用,氧气与质子和电子在阴极上发生还原反应,生成水和热能。

4. 生成的水可以排出系统,而热能可以用作热量供应。

整个过程中,质子通过电解质层从阳极传递到阴极,并与氧气反应生成水,电子则通过外部电路产生电流。

该过程不产生二氧化碳等有害气体,因此被认为是一种清洁能源技术。

燃料电池的工作原理

燃料电池的工作原理

燃料电池的工作原理燃料电池是一种利用化学能转化为电能的装置,通过将燃料和氧气进行反应生成电能。

它的工作原理是基于电化学反应,下面将详细介绍燃料电池的工作原理。

1. 电解质的选择燃料电池中的关键部分是电解质,它能够提供离子导电功能。

电解质的选择决定了燃料电池的类型,常见的电解质主要包括聚合物电解质和固体氧化物电解质。

聚合物电解质燃料电池(PEMFC)使用聚合物薄膜作为电解质,固体氧化物燃料电池(SOFC)使用氧化物陶瓷材料作为电解质。

2. 燃料的供给燃料电池的燃料可以是氢气、甲醇、乙醇等可再生的氢源。

其中,氢气是最常用的燃料。

燃料进入燃料电池后,与电解质中的催化剂发生反应。

例如,在氢燃料电池中,氢气会在阳极催化剂上发生氧化反应,释放出氢离子和电子。

3. 氧气的供给燃料电池还需要氧气作为参与反应的另一种物质。

氧气一般通过空气供应,供给给燃料电池的阴极。

与燃料在阳极上发生的氧化反应相对应的是阴极上的还原反应。

在还原反应中,氧气与氢离子和电子结合产生水。

4. 电化学反应在燃料电池中,燃料在阳极上发生氧化反应,同时产生氢离子和电子。

电解质中的离子导电功能使得氢离子能够自由通过电解质传递到阴极。

而电子则被强制通过外部电路流动,形成电流。

在阴极上,氧气与氢离子和电子结合,发生还原反应,生成水。

5. 电能输出在燃料电池的工作过程中,通过氧化和还原反应产生的电子形成电流,通过外部电路传输到负载上,实现电能输出。

这时,电子完成了从阳极到阴极的传输,而离子通过电解质完成了从阳极到阴极的传输。

离子和电子的相互传输和反应最终导致了电能的输出。

总结:燃料电池的工作原理是将燃料和氧气进行电化学反应,进而将化学能转化为电能。

其中,电解质的选择决定了燃料电池的类型,燃料和氧气在阳极和阴极上的反应使得离子和电子发生传输和结合,从而产生电流。

通过外部电路将电能传输到负载上,实现燃料电池的工作。

燃料电池因其高效能、清洁环保等特点,被广泛应用于交通运输、能源供应等领域,具有很大的发展前景。

燃料电池的种类及应用

燃料电池的种类及应用

燃料电池的种类及应用燃料电池是一种将化学能转化为电能的技术,其工作原理是通过将氢气与氧气反应产生电子、阳离子和水,并产生电流来驱动外部设备。

燃料电池可以分为多种类型,每种类型都有着不同的特点和适用场景。

以下是一些常见的燃料电池种类及其应用:1. 质子交换膜燃料电池(PEMFC):PEMFC 是目前最常见和最常用的燃料电池类型之一。

它由氢气和氧气在质子交换膜中反应生成水和电能。

这种燃料电池具有高效、响应速度快、启动时间短等优点,适用于小型移动设备、汽车、船舶和无人机等应用。

2. 高温聚合物电解质燃料电池(HT-PEMFC):HT-PEMFC 操作温度较高,约为150-200摄氏度。

它通常使用高温聚合物作为电解质,这使得它具有更好的耐久性和氧化稳定性。

由于其高温操作条件,它可以直接从燃料中产生电,因此适用于汽车等需要高功率输出的应用。

3. 燃料电池电动汽车(FCEV):燃料电池电动汽车是一种使用燃料电池作为能源的电动汽车。

它使用氢气作为燃料,通过与空气中的氧气反应来产生电能。

与传统的燃油汽车相比,燃料电池电动汽车具有零排放、零污染和长续航里程等优点。

