第三章-2-热力过程
第三章 热力学第二定律(10修)

c d,恒温可逆压缩。U3 = 0
W3
nRT2
ln
V3 V4
;
Q3
W3
nRT2
ln
V4 V3
d a,绝热可逆压缩。 Q4 0
W4 ΔU4 nCv,m (T1 T2 )
p
a
d
T1 b
c T2
V
a b,恒温可逆膨胀。 b c,绝热可逆膨胀 c d,恒温可逆压缩。
第三章 热力学第二定律
Chapter3: The Second Low of Thermodynamics
第二定律解决的问题:
系统状态发生变化时(如:状态1
状态2),
变化过程的方向与限度的判定(通过定量计算解决)
三个判据:
熵函数S---- - S 判据: S 0
赫姆霍兹函数A-- A 判据: A 0 吉布斯函数G--- G 判据: G 0
1.熵的导出
(Qr/T) 0
由 状 态 函 数 的 性 质 可 知, 状 态 函 数 的 改 变 量(dX)与 路 径 无 关,即dX沿 环 路 的 积 分 为 零,
Qr/T dX
即: Qr/T对应着某状态函数的全微分, 定义熵 S X,则 : dS Qr/T
熵的定义
η
r
1 T2 T1
对任意循环:
即:
Q1 Q2 0 T1 T2
{ Q1 Q2 0
T1 T2
不可逆 可逆
对无限小循环:
Q1 Q2 0 { 不可逆
T1
T2
可逆
对多个热源的 任意循环:
Q/ T 0
{
第三章 热力学第二定律

式中 n 为电池反应中电子的物质的量,E 为可逆电池的电动势,F 为 Faraday 常数。 这是联系热力学和电化学的重要公式。因电池对外做功,E 为正值,所以加“-”号。
dS − δQ ≥ 0 T
δQ
dS ≥
或
T
这些都称为 Clausius 不等式,也可作为热力学第二定律的数学表达式。 二、熵增加原理
1.对于绝热系统中所发生的变化,δQ = 0 ,所以
dS ≥ 0
或
∆S ≥ 0
等号表示绝热可逆过程,不等号表示绝热不可逆过程。
熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使系统的熵增加。
处于高温时的系统,分布在高能级上的分子数较集中;而处于低温时的系统,分子较 多地集中在低能级上。当热从高温物体传入低温物体时,两物体各能级上分布的分子数都将 改变,总的分子分布的花样数增加,是一个自发过程,而逆过程不可能自动发生。 二、熵和热力学概率的关系——Boltzmann 公式 Boltzmann 公式
§2.5 Clausius 不等式与熵增加原理
一、Clausius 不等式——热力学第二定律的数学表达式 Clausius 不等式:
∑ δQ
∆SA→B − (
i
T ) A→B ≥ 0
δQ 是实际过程的热效应,T 是环境温度。若是不可逆过程,用“>”号,可逆过程用
“=”号,这时环境与系统温度相同。 对于微小变化:
§3.6 热力学基本方程与 T-S 图
一、热力学的基本方程——第一定律与第二定律的联合公式
1.根据热力学第一定律
dU = δW + δQ = δQ − pdV (不考虑非膨胀功)
根据热力学第二定律
热力学第二定律

内容:所有工作于同温热源与同温冷源之间的热机, 可逆机效率最大。
数学式:
W Q1 Q2 T2 T1
Q2
Q2
T2
< 任意机 = 可逆机
或 Q1 Q2 0 可逆循环热温熵之和等于零
T1 T2
不可逆循环热温熵之和小于零
或
QB 0
TB
定理证明:
用反证法,假设
I R
由图可知:
WW Q1' Q1
循环净结果: 热从低温热源自动传到高温热源而无其它变化,
违背了克劳修斯说法。
∴ 假设不成立,即 I R
卡诺定理推论:
所有工作于同温热源与同温冷源间的可逆机,热 机效率都相同而与工作介质无关。
定理的意义:
1) 指出了热机的效率,说明热不能100%转化为功; 2) 为热力学第二定律熵函数S的提出奠定了基础。
第三章 热力学第二定律
热力学第二定律解决的问题: 预测一定条件下一个过程进行的自发方向和限度。
自发过程: 无外力作用条件下(即不消耗外功)能够进行的过程。
限度: 一定条件下,过程能够进行到的最大程度。
§3-1 自发过程的共同特征
一、几个自发过程实例 1. 热传递
高温物体(T2) 热自动传递 低温物体(T1)
