2.2.1直接开平方解一元二次方程
21.2.1直接开平方法解一元二次方程

(2)方程 2 x 18 的根是 X1=3, x2=—3
2
(3) 方程 (2 x 1) 9 的根是 程: 2 1 x 6 9 0
x1 =-3, x2 =-9.
3 x 1 2
2
6 0
x2 1 2.
问题1一桶某种油漆可刷的面积为 1500 dm2,李明用这 桶油漆恰好刷完 10 个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗? 解:设正方体的棱长为 x dm,则一个正方体的表面 积为 6x2 dm2, 依题意得 10×6x2=1500 得 x2=25 解之得 即 x =± 5
这种解一元二次方程的方法叫做直接开平方法 . 2.转化的思想:把解一元二次方程“降次”转 化为解两个一元一次方程.
12/21/2018
x1 1 2
3.解下列方程:
1 x
12/21/2018
2
4x 4 5
x2 2 5.
2 2 9 x +6x+ 1 4
x1 2 5
1 x1 3
x2 1.
1.一般地,对于形如x2=a(a≥0)的方程,根据平 方根的定义,可解得
x1 a ,x2 a
a ,x 2 a 这种解一元二次方程的
方法叫做直接开平方法.
思考1 当a=0时,方程x2=a解又怎样? 此时方程有两个相等的解 x1=x2=0. 思考2 当a<0时,方程x2=a解又怎样? 此时方程无实数解.
12/21/2018
对照上面解方程的过程,怎样解方程 (x+3)2=5 ?
分析: 将括号里的 x+3 看成一个整体,两边开平方。 解: 把此方程“降 次”, 转化为两个一元 一次方程
21.2.1 解一元二次方程(直接开平方法)

3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,
p 或mx+n=_____ p . 那么x=_____
需要更完整的资源请到 新世纪教 育网 -
C 1.方程x2-16=0的根为 ( A.x=4 C . x =± 4 B. D. x=16
1.理解一元二次方程“降次”的转化思想. 2.配方法.
需要更完整的资源请到 新世纪教 育网 -
1.若x2=a(a≥0),则x就叫做a的平方根,记为x=___( aa≥0),
由平方根的意义降次来解一元二次方程的方法叫做直接开平方 法. 2.直接开平方,把一元二次方程“降次”转化为 ________________________. 两个一元一次方程
1.本课中的一元二次方程如何“降次”的? 运用平方根知识将形如 x2=p(p≥0)或(mx+n)2=p (p≥0)的一元二次方程降次,转化为两个一元一次方 程 2.能化为(x+m)2=n(n≥0)的形式的方程需要具备什 么特点? 左边是含有未知数的完全平方式,右边是非负常数的 一元二次方程可化为(x+m)2=n(n≥0)
2
(2)y2+2y+1=3.
2 (y 1) 3 解:
y1 3 y1 1 3 y2 1 3
x1 0, x2 6
需要更完整的资源请到 新世纪教 育网 -
6.一元二次方程(x+6)2=16可转化为两个一元一 次方程,其中一个一元一次方程是x+6=4,则另 一个一元一次方程是( D ) A.x-6=-4 C.x+6=4 B. x- 6= 4 D.x+6=-4
需要更完整的资源请到 新世纪教 育网 -
y 5 2
1.若3(x+1)2-48=0,则x的值等于(B ) A.±4 C.-3或5 B.3或-5 D. 3 或 5
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版

21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
湘教版九上数学精品教学课件 第2章 一元二次方程 第3课时 用配方法解二次项系数不为1的一元二次方程

式都不成立.∴ 原方程无实数根.
思考1:用配方法解一元二次方程时,移项时要 注意些什么? 移项时需注意改变符号.
思考2:用配方法解一元二次方程的一般步骤. ①移项,二次项系数化为 1; ②左边配成完全平方式; ③左边写成完全平方形式; ④降次; ⑤解一次方程.
