比较——Adipogenic differentiation of of human induced pluripotent stem cells
克氏综合征胎儿脐带间充质干细胞模型的建立

克氏综合征胎儿脐带间充质干细胞模型的建立罗建安; 杨树法; 于秀义; 刘欣; 陈振文【期刊名称】《《首都医科大学学报》》【年(卷),期】2019(040)006【总页数】7页(P868-874)【关键词】Klinefelter综合征; 脐带间充质干细胞; 成骨分化; 成脂分化【作者】罗建安; 杨树法; 于秀义; 刘欣; 陈振文【作者单位】首都医科大学基础医学院医学遗传学与发育生物学学系北京100069【正文语种】中文【中图分类】R394克氏综合征,即Klinefelter综合征(Klinefelter’s syndrome, KS),是最常见的性染色体三体综合征。
新生儿男婴发病率为1/450至1/600[1]。
KS患者的临床表征为小睾丸、高促性腺激素性腺功能减退、乳房发育、学习困难。
患者易患糖尿病、心血管、呼吸道和胃肠道疾病,常常导致较高的病死率[2-3]。
患有KS的个体在婴儿期、儿童期或成年期均患有医疗和社会功能障碍,对个人、家庭和社会产生有害影响。
由于伦理的原因,对KS综合征患者以及人体标本组织进行研究不易进行。
目前缺乏足够有效的实验模型,因此KS综合征的分子致病机制仍未被深入了解。
过去的几十年中,尽管通过诱导多能干细胞模型(induced pluripotent stemcells, iPSCs)一定程度上揭示了KS综合征异常发育机制[4],但由于iPSCs细胞模型的局限性,使有关KS的研究相对滞后,迫切需要建立一种更贴近疾病真实状况的KS综合征细胞模型。
围产期来源的脐带结缔组织,即沃顿组织(Wharton’s jelly, WJ),具有快速增生、免疫调节能力强、维持多系分化能力、基因组稳定、无致瘤性和遗传稳定性好等特点。
沃顿组织来源的间充质干细胞(Klinefelter’s syndrome umbilical cord mesenchymal stem cells,KUMSCs)是多能细胞,可分化成骨细胞、软骨细胞、脂肪和肌原细胞以及神经元和神经胶质细胞[5-6]。
人腺病毒36型与肥胖发生相互关系的研究进展

人腺病毒36型与肥胖发生相互关系的研究进展董瑞;高晓萌;商庆龙;谷鸿喜【摘要】The potential connection between human adenovirus type 36 (Ad-36) infection and obesity has received extensive research attentions in recent years. Studies indicated that Ad-36 antibody may be associated with body mass index (BMI) in obesity population, and the results were further confirmed in animal model and in vitro cellular models. Viral EA orf-1 gene, cellular adipocyte differentiation pathway and phosphatidylinositol 3-kinase (PI3K) signaling pathway are current focal points of mechanism studies. Since limited data is available, more epidemiological data and mechanism studies are needed to confirm the relationship between Ad-36 infection and obesity.%病毒感染与肥胖发生之间关系的研究在近年来受到关注,尤其是人腺病毒36型(Ad-36)感染.Ad-36抗体的存在与肥胖者体质指数增加具有相关性,体外动物模型和细胞模型实验也支持Ad-36诱导肥胖发生.在肥胖发生机制方面,E4 orf-1基因和脂肪细胞分化通路受到关注,磷脂酰肌醇3激酶(PI3K)途径被认为在Ad-36引发降血糖作用中发挥重要作用.目前,Ad-36的研究数据仍然有限,其与肥胖发生之间关系的确认需更多的流行病学数据和更深入的研究.【期刊名称】《微生物与感染》【年(卷),期】2013(008)001【总页数】4页(P52-55)【关键词】腺病毒36型;肥胖;发生【作者】董瑞;高晓萌;商庆龙;谷鸿喜【作者单位】哈尔滨医科大学微生物学教研室,哈尔滨150081【正文语种】中文肥胖是一种慢性病。
生化标本临床检验异常的原因分析及检验前的质量控制

·影像学及诊断检验·医学食疗与健康 2021年4月第19卷第8期医学检验在疾病的预防、诊断以及治疗过程中都发挥着至关重要的作用。
随着各种新技术的涌现、设备性能的提升和新设备在临床中的推广应用,检验人员专业水平的提高,临床检验医学得到长足的发展。
但是,在检验过程中,受多种外界或人为因素的影响,仍会出现检验异常,结果错误的情况,对疾病的诊断造成不利影响。
临床上将生化标本检验的质量控制分为检验前、检验中和检验后三个不同部分,其中,检验前的质量管理是最为薄弱的环节,也是出现检验异常最多的阶段[1]。
为了提高生化标本实验室分析的准确性和可靠性,做好标本检验前的质量控制尤为重要,本文选择2021年1~3月间来我院接受生化标本临床检验的362例受检者作为研究对象,统计其检测标本在临床检验中的异常发生情况,并对造成检验异常的原因进行分析,以制定针对性检验前质量控制办法。
报道如下。
1 对象与方法1.1 研究对象选取2021年1~3月间来我院接受生化标本临床检验的362例受检者作为研究对象,其中,男性受检者199例,女性受检者163例,受检者的年龄18~64(41.1±6.3)岁。
纳入指标:自愿参与生活指标临床检验,并能配合配合研究人员对相关问题的调查问询;中途无退出的受检者。
排除指标:合并精神障碍或者表达功能障碍的受检者;合并凝血功能障碍或其他血液系统功能障碍的受检者;合并多器官器质性病变的受检者;妊娠期哺乳期女性。
1.2 方法采集受检者的静脉血液标本进行检验,以日本东芝生产的120FR 型全自动生化分析仪及其配套试剂对受检者的肝肾功能,血脂血糖水平等进行测定。
其中,肾功能检测指标包括尿素氮(BUN)和血肌酐(SCr);肝功能检测指标包括血清蛋白(ALB)、谷草转氨酶(AST)、谷丙转氨酶(ALT);血脂检测指标包括胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL-C)和高密度脂蛋白(HDL-C)等;血糖检测指标主要是空腹血糖值(GLU)。
腺苷与多巴酚丁胺负荷超声检测兔冬眠心肌的冠脉造影比较

生长因子,促进细胞增殖,若诱导时添加血清,即使胞浆内有脂滴生成但细胞形态仍为长梭形,不利于对细胞分化过程的把握。
在促分化液1中,IBMX 、胰岛素和地塞米松共同发挥最大诱导效率,促进脂肪细胞由葡萄糖合成脂质的过程。
3d 后长梭形前脂肪细胞分化为圆形,胞浆内开始充脂,此时已不需要大量脂肪细胞增殖基因的表达,因此换用仅含胰岛素的促分化液2维持分化增加成脂率,最终成功诱导前脂肪细胞为脂肪细胞。
原代培养的细胞成分较复杂,必须对所培养的细胞进行鉴定,油红O 染色可以简便快速地测定体外培养前脂肪细胞的转化率,因此本研究采用该方法鉴定前脂肪细胞向脂肪细胞的分化情况。
前脂肪细胞位于成熟的脂肪组织之中,能在体外扩增,具有定向分化为脂肪细胞的能力〔7,8〕。
本研究成功建立了一种稳定高效的原代培养大鼠前脂肪细胞及诱导分化的方法,确立了优良的以脂肪细胞为载体的研究模型,为OSAS 等相关代谢性疾病发病机制的研究奠定了基础。