4. 固体氧化物燃料电池(SOFC):SOFC 是一种高效、长寿命的燃料电池,它可以直接将化学能转化为电能。

它使用固体氧化物作为电解质,通常在800-1000摄氏度的高温条件下运行。

SOFC 可以使用多种燃料,包括氢气、甲烷和生物质等,因此在工业应用中具有广泛的用途,如电力发电站、垃圾处理厂等。

5. 直接甲醇燃料电池(DMFC):DMFC 通过将甲醇和氧气反应产生电能。

这种燃料电池不需要氢气供应,因此它更加便携和灵活。

DMFC 适用于小型移动设备,如笔记本电脑和移动电话等。

6. 氧化铝燃料电池(AFC):AFC 通常使用碱性电解质和盐水作为电解质,氢气和氧气反应产生电能。

它具有低成本、高效率和长寿命等优点,但由于其在腐蚀性液体中的操作,因此应用范围较为有限。

燃料电池及其相关技术

燃料电池及其相关技术

燃料电池及其相关技术随着世界对环境保护要求的不断提高,燃料电池技术越来越被人们所重视。

燃料电池可以利用水氢化反应生成电能,具有高效、环保等特点,因此在车辆、能源和电力等领域有广泛应用。

本文将从燃料电池的基本原理、种类、技术优势以及挑战等方面进行探讨。

一、燃料电池的基本原理燃料电池是通过氢气和氧气进行水氢化反应产生电力的装置,其基本原理是利用氢气和氧气在电催化剂的作用下,将水气化成水和电能同时产生。

其中,氢气是由燃料电池燃料池中的燃料进行电化学反应而产生的。

电化学反应是指在固体-液体,液体-液体等界面处进行氧化还原反应。

这种反应的催化剂是活性吸附氧化酶。

反应后,氢气的电荷会流经电极,形成电流,从而驱动电动机等设备运转。

二、燃料电池的种类根据燃料电池的类型不同,可以分为以下四种:1.质子交换膜燃料电池(PEMFC)2.固体氧化物燃料电池(SOFC)3.碱性燃料电池(AFC)4.磷酸燃料电池(PAFC)PEMFC是目前最广泛应用的燃料电池类型之一,其催化剂可以利用贵金属如铂等,具有高效、快速和低温等特点。

SOFC可以通过用固态离子导体代替液态电解质使它在高温下运转,具有较高的能源输出密度和效率,用于电力生产和微型能源源等方面具有良好的应用前景。

AFC因其高度阻止碳沉积和较快的反应速率,被广泛应用于太空和工业应用。

PAFC则以其能产生高效电力的能源和较低的氮化物排放而闻名于世。

三、燃料电池技术的优点与挑战燃料电池技术因其环保、高效、低排放等特点而备受青睐。

相对于传统的燃烧产生电的方式,燃料电池可以减少空气污染和温室气体排放。

同时,由于其运动部件的结构简单、使用寿命长、噪音低等优点,因此逐渐被用作汽车和家电等领域的动力源,成为人们探索低碳绿色发展的有力手段。

然而,燃料电池技术面临着一些挑战。

首先,燃料电池在制造过程中需要使用高价的贵金属作为催化剂,这会增加生产成本,降低其普及度。

其次,燃料电池在不同的可替代能源如太阳能等面前可能会降低其市场竞争力。

试简述五大类燃料电池的工作原理和各自的特点

试简述五大类燃料电池的工作原理和各自的特点

试简述五大类燃料电池的工作原理和各自的特点燃料电池是一种特殊的电池,使用燃料(如氢气、甲醇等)和氧气作为氧化还原反应的原料,在其中引入电解质和催化剂,从而实现燃料的电氧化和产电的过程。

燃料电池的常见分类方法有五种,包括质子交换膜燃料电池、直接甲醇燃料电池、固体氧化物燃料电池、碱性燃料电池和离子聚合物燃料电池。

这篇文章将会逐一介绍这些燃料电池的工作原理及各自的特点。

质子交换膜燃料电池质子交换膜燃料电池(Proton Exchange Membrane Fuel Cells,PEMFC)是一种常用的燃料电池,使用氢气和氧气进行反应。