规律总结 一般地,如果一个一元二次方程通过配方转化成
九年级数学上(XJ) 教学课件
第2章 一元二次方程
2.2.1 配方法
第3课时 用配方法解二次项系数不为1的 一元二次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.会用配方法解二次项系数不为 1 的一元二次方程; (重点)
2.能够熟练地、灵活地应用配方法解一元二次方程. (难点)
导入新课
复习引入 1.用直接开平方法解下列方程:
(1) 9x2 = 1 ; (2) (x - 2)2 = 2.
2.下列方程能用直接开平方法来解吗?
(1) x2 + 6x + 9 = 5; (2) x2 + 6x + 4 = 0.
把两题转化成 (x + m)2 = n (n≥0) 的 形式,再利用开平方
讲授新课
一 用配方法解二次项系数不为1的一元二次方程 问题1:观察下面两个是一元二次方程的联系和区别:
1 4
0,
因此
x
3 2
2
10 4
.
由此,得 x 3 10 或 x 3 10 .
22
22
所以
x1
3 10 2
,x2
3 10 2
.
归纳总结
配方法的应用
类别
解题策略
1.求最值或证 将关于 x 的二次多项式通过配方成 a(x + m)2 + n 的 代数式的值 形式后,由于 (x + m)2≥0,故当 a>0 时,可得其 恒正(或负) 最小值为 n;当 a<0 时,可得其最大值为 n.
一元二次方程直接开平方和因式分解法

x1=5,x2=-5
可以验证,5和-5是方程 ① 的两根,但是棱长不能是负值,所 以正方体的棱长为5 dm.
方程x2+6x+9=2的左边是完全平方形式,这个方程可以化成 (x+3)2=2,进行降次,得______________ x 3 2 ,所以方程的根为 3 2 . x1=___________ 3 2 ,x2=__________
22.2 一元二次方程的解法
22.2.1 直接开平方法和
因式分解法
问题1 一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰 好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒 子的棱长吗?
设正方体的棱长为x dm,则一个正方体的表面积为 6x2 dm2,根据一桶油漆可刷的面积,列出方程
解题步骤演示
例 (x+3)(x-1)=5 解:原方程可变形为 2 x +2x-8 =0 方程右边化为零 (x-2)(x+4)=0 左边分解成两个一次因式 的乘积 x-2=0或x+4=0 至少有一个一次因式为零得到两个一元一次方程 两个一元一次方程的解就是原方程的 ∴ x1=2 ,x2=-4 解
快速回答:下列各方程的根分 别是多少?
9 x 25 0
2
解法一 (直接开平方法):
5 x , 3 5 5 即x1 , x 2 . 3 3
2 9x -25=0
解法二:原方程可变形为
(3x+5)(3x-5)=0
3X+5=0 或 3x-5=0 5 5 x1 , x 2 . 3 3
9X2-25= (3x+5)(3x-5)
深圳市第二中学九年级数学上册第22章一元二次方程22.2一元二次方程的解法22.2.1直接开平方法和

22.2 一元二次方程的解法22.2.1 直接开平方法和因式分解法1.会用直接开平方法解形如a(x -k)2=b(a≠0,ab ≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.重点利用直接开平方法和因式分解法解一元二次方程.难点合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境引入教师提出问题,让学生说出作业中的解法,教师板书.问:怎样解方程(x +1)2=256?解:方法1:直接开平方,得x +1=±16,∴原方程的解是x 1=15,x 2=-17.方法2:原方程可变形为(x +1)2-256=0,方程左边分解因式,得(x +1+16)(x +1-16)=0,即(x +17)(x -15)=0,∴x+17=0或x -15=0,原方程的解是x 1=15,x 2=-17.二、探究新知教师多媒体展示,学生板演,教师点评.例1 用直接开平方法解下列方程:(1)(3x +1)2=7; (2)y 2+2y +1=24;(3)9n 2-24n +16=11.解:(1)-1±73; (2)-1±26;(3)4±113. 【教学说明】运用开平方法解形如(x +m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x 2-4x =0;(2)3x(2x +1)=4x +2;(3)(x +5)2=3x +15.解:(1)x 1=0,x 2=45;(2)x 1=23,x 2=-12; (3)x 1=-5,x 2=-2.【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、练习巩固教师多媒体展示出题目,由学生自主完成,分组展示结果,教师点评.1.用直接开平方法解下列方程:(1)3(x -1)2-6=0;(2)x 2-4x +4=5;(3)(x +5)2=25;(4)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2;(2)x 1=2+5,x 2=2-5;(3)x 1=0,x 2=-10;(4)x 1=1,x 2=-3.2.用因式分解法解下列方程:(1)x 2+x =0; (2)x 2-23x =0;(3)3x 2-6x =-3; (4)4x 2-121=0;(5)(x -4)2=(5-2x)2.解:(1)x 1=0,x 2=-1;(2)x 1=0,x 2=23;(3)x 1=x 2=1;(4)x 1=112,x 2=-112; (5)x 1=3,x 2=1.3.