4参考文献1Rosen ED ,Spiegelman BM.Adipocytes as regulators of energy balance and glucose homeostasis 〔J 〕.Nature ,2006;444(7121):847-53.2Billon N ,Monteiro MC ,Dani C.Developmental origin of adipocytes :newinsights into a pending question 〔J 〕.Biol Cell ,2008;100(10):563-75.3Shahparaki A ,Grunder L ,Sorisky parison of human abdominal subcutaneous versus mental preadipocyte-differentiation in primary cul-ture 〔J 〕.Metabolism ,2002;51(9):1211-5.4von Heimburg D ,Kuberka M ,Rendchen R ,et al .Preadipocyte-loaded col-lagen scaffolds with enlarged pore size for improved soft tissue engineering 〔J 〕.Int J Artif Organs ,2003;26(12):1064-76.5Koh YJ ,Kang S ,Lee HJ ,et al .Bone marrow-derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice 〔J 〕.J Clin Invest ,2007;117(12):3684-95.6Fried SK ,Moustaid-Moussa N.Culture of adipose tissue and isolated adi-pocytes 〔J 〕.Methods Mol Biol ,2001;155:197-212.7Stacey DH ,Hanson SE ,Lahvis G ,et al .In vitro adipogenic differentiation of preadipocytes varies with differentiation stimulus ,culture dimensionali-ty ,and scaffold composition 〔J 〕.Tissue Eng Part A ,2009;15(11):3389-99.8Stillaert FB ,Di Bartolo C ,Hunt JA ,et al .Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds 〔J 〕.Biomaterials ,2008;29(29):3953-9.〔2012-09-03收稿2012-10-28修回〕(编辑曲莉)腺苷与多巴酚丁胺负荷超声检测兔冬眠心肌的冠脉造影比较钟慧颖李金国邓冰晴王歆(福建医科大学附属协和医院心脏彩超室,福建福州350001)〔摘要〕目的比较腺苷负荷超声心动图(ASE )与多巴酚丁胺负荷超声心动图(DSE )结合二维斑点追踪成像技术(STE )在识别冬眠心肌中的应用价值。
人毛囊间充质干细胞临床应用的研究进展

人毛囊间充质干细胞临床应用的研究进展周丹;赵辉;赵洋;刘晋宇【摘要】人毛囊间充质干细胞(hHF-MSCs)不仅具有自我更新和多向分化潜能的成体干细胞特性,同时具有来源丰富、获取方便和无伦理问题等优势,因此得到越来越多国内外学者的关注,已经成为再生医学研究和应用中重要的自体干细胞来源.本文从hHF-MSCs用于制备诱导性多能干细胞(IPS)、应用于组织工程学以及作为基因治疗的载体细胞等方面对目前国内外关于hHF-MSCs的研究进展及所取得的成果进行综述,并展望其在临床方面良好的应用前景.【期刊名称】《吉林大学学报(医学版)》【年(卷),期】2018(044)005【总页数】4页(P1086-1089)【关键词】毛囊;间充质干细胞;诱导多能干细胞;组织工程;基因治疗【作者】周丹;赵辉;赵洋;刘晋宇【作者单位】吉林大学第二医院儿科,吉林长春130041;吉林大学第二医院儿科,吉林长春130041;吉林大学第二医院儿科,吉林长春130041;吉林大学公共卫生学院卫生毒理学教研室,吉林长春130021【正文语种】中文【中图分类】R329毛囊是皮肤附属器之一,起源于胚胎发育时期表皮与间充质间相互作用。
人毛囊不断经历生长期、退行期和静止期,周而复始,形成毛囊周期。
毛囊周期伴随人类一生,同时毛囊还表达胚胎干细胞标志物sry相关HMG盒转录因子2(sry-related HMG box-containing transfactor2,SOX2),因此毛囊被认为是成体内胚胎组织之外唯一存在的胚胎样组织。
毛囊中含有多种干细胞,包括角朊干细胞、黑色素干细胞、神经脊干细胞和间充质干细胞。
这些干细胞在时空上相互作用,共同维持毛囊的自我更新和毛囊周期正常运行。
其中毛囊来源的间充质干细胞(hair follicle-derived mesenchymal stem cells, HF-MSCs)是成体干细胞家族成员之一,不仅表达间充质干细胞标志物如CD44、CD73、CD90和CD105,还具有分化为脂肪、骨、软骨、平滑肌和神经等多种组织特异性细胞的潜能[1]。
亚油酸和 α-亚麻酸对脂肪干细胞活力及成脂分化的影响

亚油酸和α-亚麻酸对脂肪干细胞活力及成脂分化的影响梁媛;赵馨怡;张靖伟;简路洋;梁帅;王晗;王际辉【摘要】应用MTT比色法检测不同浓度的亚油酸和α-亚麻酸对脂肪干细胞活力的影响,利用油红O染色法和甘油三酯质量摩尔浓度测定法检测亚油酸和α-亚麻酸对脂肪干细胞成脂分化的影响.MTT结果表明,在一定浓度范围内,α-亚麻酸能够显著增强细胞活力,但在较高浓度(60μmol/L)体现出明显的细胞毒性作用;而亚油酸能够显著抑制脂肪干细胞活力.油红O染色和甘油三酯测定结果表明,与对照组相比,亚油酸和α-亚麻酸均能促进脂肪干细胞成脂分化;与α-亚麻酸相比,亚油酸对脂肪干细胞成脂分化的促进作用更强,且呈现剂量依赖性.%The adipose tissue-derived stromal cells (ADSCs) were treated with different contentions of linoleic acid (LA) and alpha-linolenic acid (ALA) .MTT assay was used to measure the effects of LA and ALA on cell viability .The effects of LA and ALA on adipogenic differentiation were detected by oil red O staining and triglyceride (TG) content assay .MTT assay showed that ALA could enhance the cell viability significantly ,but significant cytotoxic effect on contentions of 60 μmol/L .LA could suppress the cell viabilit y significantly .The result of oil red O staining and TG content assay showed that both LA and ALA could promote the adipogenic differentiation of ADSCs when compared to the control group ,LA show higher adipogenic differentiation than ALA in a dose-dependent manner .