这种燃料电池通过质子交换膜将氢离子从阴极传导到阳极,同时通过氧气在阳极上进行氧化反应,产生电流。

PEMFC 的工作温度通常在60-90℃之间,反应产生的水和热量可以直接排放。

PEMFC 的优点在于响应时间快,电子传导性好,能量密度高,且输出电压稳定。

缺点则在于对纯氢气的依赖性,电极上容易沉积垢物,且质子交换膜对化学稳定性和耐久性的要求较高。

直接甲醇燃料电池直接甲醇燃料电池(Direct Methanol Fuel Cells,DMFC)是另一种常见的燃料电池,使用甲醇和氧气进行反应。

DMFC 通过将甲醇和水在阴极上进行氧化反应,产生质子和二氧化碳;而在阳极上则通过氧气还原,产生水和电流。

DMFC 的工作温度通常在60-90℃之间,较为适合小型可携式设备。

DMFC 的优点在于能够直接使用液态甲醇(或甲醇水溶液)作为燃料,更易于储存和使用。

其缺点则在于甲醇受贵金属催化剂上电子传导速率较慢,且反应过程中产生的CO2 会限制其效率和稳定性。

固体氧化物燃料电池固体氧化物燃料电池(Solid Oxide Fuel Cells,SOFC)是一种高温燃料电池,使用氢气和氧气进行反应。

SOFC 在阳极上通过水和氢气的氧化反应,产生质子和电子;而在阴极上则通过二氧化碳的还原,产生氧离子和电子。

燃料电池工作原理原理

燃料电池工作原理原理

燃料电池工作原理原理
燃料电池是一种通过化学反应将燃料直接转化为电能的设备。

其基本工作原理可以简单概括为以下几个步骤:
1. 燃料输入:燃料电池系统通常使用氢气作为燃料。

燃料通过燃料供应系统输入电池。

2. 氢气分解:燃料电池中的阳极(负极)通常使用铂等催化剂,将输入的氢气(H2)分解成质子(H+)和电子(e-)。

3. 电化学反应:质子通过电解质(通常为聚合物电解质膜)传递到阴极(正极)一侧,而电子则通过外部电路流动,形成电流。

4. 氧气进入:阴极通常使用氧气(O2)作为氧化剂,氧气通
过外部供气系统输入电池。

5. 化学反应:在阴极一侧,氧气与质子和电子发生化学反应,生成水(H2O)。

6. 产生电能:在化学反应的过程中,由于电子在外部电路中流动,所以产生了电流,从而转化为电能供应给外部设备。

总之,燃料电池通过氧化剂和燃料的化学反应,将化学能转化为电能,并以氢气和水作为唯一的排放物,实现了高效、清洁的能量转换。

燃料电池系统工作原理

燃料电池系统工作原理

燃料电池系统工作原理燃料电池系统是一种将化学能直接转换为电能的装置,它通过利用氢气和氧气的化学反应来产生电力。

燃料电池系统由燃料电池堆、氢气和氧气供应系统、电化学负载和控制系统组成。

下面将详细介绍燃料电池系统的工作原理。

我们来了解燃料电池堆的结构。

燃料电池堆由多个燃料电池单元组成,每个单元包括质子交换膜(PEM)、阳极、阴极和电解质。

质子交换膜是燃料电池堆的核心部分,它具有良好的质子传导性能,同时阻挡氢气和氧气之间的电子流动,确保电子通过外部电路流动以产生电能。

燃料电池系统的工作过程如下:首先,氢气从氢气供应系统进入阳极侧,氧气从氧气供应系统进入阴极侧。

在阳极侧,氢气分子被氧化成质子和电子。

质子可以通过质子交换膜传导到阴极侧,而电子则通过外部电路流动到阴极侧,这就产生了电流。

在阴极侧,氧气与质子和电子发生还原反应,生成水。

这个过程中释放出的能量被转化为电能,同时产生的水蒸气通过排气系统排出。

整个反应过程可以用如下方程式表示:2H2 + O2 → 2H2O这个方程式说明了氢气和氧气在燃料电池堆中的化学反应过程,氢气和氧气通过质子交换膜在阳极和阴极之间发生化学反应,最终生成水和电能。