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m .则可列方程2πx 2=π(x +5)2,解得x 1=5+52,x 2=5-52(舍去).答:小圆形场地的半径为(5+52) m .四、小结与作业小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x -k)2=b(a≠0,ab ≥0)的方程,只要把(x -k)看作一个整体,就可转化为x 2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.布置作业从教材相应练习和“习题22.2”中选取.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.一.选择题(共15小题)1.下列说法中正确的是()A.平分弦的直径一定垂直于弦B.长度相等的弧是等弧C.平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.93.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD 4.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2 B.3 C.4 D.3.55.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A.6cm B.10cm C.8cm D.20cm6.在半径为25cm的⊙O中,弦AB=40cm,则弦AB所对的弧的中点到AB的距离是()A.10cm B.15cm C.40cm D.10cm或40cm 7.下列说法中正确的个数有()①相等的圆心角所对的弧相等;②平分弦的直径一定垂直于弦;③圆是轴对称图形,每一条直径都是对称轴;④直径是弦;⑤长度相等的弧是等弧.A.1个B.2个C.3个D.4个8.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=2,BC=8.则⊙O的半径为()A.B.5 C.D.69.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸11.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()A.6 m B.8 m C.10 m D.12 m14.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm15.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸二.填空题(共10小题)16.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.则⊙O半径的长为.17.如图,AB是⊙O的弦,OC⊥AB于点C,且AB>OC,若OC和AB是方程x2﹣11x+24=0的两个根,则⊙O的半径OA= .18.半径等于16的圆中,垂直平分半径的弦长为.19.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是.21.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.22.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.23.如图,小强为了帮助爸爸确定残破轮子的直径,先在轮子上画出一个弓形(如图中阴影部分),然后量得弦AB的长为4cm,这个弓形的高为1cm,则这个轮子的直径长为cm.24.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD 长为寸.25.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.三.解答题(共6小题)26.如图,已知AB是圆O的直径,弦CD交AB于点E,∠CEA=30°,OE=4,DE=5,求弦CD及圆O的半径长.27.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.28.已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC 的长.29.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.30.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.31.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、当两条弦都是直径时不成立,故本选项错误;B、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;C、如图所示,两弦平行,则圆周角相等,圆周角相等,则弧相等;故本选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误.故选:C.2.【解答】解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.3.【解答】解:连接DA,∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB,∵2∠DAB=∠BOD,∴∠CAD=∠BOD,故选:D.4.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.5.【解答】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cm∴OE=6cm,AE=AB=8cm,在Rt△AOE中,根据勾股定理得,OA==10cm 故选:B.6.