【期刊名称】《大连工业大学学报》【年(卷),期】2017(036)005【总页数】5页(P323-327)【关键词】亚油酸;α-亚麻酸;脂肪干细胞;细胞活力;成脂分化【作者】梁媛;赵馨怡;张靖伟;简路洋;梁帅;王晗;王际辉【作者单位】大连工业大学食品学院,辽宁大连 116034;大连工业大学生物工程学院,辽宁大连 116034;大连工业大学食品学院,辽宁大连 116034;大连工业大学食品学院,辽宁大连 116034;大连工业大学食品学院,辽宁大连 116034;大连工业大学生物工程学院,辽宁大连 116034;大连工业大学生物工程学院,辽宁大连 116034【正文语种】中文【中图分类】TS201.4Abstract: The adipose tissue-derived stromal cells (ADSCs) were treated with different contentions of linoleic acid (LA) and alpha-linolenic acid (ALA). MTT assay was used to measure the effects of LA and ALA on cell viability. The effects of LA and ALA on adipogenic differentiation were detected by oil red O staining and triglyceride (TG) content assay. MTT assay showed that ALA could enhance the cell viability significantly, but signif icant cytotoxic effect on contentions of 60 μmol/L. LA could suppress the cell viability significantly. The result of oil red O staining and TG content assay showed that both LA and ALA could promote the adipogenic differentiation of ADSCs when compared to the control group, LA show higher adipogenic differentiation than ALA in a dose-dependent manner.Key words: linoleic acid; alpha-linolenic acid; adipose tissue-derivedstromal cells; cell viability; adipogenic differentiation脂肪酸是人体必需的营养物质之一,它不仅是人体细胞的重要组成成分,更参与调节体内的多种代谢[1]。
骨髓脂肪细胞向成骨细胞的转分化
中国组织工程研究与临床康复 第15卷 第1期 2011–01–01出版Journal of Clinical Rehabilitative Tissue Engineering Research January 1, 2011 Vol.15, No.1ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH17Department ofOrthopaedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, ChinaKang Peng-de ☆, Doctor, Professor, Department ofOrthopaedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, Chinakangpd@Supported by: the General Program of the National Natural Science Foundation of China, No.30772202/C1607*; the New Teacher Foundation of Doctor Center of Ministry of Education, No.850-20070610005*Received: 2010-07-30 Accepted: 2010-12-24四川大学华西医院骨科,四川省成都市 610041康鹏德☆,男,1969年生,甘肃省民勤县人,汉族,2003年四川大学华西临床医学院毕业,博士,博士后,教授,主要从事关节外科、骨坏死、激素性骨质疏松研究。
kangpd@163. com中图分类号:R394.2 文献标识码:A文章编号:1673-8225 (2011)01-00017-06收稿日期:2010-07-30 修回日期:2010-12-24 (20100607015/G ·Q)骨髓脂肪细胞向成骨细胞的转分化**☆康鹏德,裴福兴,杨 静,沈 彬,周宗科Transdifferentiation of bone marrow adipocytes into osteoblastsKang Peng-de, Pei Fu-xing, Yang Jing, Shen Bin, Zhou Zong-ke Abstract Kang PD, Pei FX, Yang J, Shen B, Zhou ZK.Transdifferentiation of bone marrow adipocytes into osteoblasts.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(1): 17-22. [ ]摘要 康鹏德,裴福兴,杨静,沈彬,周宗科. 骨髓脂肪细胞向成骨细胞的转分化[J].中国组织工程研究与临床康复,2011,15(1):17-22. [ ]0 引言糖皮质激素的应用导致股骨头坏死确切的发病机制到目前为止仍不清楚[1-5]。
Bradford蛋白浓度测定试剂盒
产品编号 P0006
产品名称 Bradford蛋白浓度测定试剂盒
包装 1000次
产品简介:
Bradford蛋白浓度测定试剂盒(Bradford Protein Assay Kit)是根据最常用的两种蛋白浓度检测方法之一Bradford法研制而成, 实现了蛋白浓度测定的快速,稳定和高灵敏度。
使用说明:
1. 完全溶解蛋白标准品,取10l稀释至100l ,使终浓度为0.5mg/ml。蛋白样品在什么溶液中,标准品也宜用什么溶液稀 释。但是为了简便起见,也可以用0.9%NaCl或PBS稀释标准品。
2. 将标准品按0, 1, 2,ቤተ መጻሕፍቲ ባይዱ4, 8, 12, 16, 20l加到96孔板的标准品孔中,加标准品稀释液补足到20l。 3. 加适当体积样品到96孔板的样品孔中,加标准品稀释液到20l。 4. 各孔加入200l G250染色液,室温放置3-5分钟。 5. 用酶标仪测定A595,或560-610nm之间的其它波长的吸光度。 6. 根据标准曲线计算出样品中的蛋白浓度。
3. Liu M, Li W, Cai G, Zhang Y, Zhang J. Clone , Expression and Purification of SD ratβB2 - Crystallin.
J Mod Clin Med Bioeng. 2005; 11(1): 1-4. 4. Jiang Q, Huang X, Dai Z, Yang G, Zhou Q, Shi J, Wu Q.