熵判据关键点: ①隔离体系中可能发生的过程,总是向熵增大方向进行
——过程进行的方向 ②一定条件下熵增至其最大值
——过程的限度
五、熵和“无用能”
高温热源 T2
Q
Q
R1 W1
T1
Q
Q-W1
R2 W2 Q -W2
低温热源 T0
图2-7 能量的退化
卡诺热机R1:
R1
W1 Q
第三章 热力学第二定律

二、熵增原理、热力学第二定律的数学表达式
1、熵的导出
P/[P]
T1 δQ1
T3 δQ3
T5 δQ5
V/[V]
T2 δQ2 T4 δQ4 T6 δQ6
dS (
Q
T
) 可逆
dS
Q可逆
T
——熵的定义式
熵的单位:J/K 状态函数 熵的特性: 广延性质 dS为全微分 2、热力学第二定律的数学表达式
§ 3—3 △S的计算 一、理想气体单纯PVT变化过程△S的计算
S
T2
nCV ,m
T1
V2 dT nR ln T V1
例题1:当物质量为n的理想气体,经历 PV1T1 P2V2T2 1 的状态变化。 试证物系的
S
T2
nCV ,m
T2
T1
V2 dT nR ln T V1 P dT nR ln 1 T P2
2、亥姆霍兹函数判据
若T,V恒定,且W/=0,则有
dT ,V A 0
或
T ,V A 0
自发(不可逆) 平衡(可逆)
二、吉布斯函数(自由焓、等温等压位)(G) 1、定义式 (1)
G H TS U PV TS A PV
——G的定义式
G的特点
具有能量单位 广延性质 状态函数 绝对值无法确定
W (或 W 0) 0
三、自发过程的判据 1、熵判据
S隔离 S物系 S环境 0
条件:Q=0 W=0
自发(不可逆) 平衡(可逆)
S
Smax 平衡
2、吉布斯函数判据
T ,PG 0
自发(不可逆) 平衡(可逆)
适用条件: T1 T2 T环境 T
第三章热力学第二定律

★
自发过程的共同特征
a.自发过程单向的朝着平衡 b.自发过程都有做功本领 c.自发过程都是不可逆的
2.热、功转换
具有普遍意义的过程:热功转化的不等价性。
无代价,全部
功
热
不可能无代价,全部
热机效率
3.热力学第二定律的两种经典表述
不可能把热量从低温 热源传到高温热源, 而不引起其他变化。
克劳修斯
不可能从单一热源吸热 使之完全变为功,而不 留下其它变化。
12.2
V2 22.4 J K 1 S (O 2 ) nR ln 0.5 8.315ln 12.2 V1
★
相变化过程
(1)可逆相变
在相平衡压力p和温度T下
B()
T, p 可逆相变
B()
Qr H S T T
(2)不可逆相变
不在相平衡压力p和温度T下的相变 B( , T, p) S 1 T, p S 不可逆相变 B(, T, p) S3 2
S
T2
T1
(4)绝热可逆过程
(5)绝热不可逆过程
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
恒容 S1
( p ',V1 , T2 )
恒温 S2
S S1 S2 nCV ,m ln
T2 V nR ln 2 T1 V1
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
求各步骤及途径的Q,△S。 (1)恒温可逆膨胀: (2)先恒容泠却至使压力降至100kPa,再恒压加热至T2; (3)先绝热可逆膨胀到使压力降至100kPa,再恒压加热 至T2;
例:1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程, 求Q,△S及△S i so。 (1)可逆膨胀到末态压力为50 kPa; (2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。
工程热力学理想气体的热力性质及基本热力过程

气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p
令
cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。
第3章热力学
第三章热力学思考题3-1令金属棒的一端插人冰水混合的容器中,另一端与沸水接触,待一段时间后棒上各处温度不随时间变化,这时全属棒是否处于平衡态为什么答: 不是平衡态。