【解答】解:点C和D为弦AB所对弧的中点,连结CD交AB于E,连结OA,如图,∵点C和D为弦AB所对弧的中点,∴CD为直径,CD⊥AB,∴AE=BE=AB=20,在Rt△OAE中,∵OA=25,AE=20,∴OE==15,∴DE=OD+OE=40,CE=OC﹣OE=10,即弦AB和弦AB所对的劣弧的中点的距离为10cm,弦AB和弦AB所对的优弧的中点的距离为40cm.故选:D.7.【解答】解:①相等的圆心角所对的弧相等;错误.必须在同圆或等圆中;②平分弦的直径一定垂直于弦;错误,此弦不是直径;③圆是轴对称图形,每一条直径都是对称轴;错误,应该是每一条直径所在的直线都是对称轴;④直径是弦;正确;⑤长度相等的弧是等弧.错误.能够完全重合的两条弧是等弧;故选:A.8.【解答】解:延长AO交BC于点D,连接OB,由对称性及等腰Rt△ABC,得到AD⊥BC,∴D为BC的中点,即BD=CD=BC=4,AD=BC=4,∵OA=2,∴OD=AD﹣OA=4﹣2=2,在Rt△BOD中,根据勾股定理得:OB==2,则圆的半径为2.故选:C.9.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.11.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.12.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.13.【解答】解:如图,设OA=r,则OD=r﹣4,∵AB=16m,∴AD=8m.在Rt△AOD中,∵OD2+AD2=OA2,即(r﹣4)2+82=r2,解得r=10(m).故选:C.14.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=4,OD=10,∴OC=6,又∵OB=10,∴Rt△BCO中,BC=,∴AB=2BC=16.故选:C.15.【解答】解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,∵OA2=OE2+AE2,则x2=(x﹣1)2+25,解得:x=13.则CD=2×13=26(cm).故选:D.二.填空题(共10小题)16.【解答】解:连接AO,∵半径OC⊥弦AB,∴AD=BD,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴OD=R﹣2,在Rt△AOD中,OA2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10,答:⊙O的半径长为10.17.【解答】解:x2﹣11x+24=0(x﹣3)(x﹣8)=0x﹣3=0,x﹣8=0,x1=3,x2=8,∵AB>OC,∴AB=8,OC=3,∵OC⊥AB,∴AC=AB=4,由勾股定理得,OA==5,故答案为:5.18.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.19.【解答】解:已知A(0,0),B(2,2),C(4,0),如图:可设:AB的垂直平分线解析式为:y=kx+b,把(0,2),(2,0)代入解析式可得:,解得:,所以AB的垂直平分线解析式是y=﹣x+2,设AC的垂直平分线解析式为x=m,把(2,2)代入解析式,可得:x=2,所以AC的垂直平分线解析式是x=2,∴过A、B、C三点的圆的圆心坐标为(2,0).故答案为:(2,0).20.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故答案为2.21.【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.22.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故答案为:2.523.【解答】解:连接OB;Rt△OBD中,BD=AB=2cm,根据勾股定理得:OD2+BD2=OB2,即:(OB﹣1)2+22=OB2,解得:OB=2.5;所以轮子的直径为5cm.故答案为:5.24.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.25.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为: +1=+1,故答案为:(+1)m.三.解答题(共6小题)26.【解答】解:过点O作OM⊥CD于点M,联结OD,∵∠CEA=30°,∴∠OEM=∠CEA=30°,在Rt△OEM中,∵OE=4,∴,,∵,∴,∵OM过圆心,OM⊥CD,∴CD=2DM,∴,∵,∴在Rt△DOM中,,∴弦CD的长为,⊙O的半径长为.27.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得 x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.28.【解答】解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=429.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.30.【解答】解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=AB=×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.31.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.第21章 二次函数与反比例函数 周周测921.5反比例函数一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( ) A.y =2x +1 B.y =22x C.