使用本产品的文献:
1. Qing-song Jiang, Hui-jiu Wang, Qin Wu, Yuan-fu Lu, Li Li, Dan-li Yang, Qi-xin Zhou and Xie-nan Huang. Effects of isocorydine on cardiaomyocyte hypertrophy induced by prostaglandin F2α. Acta Acad Med Zunyi; 2004, 27(2):14-17.
脂肪干细胞成脂分化的分子机制和信号通路
脂肪干细胞成脂分化的分子机制和信号通路陈犹白;郝永红;王岚;张启旭;韩岩【摘要】背景:对脂肪干细胞成脂分化的研究不仅可探索肥胖的过程和机制,还可构建组织工程脂肪,为软组织缺损的重建提供新的思路.目的:总结脂肪干细胞成脂分化的过程、分子机制和信号通路,讨论miRNA对脂肪干细胞成脂分化的影响及脂肪干细胞成脂和成骨分化的关系.方法:应用计算机检索PubMed数据库、SinoMed 数据库中有关脂肪干细胞分化的文献,检索词为“adipose stem cell,adipose-derived stem cell,adipose-derived mesenchymal stem cell,differentiation;脂肪干细胞,分化”,最终选取代表性文献共27篇.结果与结论:在脂肪干细胞成脂分化过程中,PPAR γ/MAPK、PI3K/Akt、Wnt/β-Catenin、cAMP、Notch等信号通路发挥了关键作用,但其相关基因和蛋白、信号通路和分子机制仍不完全清楚.miRNA对脂肪干细胞的成脂分化有重要影响,miR-24、miR-148a、miR-302等可促进脂肪干细胞的成脂分化,miR-22、miR-27等可抑制脂肪干细胞的成脂分化.脂肪干细胞的成骨和成脂分化关系密切,部分生长因子和激素在促进脂肪干细胞成脂分化的同时抑制其成骨分化,部分作用则相反.综合利用各种细胞因子和支架模拟体内微环境,促进脂肪干细胞的增殖和成脂分化,构建组织工程脂肪,是未来的研究方向.【期刊名称】《中国组织工程研究》【年(卷),期】2017(021)001【总页数】5页(P154-158)【关键词】干细胞;脂肪干细胞;成脂分化;分子机制;信号通路;PPARγ【作者】陈犹白;郝永红;王岚;张启旭;韩岩【作者单位】解放军总医院整形修复科,北京市 100853;美国德克萨斯大学MD安德森肿瘤中心整形外科,美国休斯敦770303;解放军总医院皮肤科,北京市 100853;解放军总医院皮肤科,北京市 100853;美国德克萨斯大学MD安德森肿瘤中心整形外科,美国休斯敦770303;解放军总医院整形修复科,北京市 100853【正文语种】中文【中图分类】R318文题释义:过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ, PPARγ):PPAR对脂肪细胞分化和脂质代谢有重要的调节作用,PPAR包括PPARα、PPARβ和PPARγ三种亚型,其中PPARγ在脂肪组织中特异性高表达,是脂肪干细胞成脂分化的关键转录因子。
免疫层析技术在兽医检测领域的应用
2024年第01期gene expr es s i on pr of i l es i n di f f er ent i at ed s ubcut aneous adi pocyt es bet ween J i axi ng Bl ack and Lar ge W hi t e pi gs [J ].BM C G enom i cs ,2021,22(1):61.[4]SU N Y ,CH EN X ,Q I N J ,et al .Com par at i ve A nal ys i s of Long N oncodi ng R N A s Expr es s ed dur i ng I nt r am us cul ar A di pocyt es A di pogenes i s i n Fat -Type and Lean-Type Pi gs [J ].A gr i c Food Chem ,2018,66(45):12122-12130.[5]Y U N M EI SU N Y ,CA I Y R ,Y I N G Q I A N W ,et al .A N ewl y I dent i f i ed LncR N A LncI M F4Cont r ol s A di pogenes i s of Por ci ne I nt r am us cul ar Pr eadi pocyt e t hr ough A t t enuat i ng A ut ophagy t o I nh i bi t Li pol ys i s [J].A ni m al s (Bas el ),2020,10(6):926689.[6]ZH U R ,FEN G g X ,W EI Y ,et al .l ncSA M M 50Enhances A di pogeni c D i f f er ent i at i on of Buf f al o A di pocyt es W i t h N o Ef f ect on I t s H os t G ene [J ].Fr ont G enet ,2021(12):626158.[7]ZH U R R ,G U O D ,LI R R ,et al .A l ong non-codi ng R N Al nc210pr om ot es adi pogeni c di f f er ent i at i on of buf f al o i nt r am us cu l ar adi pocyt es [J ].A N I M A L BI O TECH N O LO G Y ,2022(24):1-9.[8]M A L ,ZH A N G M ,J I N Y ,et al .Tr ans cr i pt om e Pr of i l i ng ofm R N A and l ncR N A R el at ed t o Tai l A di pos e Ti s s ues of Sheep [J ].Fr ont G enet ,2018,9(1):365.[9]SU X H ,H E H Y ,FA N G C ,et al .Tr anscr i pt om e pr of i l i ngof LncR N A s i n s heep t ai l f at depos i t i on [J ].A ni m Bi ot echnol ,2021,32(1):1-11.[10]H E X ,W U R ,Y U N Y ,et al .Tr ans cr i pt om e anal ys i s of m ess enger R N A and l ong noncodi ng R N A r el at ed t o di f f er ent de vel opm ent al s t ages of t ai l adi pos e t i s s ues of s uni t e s heep [J ].Food Sci N ut r ,2021,9(10):5722-5734.免疫层析技术是上世纪70年代出现的一种血清学检测技术,以抗原-抗体特异性的免疫学反应和层析技术为技术基础,利用毛细管床的虹吸作用和示踪颗粒显色反应,大约5~15m i n 可直观地观察到检测结果,具有操作简便、检测快速、成本低廉等优点,适合临床快速检测应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Adipogenicof human induced pluripotent stem cells:Comparison with that of human embryonic stem cellsDaisuke Taura a,1,Michio Noguchi a,1,Masakatsu Sone a,*,Kiminori Hosoda a,*,Eisaku Mori a ,Yohei Okada b ,Kazutoshi Takahashi c,d ,Koichiro Homma a,e ,Naofumi Oyamada a ,Megumi Inuzuka a ,Takuhiro Sonoyama a ,Ken Ebihara a ,Naohisa Tamura a ,Hiroshi Itoh e ,Hirofumi Suemori f ,Norio Nakatsuji g,h ,Hideyuki Okano b ,Shinya Yamanaka c,d ,Kazuwa Nakao aaDepartment of Medicine and Clinical Science,Kyoto University Graduate School of Medicine,54Shogoin Kawahara-cho,Sakyo-ku,Kyoto 606-8507,Japan bDepartment of Physiology,Keio University,School of Medicine,Tokyo,Japan cDepartment of Stem Cell Biology,Institute for Frontier Medical Sciences,Kyoto University,Kyoto,Japan dCenter for iPS Cell Research and Application (CiRA),Institute for Integrated Cell-Material Sciences,Kyoto,Japan eDepartment of Internal Medicine,Keio University School of Medicine,Tokyo,Japan fLaboratory of Embryonic Stem Cell Research,Stem Cell Research Center,Institute for Frontier Medical Sciences,Kyoto University,Kyoto,Japan gDepartment of Development and Differentiation,Institute for Frontier Medical Sciences,Kyoto University,Kyoto,Japan hInstitute for Integrated Cell-Material Sciences (iCeMS),Kyoto University,Kyoto,Japana r t i c l e i n f o Article history:Received 28December 2008Revised 10February 2009Accepted 21February 2009Available online 27February 2009Edited by Robert Barouki Keywords:Adipogenesis Adipocyte Stem cellDifferentiationa b s t r a c tInduced pluripotent stem (iPS)cells were recently established from human fibroblasts.In the pres-ent study we investigated the adipogenic differentiation properties of four human iPS cell lines and compared them with those of two human embryonic stem (ES)cell lines.After 12days of embryoid body formation and an additional 10days of differentiation on Poly-L -ornithine and fibronectin-coated dishes with adipogenic differentiation medium,human iPS cells exhibited lipid accumula-tion and transcription of adipogenesis-related molecules such as C/EBP a ,PPAR c 2,leptin and aP2.These results demonstrate that human iPS cells have an adipogenic potential comparable to human ES cells.