燃料电池系统还包括氢气和氧气供应系统。

氢气供应系统负责储存和输送氢气到燃料电池堆的阳极侧,而氧气供应系统则负责将氧气输送到阴极侧。

为了确保燃料电池系统的安全性和稳定性,供氢系统和供氧系统需要具备高压、高纯度和自动控制等特点。

除了燃料电池堆和氢气、氧气供应系统,电化学负载也是燃料电池系统的重要组成部分。

电化学负载可以是电动机、发电机或储能装置等,它们通过连接到燃料电池系统的外部电路,可以利用燃料电池产生的电能进行工作或储存。

燃料电池系统还需要一个精确的控制系统来监测和调节燃料电池的工作状态。

控制系统可以根据电化学负载的需求,调整氢气和氧气的供应量,以保持燃料电池系统的稳定工作。

总结起来,燃料电池系统通过利用氢气和氧气的化学反应产生电能。

燃料电池的原理与应用

燃料电池的原理与应用

燃料电池的原理与应用燃料电池是一种将化学能直接转换成电能的器件,因其高效、低排放等特点,日益受到关注。

本文将从燃料电池的原理、种类及应用等方面进行探讨。

一、燃料电池的原理燃料电池就是通过化学反应直接将氢气、甲烷等燃料和氧气相结合,产生电能的设备。

其原理与电池相似,但二者在能量来源、使用方式等方面存在差异。

燃料电池中,氢气或甲烷等燃料通过与氧气反应生成水和二氧化碳等产物,同时产生电流。

具体来说,燃料电池中的阳极和阴极分别涂有催化剂,当燃料通过阳极时,催化剂会将其分解成质子和电子,电子通过外部电路流入阴极,质子则通过电解质膜传递到阴极。

在阴极处,质子、电子和氧气结合成水,同时产生电流。

二、燃料电池的种类目前,燃料电池主要分为碱性燃料电池、固态氧化物燃料电池、聚合物电解质燃料电池等几种类型。

碱性燃料电池是最早开发的燃料电池之一,以氢气和氧气为燃料。

由于其反应速率较快,效率较高,因此曾经在航天领域被广泛应用。

但碱性燃料电池容易受到碱腐蚀等问题的影响,因此成本较高,限制了其应用范围。

固态氧化物燃料电池是一种高温燃料电池,以氢气和氧气为燃料,因反应速率较慢,需要高温环境下运作。

但由于该型电池发电效率高且成本低,因此在发电站等大型场合被广泛使用。

聚合物电解质燃料电池是一种常温型燃料电池,以氢气、甲烷、乙醇等为燃料。

聚合物电解质燃料电池反应速率较快,且具有卓越的耐腐蚀性和稳定性,因此广泛应用于汽车、移动电源等领域。

三、燃料电池的应用燃料电池具有高效、低排放等特点,因此被广泛应用于汽车、移动电源、无人机等领域。

在汽车领域,传统的燃油汽车会产生大量尾气排放,污染环境。

而使用燃料电池技术的汽车可以将氢气和氧气转化为电能,不产生尾气,且具有更高的能量转换效率,支持更长的行驶里程。

因此,该技术被视为绿色出行的未来趋势。

除了汽车外,燃料电池还可以应用于移动电源、无人机等领域。

由于其具有高效、稳定等特点,能够支持高能量密度的需求,因此被广泛用于各类移动设备的动力系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、试简述五大类燃料电池的工作原理和各自的特点
燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。

3.1 碱性燃料电池(AFC)
碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。

3.1.1原理
使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。

这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。

负极反应:2H2 + 4OH-→ 4H2O + 4e-
正极反应:O2 + 2H2O + 4e- → 4OH-
碱性燃料电池的工作温度大约80℃。

因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。

不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。

如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。

此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。

3.1.2 特点
低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。

3.2 磷酸燃料电池(PAFC)
磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。

正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。

磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于
150 - 200℃左右,但仍需电极上的白金催化剂来加速反应。

其阳极和阴极上的反应与质子交换膜燃料电池相同,但由于其工作温度较高,所以其阴极上的反应速度要比质子交换膜燃料电池的阴极的速度快。

3.2.1 原理
电池中采用的是100%磷酸电解质,其常温下是固体,相变温度是42℃。

氢气燃料被加入到阳极,在催化剂作用下被氧化成为质子。

氢质子和水结合成水合质子,同时释放出两个自由电子。

电子向阴极运动,而水合质子通过磷酸电解质向阴极移动。

因此,在阴极上,电子、水合质子和氧气在催化剂的作用下生成水分子。

具体的电极反应表达如下。

阳极反应:
H2 + 2H2O → 2H3O+ + 2e
阴极反应:
O2 + 4H3O++ 4e → 6H2O
总反应:
O2 + 2H2 → 2H2O
3.2.2 特点
磷酸燃料电池一般工作在200℃左右,采用铂作为催化剂,效率达到40%以上。

由于不受二氧化碳限制,磷酸燃料电池可以使用空气作为阴极反应气体,也可以采用重整气作为燃料,这使得它非常适合用作固定电站。

特点较高的工作温度也使其对杂质的耐受性较强,当其反应物中含有1-2%的一氧化碳和百万分之几的硫时,磷酸燃料电池照样可以工作。

磷酸燃料电池的效率比其它燃料电池低,约为40%,其加热的时间也比质子交换膜燃料电池长。

虽然磷酸燃料电池具有上述缺点,它们也拥有许多优点,例如构造简单,稳定,电解质挥发度低等。

磷酸燃料电池可用作公共汽车的动力,而且有许多这样的系统正在运行,不过这种电池是乎将来也不会用于私人车辆。

在过去的20多年中,大量的研究使得磷酸燃料电池能成功地用语固定的应用,已有许多发电能力为0.2 – 20 MW的工作装置被安装在世界各地,为医院,学校和小型电站提供动力。