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.4 5﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 2 6﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =kx(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( )A.y =10x B.y =5x C.y =20x D.y =20x 9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7 v-6.10-2.90-2.01-1.51-1.19-1.05-0.86A.v =m 2-2 B.v =-6m C.v =-3m -1 D.v =-6m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为() A.y =2x +1 B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y=2x +1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23k x-是反比例函数,则k 的值是( )A.-1B.2C.±2D.解答:∵y =k 23k x-是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B两点关于原点对称时,a 的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4xB.y=-4xC.y=2xD.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2 B.v =-6m C.v =-3m -1 D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h.11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x -是反比例函数, ∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________. 解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t =16001600(4)(4)t t t t ---=264004t t -, 答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务.18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32. 20.反比例函数y =kx(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x, 由31y xy x =⎧⎪⎨=⎪⎩得:333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (33,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-33,3), 设直线C ′D 的解析式为y =kx +b ,∴3331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。
人教版数学九年级初三上册 21.2.1 第2课时 配方法解一元二次方程 名师教学教案 教学设计反思
21.2配方法解一元二次方程分层教学导学案51【学习目标】1.会用开平方法解一元二次方程;理解配方的概念并掌握配方的技巧;2.通过自主探索和小组合作,学会运用配方法解一元二次方程;【使用说明和学法指导】1.用15分钟左右的时间认真阅读、探究课本基础知识,理解配方的概念并掌握配方的技巧。
2.认真完成导学案的问题;3.初步评价自己完成学习目标情况,并把自己的疑问写出来,以求课堂上解决。
【课前导学】一、探究新知:知识点1 直接开平方法解一元二次方程:【知识链接1】求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______; 如果02=x ,则x =_______。
试求下列方程的根:(1) 092=-x (2) 2x²-10=0【提示】当满足方程的根不止一个时,为了区分,应把方程的根写为1x 、2x 的形式。
一般情况下,方程根的个数与其次数一样。
【探究1】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的?2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的?知识点2 配方法解一元二次方程【知识链接2】1、完全平方式——运算形式形如222b ab a +±的二次三项式。
试着写出两个完全平方式:___________________,_____________________。
2、配方——对二次三项式q px x ++2,配上适当的数(不改变式子的值),使得式子中的一部分是一个完全平方式,如342++x x ,将式子加1,再减1(不改变式子的值),即可得1)44(2-++x x ,从而得到1)2(2-+x 。
试着将下列式子配方:(1) 142+-x x (2)4152++x x【探究2】填上适当的数或式,使下列各等式成立对于方程02=++q px x ,可先将方程变形为______2=+px x ,然后将方程左边进行配方(根据等式基本性质,两边同时加上2)2(p(一次项系数的一半的平方)即可),如0562=++x x ,移项得:______62=+x x ,两边同时加上_____,可得____________,从而得__________________,这样就可以用“开平方”的方法求解方程了。