Ó2009Federation of European Biochemical Societies.Published by Elsevier B.V.All rights reserved.1.IntroductionPluripotent embryonic stem (ES)cells have been considered po-tent candidates for regenerative medicine as an unlimited source of cells for the transplantation therapy and a useful tool for the investigation of cell development/differentiation,especially after establishment of human ES cells [1].We previously clarified the differentiation process of mouse,monkey and human ES cells into vascular cells [2–4]and demonstrated that transplantation of vas-cular cells derived from human ES cells may constitute a novel strategy for vascular regeneration [4,5].A number of immunologi-cal and ethical problems remain to be overcome before clinical application of the ES cells,however.Recently,novel ES cell-like pluripotent cells,termed induced pluripotent stem (iPS)cells,weregenerated by introducing four transcription factors (Oct3/4,Sox2,Klf4and c-Myc)into mouse skin fibroblasts [6],and soon thereaf-ter iPS cells were also generated from human skin fibroblasts [7,8].Since then,a new generation of human iPS cells has been generated by introducing into fibroblasts just three of the aforementioned transcription factors (c-Myc was omitted)[9].By overcoming the immunological and ethical problems associated with ES cells,iPS cells open a new avenue for cell transplantation-based regenera-tive medicine and provide a powerful new tool with which to investigate organ development/differentiation in specific disease states,especially in inherited diseases.Generalized lipodystrophy consists of congenital and acquired types characterized by the lack of the whole adipose tissue,which leads to severe insulin-resistant diabetes,hypertriglyceridemia and fatty liver.We previously analyzed genes and phenotypes of congenital generalized lipodystrophic Japanese [10]and also dem-onstrated the long-lasting efficacy and safety of the leptin-replace-ment therapy in these patients [11–13].Since metabolic abnormality in the mouse model is known to be cured by mature0014-5793/$36.00Ó2009Federation of European Biochemical Societies.Published by Elsevier B.V.All rights reserved.doi:10.1016/j.febslet.2009.02.031*Corresponding authors.Fax:+81757719452.E-mail addresses:sonemasa@kuhp.kyoto-u.ac.jp (M.Sone),kh@kuhp.kyoto-u.ac.jp (K.Hosoda).1These authors contributed equally to this work.FEBS Letters 583(2009)1029–1033j o u r n a l h o m e p a g e :w w w.F E B S L e t t e r s.o r gadipocytes transplantation,the regeneration therapy of the adi-pose tissue with human iPS cells-derived adipocytes is the ideal goal for lipodystrophic patients.Moreover,in vitro adipogenic dif-ferentiation system of human iPS cells will contribute to elucidate the pathogenesis of congenital generalized lipodystrophy when iPS cell lines are established from patients with lipodystrophy.In the present study we have investigated the adipogenic differentiation of human iPS cells and compared with that of human ES cells.2.Materials and methods 2.1.Cells and cultureFour human iPS cell lines (201B6,201B7,253G1and 253G4)were investigated.The 201B6(B6)and 201B7(B7)lines were gen-erated by introducing four transcription factors (Oct3/4,Sox2,Klf4and c-Myc)into human skin fibroblasts while the 253G1(G1)and 253G4(G4)lines were generated using only three factors (c-Myc was omitted)[9].These iPS cell lines were maintained as previ-ously described [7].Two human ES cell lines (H9and KhES-1)were used and maintained as previously described [1,14].2.2.Adipogenic differentiationFor embryoid body (EB)formation,iPS and ES colonies were di-gested with 1mg/ml collagenase type IV (GIBCO,CA,USA)and pla-ted onto non-adherent bacterial culture dishes,where they were allowed to aggregate in maintenance medium without bFGF.Reti-noic acid (Sigma–Aldrich,Japan)was added to the medium to a concentration of 100nM from day 2to day 5.After 12days,EBs were transferred to 6-well plates coated with a combination of 30l g/ml Poly-L -ornithine (Sigma–Aldrich)and 2l g/ml fibronectin (Sigma–Aldrich).To induce adipocyte differentiation from iPS and ES cells,we applied a modification of a procedure described previ-ously for use with mouse and human ES cells (Fig.1)[15–19].Dif-ferentiation was induced for 10days using medium consisting of DMEM-F12,10%KSR,and an adipogenic cocktail (0.5mM IBMX,0.25l M dexamethasone,1l g/ml insulin,0.2mM indomethacin and 1l M pioglitazone).2.3.ImmunocytochemistryImmunocytochemistry was carried out as previously described [7].The anti-human primary antibodies included Nanog (R&D Sys-tems,MN,USA)and Alexa 488-conjugated SSEA-4(Santa Cruz Bio-technology Inc.,CA,USA)and TRA1-60(CHEMICON,LA,USA).The TRA1-60antibody was labeled using an Alexa Fluor 488Monoclo-nal Antibody Labeling Kit (Molecular Probes,OR,USA).Alexa 546-conjugated donkey anti-sheep IgG (Molecular Probes,OR,USA)served as the secondary antibody.Alkaline phosphatase activity was detected using a BCIP/NBT substrate system (Dakocytomation,CA,USA).2.4.Oil