它采用磷酸为电解质,利用廉价的炭材料为骨架。

它除以氢气为燃料外,现
在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。

磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。

3.3 熔融碳酸盐燃料电池(MCFC)
熔融碳酸盐燃料电池是由多孔陶瓷阴极、多孔陶瓷电解质隔膜、多孔金属阳极、金属极板构成的燃料电池。

3.3.1 原理
电解质是熔融态碳酸盐。

反应原理示意图如下:
阴极:O2 + 2CO2 + 4e-→2CO32-
阳极:2H2 + 2CO32-→ 2CO2 + 2H2O + 4e-
总反应:O2 + 2H2→ 2H2O
3.3.2 特点
熔融碳酸盐燃料电池是一种高温电池(600℃~700℃),具有效率高(高于40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多优点,是下一世纪的绿色电站。

燃料电池工程中心研制和小批量生产隔膜材料和电池隔膜,制备MCFC电极并组装数千瓦的电池组。

已可批量生产隔膜材料LiAlO2粉料,开发成功制备1000cm2 LiAlO2隔膜的工艺,已组装了28cm2、110cm2单电池,并进行了电池性能的评价和研究,现正在进行千瓦级电池组的研制。

3.4 固体氧化物燃料电池(SOFC)
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置。

被普遍认为是在未来会与质子交换膜燃料电池(PEMFC)一样得到广泛普及应用的一种燃料电池。

3.4.1 原理
固体氧化物燃料电池的工作原理与其他燃料电池相同,在原理上相当于水电
解的“逆”装置。

其单电池由阳极、阴极和固体氧化物电解质组成,阳极为燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂。

工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。

在固体氧化物燃料电池的阳极一侧持续通入燃料气,例如:氢气(H2)、甲烷(CH4)、城市煤气等,具有催化作用的阳极表面吸附燃料气体,并通过阳极的多孔结构扩散到阳极与电解质的界面。

在阴极一侧持续通人氧气或空气,具有多孔结构的阴极表面吸附氧,由于阴极本身的催化作用,使得O2得到电子变为O2-,在化学势的作用下,O2-进入起电解质作用的固体氧离子导体,由于浓度梯度引起扩散,最终到达固体电解质与阳极的界面,与燃料气体发生反应,失去的电子通过外电路回到阴极。

3.4.2 特点
SOFC与第一代燃料电池(磷酸型燃料电池,简称PAFC)、第二代燃料电池(熔融碳酸盐燃料电池,简称MCFC)相比它有如下优点:
(1)较高的电流密度和功率密度;
(2)阳、阴极极化可忽略,彼化损失集中在电解质内阻降;
(3)可直接使用氢气、烃类(甲烷)、甲醇等作燃料,而不必使用贵金属作催化剂;
(4)避免了中、低温燃料电池的酸碱电解质或熔盐电解质的腐蚀及封接问题;
(5)能提供高质余热,实现热电联产,燃料利用率高,能量利用率高达80%左右,是一种清洁高效的能源系统;
(6)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构;
(7)陶瓷电解质要求中、高温运行(600~1000℃),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。

固体氧化物燃料电池具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。

在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景。

3.5 质子交换膜燃料电池(PENFC)
质子交换膜燃料电池(proton exchange membrane fuel cell,英文简称PEMFC)是一种燃料电池,在原理上相当于水电解的“逆”装置。

其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。

工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。

3.5.1 原理
两电极的反应分别为:
阳极(负极):2H2-4e=4H+
阴极(正极):O2+4e+4H+=2H2O
注意所有的电子e都省略了负号上标。

由于质子交换膜只能传导质子,因此氢质子可直接穿过质子交换膜到达阴极,而电子只能通过外电路才能到达阴极。

当电子通过外电路流向阴极时就产生了直流电。

以阳极为参考时,阴极电位为1.23V。

也即每一单电池的发电电压理论上限为1.23V。

接有负载时输出电压取决于输出电流密度,通常在0.5~1V 之间。

将多个单电池层叠组合就能构成输出电压满足实际负载需要的燃料电池堆(简称电堆)。

3.5.2 特点
质子交换膜燃料电池具有如下优点:其发电过程不涉及氢氧燃烧,因而不受卡诺循环的限制,能量转换率高;发电时不产生污染,发电单元模块化,可靠性高,组装和维修都很方便,工作时也没有噪音。

所以,质子交换膜燃料电池电源是一种清洁、高效的绿色环保电源。

相关文档
最新文档