因平衡态是,在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
因金属棒是在外界条件影响下达到平衡的,所以不是平衡态。
3-2 在热力学中为什么要引入准静态过程的概念答:在系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫准静态过程。
准静态过程是无限缓慢的过程。
由于pV图上的任何一个点都代表了一个稳定的平衡态,因而pV图上任何一条光滑的曲线都代表了一个准静态过程。
如果假定系统在状态变化过程中所经历的实际过程是准静态过程的话,那么这个过程就可以在pV图上画出来,从而使对状态变化的研究变得简单而直观了。
因此,在热力学中引入准静态过程的方法实际上是一种将过程简化的理想化方法。
3-3 怎样区别内能与热量下面哪种说法是正确的(1) 物体的温度越高,则热量越多;(2) 物体的温度越高,则内能越大。
答:内能与热量是两个不同的概念。
内能是由热力学系统状态所决定的能量.从微观的角度看,内能是系统内粒子动能和势能的总和。
关于内能的概念,应注意以下几点:(a) 内能是态函数,是用宏观状态参量(比如p、T、V)描述的系统状态的单值函数,对于理想气体,系统的内能是温度T的单值函数;(b) 内能的增量只与确定的系统状态变化相关,与状态变化所经历的过程无关;(c) 系统的状态若经历一系列过程又回到原状态,则系统的内能不变; (d) 通过对系统做功或者传热,可以改变系统的内能。
热量是由于系统之间存在温度差而传递的能量。
从微观的角度看,传递热量是通过分子之间的相互作用完成的.对系统传热可改变系统的内能。
关于热量,应注意以下几点:(a) 热量是过程量,与功一样是改变系统内能的一个途径,对某确定的状态,系统有确定的内能,但无热量可言;(b) 系统所获得或释放的热量,不仅与系统的初、末状态有关,也与经历的过程有关,过程不同,系统与外界传递热量的数值也不同;(c) 在改变系统的内能方面,传递热量和做功是等效的,都可作为系统内能变化的量度。
高中物理【人教版】选必3:第三章2热力学第一定律
第三章 2 热力学第一定律问题?汽缸内有一定质量的气体,压缩气体的同时给汽缸加热。
那么,气体内能的变化会比单一方式(做功或传热)更明显。
这是为什么呢?热力学第一定律焦耳的实验一方面表明,以不同的方式对系统做功时,只要系统始末两个状态是确定的,做功的数量就是确定的;另一方面也向我们表明,为了改变系统的状态,做功和传热这两种方法是等价的。
也就是说,一定数量的功与确定数量的热相对应。
在焦耳之前,人们还没有认识到做功与热传递在改变系统内能方面是等价的。
焦耳做实验的本意是要探究两者的关系。
我们在上节课已经知道,单纯地对系统做功(热力学系统的绝热过程),内能的变化量与功的关系是ΔU = W单纯地对系统传热,则内能的变化量与传递热量的关系是ΔU = Q既然做功与传递热量对改变系统的内能是等价的,那么,当外界既对系统做功又对系统传热时,内能的变化量就应该是ΔU = Q + W也就是说,一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
这个关系叫作热力学第一定律(first law of thermodynamics )。
可见,“问题”栏目中的汽缸内气体内能的变化量等于活塞对气体所做的功与通过加热向汽缸内气体传递的热量之和。
思考与讨论一定质量的气体,膨胀过程中是外界对气体做功还是气体对外界做功?如果膨胀时气体对外做的功是 135 J ,同时向外放热 85 J ,气体内能的变化量是多少?内能是增加了还是减少了?请你通过这个例子总结功和热量取正、负值的物理意义。
热力学第一定律的应用在运用热力学第一定律解决问题时,需要首先确定研究对象。
对于公式ΔU =Q +W ,我们可以这样理解:外界对系统做功有助于系统内能的增加,因此,外界对系统做功时,W 取正值;而系统对外界做功时,W 取负值。
同理,外界对系统传递热量有助于系统内能的增加,U 1U 2F因此,外界对系统传递的热量Q取正值;而系统向外界传递的热量Q就取负值。
第三章热力学第二定律
Chapter 3 The Second Law of Thermodynamics
不可能把热从低 温物体传到高温物 体,而不引起其 它变化
1
不违背第一定律的事情是否一定能成功呢?