Red O staining and microscopic analysis of adipocytesCells were washed with phosphate-buffered saline (PBS)twice,fixed in 3.7%formaldehyde for 1h and then stained with 0.6%(w/v)Oil Red O (Nacalai Tesque,Japan)solution (60%isopropanol,40%water)for 2h at room temperature.The cells were then washed with water to remove unbound dye.Subsequently,the bound Oil Red O was eluted with isopropanol.After staining with Oil Red O,each EB was examined microscop-ically for the presence of adipocyte colonies,and the percentage of EBs with outgrowths showing adipocyte positivity was determined as previously described [15].EBs in which adipocytes accounted for more than half of their circumference were considered adipo-cyte-positive.The percent area of Oil Red O staining (+)was deter-mined at 20Âmagnification by counting the number of pixels exhibiting Oil Red O positivity in selected microscope fields (449Â338pixels).Four randomly selected fields were examined in each well of a 6-well plate,and the percent area was calculated as the average for the four fields.Six independent experiments were performed for each cell line.2.5.Reverse-transcription polymerase chain reaction (RT-PCR)and quantitative real-time PCRTotal RNA was extracted using TRizol Reagent (Invitrogen,CA,USA)and treated with RNase-Free DNase Set (QIAGEN,Germany)to remove any contaminating genomic DNA.For RT-PCR,cDNA was synthesized using a PrimeScript RT reagent Kit (Takara Bio Inc.,Ja-pan),after which RT-PCR was run using ExTaq (Takara Bio Inc.).For quantitative real-time PCR,TaqMan PCR was carried out using a Step One Plus Real-Time PCR System as instructed by the manufacturer (Applied Biosystems,CA,USA).Levels of mRNA were normalized to those of 18S mRNA.The primers used are listed in Table 1.2.6.Statistical analysisData are expressed as means ±S.E.M.Statistical significance was evaluated using ANOVA for comparison among six groups.Values of P <0.05were considered significant.3.Results3.1.Adipogenic differentiation of human iPS and ES cellsMorphological phenotypes,immunoreactivities of Nanog,SSEA-4and TRA-1-60,and ALP activity of human iPS cells did not differTable 1Primers for reverse-transcription polymerase chain reaction.Gene SequenceNanog Sense CAGCCCCGATTCTTCCACCAGTCCC Antisense CGGAAGATTCCCAGTCGGGTTCACC PPAR c 2Sense ATTGACCCAGAAAGCGATTC Antisense CAAAGGAGTGGGAGTGGTCT C/EBP a Sense GCAAACTCACCGCTCCAATG Antisense TTAGGTTCCAAGCCCCAAGTC aP2Sense AACCTTAGATGGGGGTGTCCTG Antisense TCGTGGAAGTGACGCCTTTC Leptin Sense GAACCCTGTGCGGATTCTTGTG Antisense CGTTTCTFFAAGGCATACTGGTGAG GAPDHSense ACCACAGTCCATGCCATCAC Antisense TCCACCACCCTGTTGCTGTPPAR c 2(real-time RT-PCR)Sense GATACACTGTCTGCAAACATATCACAA Antisense CCACGGAGCTGATCCCAAProbeAGAGATGCCATTCTGGCCCACCAACTT1030 D.Taura et al./FEBS Letters 583(2009)1029–1033from those of human ES cells (Fig.2).In order to assess their poten-tial for adipogenic differentiation,the human iPS cells were sub-jected to adipogenic induction culture.After 12days of EB formation,EBs derived from human iPS cells were attached to coated dishes to induce differentiation.Several kinds of coating for the dishes,including gelatin,collagen IV and fibronectin were compared,and the efficiency of EB attachment and adipogenic dif-ferentiation were the best on dishes coated with a combination of Poly-L -ornithine and fibronectin.On day 15,after 3days of adipo-genic differentiation following the EB formation,differentiated cells containing small cytoplasmic lipid droplets were observed spreading outward from the attached EBs.On day 22,the lipid accumulation was evaluated by staining the cells with Oil Red O.To evaluate the adipogenic potential of individual iPS cell lines,the percentage of EB outgrowths having adipocyte colonies and the percent area of Oil Red O staining (+)were determined.For each of iPS and ES cell lines tested,40–60%of EBs formed adipocyte colo-nies (Table 2).In all of the iPS cell lines,lipid accumulation was similar to that seen in human ES cell lines (Fig.3),though the B7line showed stronger lipid accumulation than the other cell lines.Statistical analysis of the percent area of Oil Red O staining (+)showed no significant differences among the cell lines (Fig.4).3.2.Expression of adipogenesis-related moleculesUsing RT-PCR,transcription of adipogenic markers was investi-gated on days 0and 22of differentiation (Fig.5A).Though not de-tected at day 0,mRNAs encoding the adipogenic transcription factors C/EBP a (CCAAT/enhancer binding protein a )and PPAR c 2(peroxisome proliferator-activated receptor c 2)were detected on day 22.In contrast,expression of Nanog mRNA was strongly sup-pressed on day 22,as compared with its expression on day 0.Expression of the mature adipocyte markers leptin and aP2(adipo-cyte fatty acid binding protein)was also clearly detected on day 22.All of the human iPS cell lines expressed mRNAs encoding adipo-genesis-related molecules at levels that were comparable to the levels seen in human ES cell lines (Fig.5A).In Quantitative real-time PCR analysis,expression of PPAR c 2mRNA differed somewhat among the iPS and ES cell lines.The differences between the B7line and the two ES cell lines were significant,but other differences were not significant (Fig.5B).Fig.2.Morphology of undifferentiated human iPS cells (G4).