直接开平方法解一元二次方程
“直接开平方法解一元二次方程”说课一、教学分析“直接开平方法解一元二次方程”是人教版九年级上册,第二十二章《一元二次方程》第二单元解一元二次方程的第一节,本节课为一元二次方程解法的起始课。
一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却是不容忽视的一节重要内容。
首先“直接开平方解一元二次方程”是配方法解一元二次方程的前提和基础;其次,在一元二次不等式的求解及求二次函数与 x轴交点等问题中都必须应用一元二次方程的解法;同时在“直接开平方法解一元二次方程”的学习中还突出体现了“换元、转化、类比、分类”等重要的数学思想方法。
因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
二、标准分析《标准》中要求“理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程”,“直接开平方法解一元二次方程”是上述各种解法的前提和基础方法,所以本节课在教学中重视用“直接开平方法解一元二次方程”的准确性和熟练性。
三、教材对比分析( 1)人教版教材比较注重用实际问题的引入,让学生在解决问题的过程中体会解一元二次方程的实质,得到“直接开平方法”。
( 2)北师大版教材没有提供实际问题背景,而是直接给出三个问题,让学生观察、发现、感受问题间的关系。
( 3)华师大版教材也没有提供实际问题背景,而是直接由解方程得到了直接开平方法;值得一提的是,只有华师大版教材明确给出了“直接开平方法”的概念,并且后面紧接着是“因式分解法”的介绍,而非“配方法”。
四、重点分析教学重点:较熟练的运用直接开平方法求一元二次方程的解。
教学难点:探究关于 x的方程的解的情况。
突破方法:预先设计好探究问题的梯度,层层铺垫,让学生在教师的启发、引导下,通过自主探究、小组合作学习的方式,帮助学生体会换元与转化的数学思想,同时更加深入而准确的理解直接开平方法适用的一元二次方程 x2=a (a≥0)的形式。
(完整版)21.2.1直接开平方法解一元二次方程练习题1
21.2.1 直接开平方法解一元二次方程要点感知1 对于方程x 2=p.(1)当p>0时,方程有_______的实数根,_______;(2)当p=0时,方程有_______的实数根,_______0;(3)当p<0,方程_______.预习练习1-1 下列方程可用直接开平方法求解的是( )A.9x 2=25B.4x 2-4x-3=0C.x 2-3x=0D.x 2-2x-1=91-2若x 2-9=0,则x=_______.要点感知2 解形如(mx+n)2=p(p ≥0)的一元二次方程,先根据_______的意义,把一元二次方程“_______”转化为两个_______元_______次方程,再求解.预习练习2-1 方程(x-2)2=9的解是( )A.x 1=5,x 2=-1B.x 1=-5,x 2=1C.x 1=11,x 2=-7D.x 1=-11,x 2=7知识点 用直接开平方法解一元二次方程1.下列方程能用直接开平方法求解的是( )A.5x 2+2=0B.4x 2-2x+1=0C.(x-2)2=4D.3x 2+4=22.方程100x 2-1=0的解为( )A.x 1=101,x 2=101-B.x 1=10,x 2=-10C.x 1=x 2=101D.x 1=x 2=101- 3.(丽水中考)一元二次方程(x+6)2=16可化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=4B.x-6=-4C.x+6=4D.x+6=-44.(鞍山中考)已知b <0,关于x 的一元二次方程(x-1)2=b 的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根5.关于x 的一元二次方程2x 2-3x-a 2+1=0的一个根为2,则a 的值为( )A.1B.3C.-3D.±36.一元二次方程ax 2-b=0(a ≠0)有解,则必须满足( ) A.a 、b 同号 B.b 是a 的整数倍 C.b=0D.a 、b 同号或b=0 7.对形如(x+m)2=n 的方程,下列说法正确的是( )A.用直接开平方得x=-m ±nB.用直接开平方得x=-n ±mC.当n ≥0时,直接开平方得x=-m ±nD.当n ≥0时,直接开平方得x=-n ±m 8.若代数式(2x-1)2的值是25,则x 的值为_______9.完成下面的解题过程:(1)解方程:2x 2-8=0; (2)解方程:3(x-1)2-6=0.解:原方程化成_______, 解:原方程化成_______,开平方,得_______, 开平方,得_______,则x 1=_______,x 2=_______ .则x 1=_______,x 2=_______.10.用直接开平方法解下列方程:(1)x 2-25=0; (2)4x 2=1; (3)3(x+1)2=31; (4)(3x+2)2=25.11.方程2x 2+8=0的根为( )A.2B.-2C.±2D.没有实数根12.若a 为方程(x-17)2=100的一根,b 为方程(y-4)2=17的一根,且a ,b 都是正数,则a-b 的值为( )A.5B.6C.83D.10-1713.(枣庄中考)x 1,x 2是一元二次方程3(x-1)2=15的两个解,且x 1<x 2,下列说法正确的是( )A.x 1小于-1,x 2大于3B.x 1小于-2,x 2大于3C.x 1,x 2在-1和3之间D.x 1,x 2都小于314.