例1. H2(g) + 1/2O2(g) H2O(l)
rHm(298K) = -286 kJ.mol-1
A Q Q A ( T )R1 B ( T )R 2 0 B
20
移项得:
B Q Q ( ) ( ) R A T 1 A T R2 B
说明任意可逆过程的热 温商的值决定于始末状态, 而与可逆途径无关,这个热
温商具有状态函数的性质。
任意可逆过程
21
必是某个函数的全微分(∵只有全微分的积分才 与路径无关)。Clausius将此状态函数定义为熵 (entropy),用符号S表示。
I R
16
Carnot定理的实际意义: 原则上解决了的极限,提高的根本途径。 理论意义,热二律数学表达式推出的基础。 卡诺定理的推论:所有工作于同温热源与同温冷 源之间的可逆热机,其热机效率都相等,即与热 机的工作物质无关。
17
§3-3熵的概念
1. 熵的导出
Q1 Q2 卡诺循环: T T 0 1 2
1
W Q1 Q2 T1 T2 Q1 Q1 T1
Q2 T 1 2 Q1 T1
Q1 Q2 0 T1 T2
Q — 热温商 T
14
3. 卡诺定理及其推论 所有工作于同温热源和同温冷源之间的热机,其效 率都不能超过可逆机,即可逆机的效率最大。 hI £ h R
ThIBiblioteka W Q1 Q2 Q2 1 Q1 Q1 Q1
中国石油大学热工基础典型问题第三章 理想气体的性质与热力过程
工程热力学与传热学第三章 理想气体的性质与热力过程 典型问题分析一. 基本概念分析1 c p ,c v ,c p -c v ,c p /c v 与物质的种类是否有关,与状态是否有关。
2 分析此式各步的适用条件:3将满足下列要求的理想气体多变过程表示在p-v 图和T-s 图上。
(1) 工质又膨胀,又升温,又吸热的过程。
(2) 工质又膨胀,又降温,又放热的过程。
4 试分析多变指数在 1<n<k 范围内的膨胀过程特点。
二. 计算题分析理想气体状态方程式的应用 1某蒸汽锅炉燃煤需要的标准状况下,空气量为 q V =66000m 3/h ,若鼓风炉送入的热空气温度为t 1=250°C ,表压力 p g1=20.0kPa 。
当时当地的大气压力 p b =101.325kPa 。
求实际的送风量为多少?理想气体的比热容 2在燃气轮机动力装置的回热器中,将空气从150ºC 定压加热到350ºC ,试按下列比热容值计算对每公斤空气所加入的热量。
01 按真实比热容计算;02 按平均比热容表计算(附表2,3); 03 按定值比热容计算;04 按空气的热力性质表计算(附表4); 3已知某理想气体的比定容热容c v =a+bt , 其中a ,b 为常数,试导出其热力学能,焓和熵变的计算式。
理想气体的热力过程 4一容积为 0.15m 3 的储气罐,内装氧气,其初始压力 p 1=0.55MPa ,温度 t 1=38ºC 。
若对氧气加热,其温度,压力都升高。
储气罐上装有压力控制阀,当压力超过 0.7MPa 时,阀门便自动打开,dTm c dHpV U d pV d dU pdV dU WdU Q P ==+=+=+=+=)()(δδ典 型 问 题放走部分氧气,即储气罐中维持的最大压力为 0.7MPa 。
问当罐中氧气温度为 285ºC 时,对罐中氧气共加入了多少热量?设氧气的比热容为定值。