(A)Phase-contrast photomicrograph of an undifferentiated colony.(B)Alkaline phosphatase activity.(C)Immunofluorescent staining with Nanog.(D)Immunofluorescent staining with SSEA-4.(E)Immunofluorescent staining with TRA1-60.Scale bar =100l M.Table 2%of EBs with adipocyte colonies.Cell line [Number of EBs with adipocytecolonies/total number of EBs]201B654.1%[40/74]201B759.7%[46/77]253G150.0%[35/70]253G456.4%[44/78]H948.8%[39/80]KhES-145.5%[35/77]Fig.3.Oil Red O staining of adipocytes derived from human iPS cells (A–D)and ES cells (E,F)on day 22.B6(B)B7(C)G1(D)G4(E)H9(F)KhES-1.Scale bar =50l M.D.Taura et al./FEBS Letters 583(2009)1029–103310314.DiscussionThe present study demonstrates that human iPS cells have adi-pogenic potential comparable to human ES cells.Four human iPS cell lines of two generations were investigated.The B6and B7were generated by introducing four transcription factors(Oct3/4,Sox2, Klf4and c-Myc)into human skinfibroblasts while the G1and G4 were generated using only three factors(c-Myc was omitted)[9]. After12days of embryoid body formation and an additional 10days of differentiation on Poly-L-ornithine andfibronectin-coated dishes with adipogenic differentiation medium,all human iPS cell lines of both generations exhibited lipid accumulation and transcription of such adipogenesis-related molecules as C/ EBP a,PPAR c2,leptin and aP2.We also compared differentiation efficiency between human iPS and ES cells using two lines of hu-man ES cells and found no apparent difference between human iPS and ES cells in properties of adipogenic differentiation includ-ing the time course and potential.In terms of lipid accumulation and transcription of adipogenesis-related molecules,human iPS-derived adipocytes appear to reach at least the same level of matu-rity as those derived from human ES cells.The B7line tended to show stronger adipogenic potential than the otherfive iPS lines and the ES cell lines,but the difference in terms of percent area of Oil Red O staining(+)was not significant.The B7line also showed significantly stronger expression of PPAR c2than the two ES cell lines tested,but PPAR c2expression varied among the dif-ferent iPS cell lines,despite their having the same genetic back-ground.We conclude that the adipogenic potential of iPS cells did not essentially differ from ES cells,though their adipogenic potentials were rather varied in each line.Despite the prevalence of obesity,systems for research into hu-man adipocyte biology remain underdeveloped,in part because of a lack of available human adipocyte cell lines.There are significant differences between adipocyte development in humans and mice [20].The established in vitro adipocyte differentiation system using human iPS cells in the present study should make it possible to dis-sect out the cellular mechanisms underlying human adipocyte dif-ferentiation.It should also contribute to the better understanding of adipocyte biology and serve as a basis for advances in research into obesity and adipotoxicity,which has been proposed as the sum of the negative effects associated with obesity[21].Adipogenesis is largely divided into two phases:the early phase consisting of the lineage commitment of adipocytes from pluripotent stem cells and the late phase consisting of the termi-nal differentiation of preadipocytes into adipocytes[22].The molecular mechanism underlying the terminal adipocyte differen-tiation has been identified through analysis of the differentiation process in immortalized mouse preadipocyte cell lines(e.g.,3T3-L1and3T3-F442A cells)[22–24],but the differentiation from plu-ripotent stem cells during the early stage of adipogenesis must await further clarification.The establishment of adipocyte differ-entiation system with human iPS cells should facilitate that line of research.In contrast to human ES cells,iPS cells can be induced from any human being irrespective of their genetic make-up.Consequently, the study of iPS cells should contribute to the identification of new susceptibility genes associated with obesity and metabolic syn-drome,and to the clarification of the functions of those genes. The establishment of iPS cell lines from patients with inherited dis-eases presenting adipocyte abnormality should enable clarification of their pathogenesis.And because they overcome the immunolog-ical and ethical problems associated with human ES cells,iPS cell systems should also contribute to the development of novel regen-erative therapies for reconstruction of soft tissue defects after tu-mor resections,extensive deep burns and lipodystrophy.The induced cells obtained with our protocol are not a homogeneous population.Consequently,at this stage human iPS cells may not yet have as much adipogenic potential as adipose-derived stem cells(ADSCs),which are derived from the stromal vascular fraction of human adipose tissue and are thought to be a safe and useful tool in adipose regenerative medicine[25].About80%of ADSCs dif-ferentiate into adipocytes under suitable conditions[26].The next issue we plan to address will be the establishment of an improved differentiation protocol that includes a purification process such as cell sorting.In conclusion,the present study demonstrates that human iPS cells have adipogenic potential that is generally equal to that of hu-man ES cells.The use of iPS cells will contribute to the development of regenerative therapies of adipose tissue for lipodystrophy.This work should also contribute to our understanding of human adipo-genesis and to the clarification of the pathogenesis and pathophys-iology of obesity and metabolic syndrome,potentially leading to the development of new drug therapies.AcknowledgementWe thank Yoshie Fukuchi for her technical assistance.This work was supported by the project for realization of regenerative medi-cine of the Ministry of Education,Culture,Sports,Science and Tech-nology,Japan.References[1]Thomson,J.A.,Itskovitz-Eldor,J.,Shapiro,S.S.,Waknitz,M.A.,Swiergiel,J.J.,Marshall,V.S.and Jones,J.M.(1998)Embryonic stem cell lines derived from human blastocytsts.Science282,1145–1147.2αGAPDH1032 D.Taura et al./FEBS Letters583(2009)1029–1033[2]Yamashita,J.,Itoh,H.,Hirashima,M.,Ogawa,M.,Nishikawa,S.,Yurugi,T.,Naito,M.,Nakao,K.,Nishikawa,S.,et al.(2000)Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors.Nature408,92–96. [3]Sone,M.,Itoh,H.,Yamashita,J.,Nakao,K.,et al.(2003)Different differentiationkinetics of vascular progenitor cells in primate and mouse embryonic stem cells.Circulation107,2085–2088.[4]Sone,M.,Itoh,H.,Nakao,K.,et al.(2007)Pathway for differentiation of humanembryonic stem cells to vascular cell components and their potential for vascular regeneration.Arterioscler.Thromb.Vasc.Biol.27,2127–2134.[5]Yamahara,K.,Sone,M.,Itoh,H.,Nakao,K.,et al.(2008)Augmentation ofNeovascularizaition in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells.PLOS One3(2),e1666.[6]Takahashi,K.and Yamanaka,S.(2006)Induction of pluripotent stem cells frommouse embryonic and adultfibroblast cultures by defined factors.Cell126, 663–676.[7]Takahashi,K.,Tanabe,K.,Ohnuki,M.,Narita,M.,Ichisaka,T.,Tomoda,K.andYamanaka,S.(2007)Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell131,861–872.[8]Yu,J.,Vodyanik,M.A.,Smuga-Otto,K.,Antosiewicz-Bourget,J.,Frane,J.L.,Tian,S.,Nie,J.,Jonsdottir,G.A.,Ruotti,V.,Stewart,R.,Slukvin II and Thomson,J.A.(2007)Induced pluripotent stem cell lines derived from human somatic cells.Science318,1917–1920.[9]Nakagawa,M.,Koyanagi,M.,Tanabe,K.,Takahashi,K.,Ichisaka,T.,Aoi,T.,Okita,K.,Mochiduki,Y.,Takizawa,N.and Yamanaka,S.(2008)Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.Nat.Biotechnol.26,101–106.[10]Ebihara,K.,Kusakabe,T.,Masuzaki,H.,Kobayashi,N.,Tanaka,T.,Chusho,H.,Miyanaga,F.,Miyazawa,T.,Hayashi,T.,Hosoda,K.,Ogawa,Y.and Nakao,K.(2004)Gene and phenotype analysis of congenital generalized lipodystrophy in Japanese:a novel homozygous nonsense mutation in seipin gene.J.Clin.Endocrinol.Metab.89(5),2360–2364.[11]Ebihara,K.,Masuzaki,H.and Nakao,K.(2004)Long-term leptin-replacementtherapy for lipoatrophic diabetes.New Engl.J.Med.351(6),615–616. [12]Ebihara,K.,Kusakabe,T.,Hirata,M.,Masuzaki,H.,Miyanaga,F.,Kobayashi,N.,Tanaka,T.,Chusho,H.,Miyazawa,T.,Hayashi,T.,Hosoda,K.,Ogawa,Y., DePaoli,AM.,Fukushima,M.and Nakao,K.(2007)Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy.J.Clin.Endocrinol.Metab.92(2),532–541.[13]Ebihara,K.,Ogawa,Y.,Masuzaki,H.,Shintani,M.,Miyanaga,F.,Aizawa-Abe,M.,Hayashi,T.,Hosoda,K.,Inoue,G.,Yoshimasa,Y.,Gavrilova,O.,Reitman,ML.and Nakao,K.(2001)Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes.Diabetes50(6),1440–1448.[14]Fujioka,T.,Yasuchika,K.,Nakamura,Y.,Nakatsuji,N.and Suemori,H.(2004)Asimple and efficient cryopreservation method for primate embryonic stem cells.Int.J.Dev.Biol.48,1149–1154.[15]Dani,C.,Smith,A.G.,Ailhaud,G.,et al.(1997)Differentiation of embryonicstem cells into adipocytes in vitro.J.Cell.Sci.110,1279–1285.[16]Xiong,C.,Xie,C.Q.,Chen,Y.E.,et al.(2005)Derivation of adipocytes fromhuman embryonic stem cells.Stem Cells Dev.14,671–675.[17]van Harmelen,V.,Astrom,G.,Ryden,M.,et al.(2007)Differential lipolyticregulation in human embryonic stem cell-derived adipocytes.Obesity15, 846–852.[18]Barberi,T.,Willis,L.M.,Socci,N.D.and Studer,L.(2005)Derivation ofmultipotent mesenchymal precursors from human embryonic stem cells.PLoS Med.2,e161.[19]Olivier,E.N.,Rybicki,A.C.and Bouhassira,E.E.(2006)Differentiation of humanembryonic stem cells into bipotent mesenchymal stem cells.Stem cells24, 1914–1922.[20]Arner,P.(2005)Resistin:yet another adipokine tells us that men are not mice.Diabetologia48,2203–2205.[21]Nakao,K.(2009)Adiposcience and adipotoxicity.Nat.Clin.Pract.Endocrinol.Metab.5(2),63.[22]Rosen,E.D.and Spiegelman,B.M.(2000)Molecular regulation of adipogenesis.Annu.Rev.Cell.Dev.Biol.16,145–171.[23]Bernlohr,D.A.,Bolanowski,M.A.,Kelly Jr.,T.J.and Lane,M.D.(1985)Evidencefor an increase in transcription of specific mRNAs during differentiation of 3T3–L1preadipocytes.J.Biol.Chem.260,5563–5567.[24]Flier,J.S.(2004)Obesity wars:molecular progress confronts an expandingepidemic.Cell116,337–350.[25]Zuk,P.A.,Zhu,M.,Mizuno,H.,Huang,J.,Futrell,J.W.,et al.(2001)Multilineagecells from human adipose tissue:Implications for cell-based therapies.Tissue Eng.7,211–228.[26]Zhu,Y.,Liu,T.,Song,K.,Fan,X.,Ma,X.and Cui,Z.(2008)Adipose-derived stemcell:a better stem cell than BMSC.Cell Biochem.Funct.26,664–675.D.Taura et al./FEBS Letters583(2009)1029–10331033。