(内江中考)若关于x 的方程m(x+h)2+k=0(m 、h 、k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m(x+h-3)2+k=0的解是( )A.x 1=-6,x 2=-1B.x 1=0,x 2=5C.x 1=-3,x 2=5D.x 1=-6,x 2=215.(济宁中考)若一元二次方程ax 2=b(ab>0)的两个根分别是m+1与2m-4,则a b =_______. 16.已知方程(x-1)2=k 2+2的一个根是x=3,求k 的值和另一个根.17.用直接开平方法解方程:(1)4(x-2)2-36=0; (2)4(3x-1)2-9(3x+1)2=0..18.若2(x 2+3)的值与3(1-x 2)的值互为相反数,求23xx 的值.19.在实数的范围内定义一种运算“*”,其规则为a*b=a 2-b 2,根据这个规则求方程(x+2)*5=0的解.20.自由下落物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t 2,现有一铁球从离地面19.6米高的建筑物的顶部自由下落,到达地面需要多少秒?挑战自我21.如图所示,在长和宽分别是m 、n 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用m ,n ,x 表示纸片剩余部分的面积;(2)当m=12,n=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案要点感知1 两个不相等, ;,21p x p x =-=两个相等,021==x x ,无实数根预习练习1-1 A 1-2.±3要点感知2 平方根 开平方 一 一预习练习2-1 A1.C.2.A.3.D.4.C.5.D.6.D.7.C.8.3或-29.(1)42=x ,2±=x ,2,-2 (2)2)1(2=-x ,21±=-x ,21-,21+ 10.(1)5,521-==x x ,(2)21,2121-==x x ,(3)34,3221-=-=x x ,(4)37,121-==x x11.D. 12.B. 13. A. 14. B. 15.4 16.2±=k ,另一个根为-117.(1)移项,得4(x-2)2=36,∴(x-2)2=9.∴x-2=±3.∴x 1=5,x 2=-1.(2)移项,得4(3x-1)2=9(3x+1)2,即2(3x-1)=3(3x+1)或2(3x-1)=-3(3x+1). ∴3x+5=0或15x+1=0.∴151,3521-=-=x x . 18.由题意可得2(x 2+3)+3(1-x 2)=0, ∴x 2=9.∴x 1=3,x 2=-3.∴23x x +的值为32或0. 19.由题意可得(x+2)2-52=0,∴x 1=-7,x 2=3.20.当h=19.6时,4.9t 2=19.6.∴t 1=2,t 2=-2(不合题意,舍去). ∴t=2.答:到达地面需要2秒.挑战自我21.(1)mn-4x 2;(2)根据题意得mn-4x 2=4x 2,将m=12,n=4代入上式,得x 2=6. 解得x 1=6,x 2=6-(舍去). 答:正方形的边长为6.。
初三数学上册《 直接开平方法解一元二次方程说课稿》
《直接开平方法解一元二次方程》说课稿今天我说课的课题是《直接开平方法方法解一元二次方程》。
内容选自人教版教科书,数学九年级上册第22章一元一次方程第2节。
下面我从教材分析、教学目标的确定,教学重、难点的分析,教法、学法,教学过程几个方面对本节课的教学进行一个说明。
一、教材分析:一元二次方程的解法是本章的重点内容,直接开平方法一元二次方程解法的起始课,直接接开平方法是解一元二次方程的基础方法。
它的推导建立在平方根意义和开方运算的基础上,首先它配方法的基础,其次再求二次函数与X 轴交点等问题中都必须用一元二次方程的解法。
同时,这一届教材的编写中突出体现了化归、类比等严重的数学思想方法。
因此这一届不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
为此,根据课标要求和学生实际情况,制定了如下的教学目标:二、教学目标:1.知识与技能(1)会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程.(2)能根据详尽问题的实际意义检验结果是否合理,并对其进行取舍.2.过程与方法通过实例,使学生体会一元二次方程应用价值并意识到解一元二次方程的严重性,理解直接开平方法的数学依据,并能应用直接开平方法.让学生经历由简到繁过程,体验类比、化归、降次的数学思想方法,培养学生观察、分析、计算等思维能力及应用意识.3.情感态度与价值观通过学生对详尽问题的思考、讨论、交流,最终得出结论的过程,培养学生的进取精神,让学生养成科学严格的治学态度和应用所学知识解决问题的习惯.三、教学重点与教学难点的分析本节课是一元二次方程解法的起始课,教学重点是用直接开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程。
难点是不可直接降次解方程化为可直接降次解方程的“化归”的转化方法与技巧.四、教法学法分析:1、教法:本节课采用启发式和自主探究式与交流讨论相结合的教学方式。
在教学中以启发学生进行探究的形式展开,利用已有的知识,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1直接开平方法解一元二次方程学案
【学习目标】
学会用开平方法解形如x2=p或(mx+n)
2
=p(p≥0)的方程;
【重点难点】:运用开平方法解形如(x+m)2=n(n≥0)的方程
【学法指导】1、认真阅读课本30页至第31页的部分了解2xp2()mxnp方
程的解法。2、再读课本划出不懂的地方。3再读课本后完成预习自测。
【学习过程】
一、 复习回顾;
1、 a+1有平方根,则a的取值范围是_____,它的平方根是_______.
2、根据平方根意义写出下各数的平方根
9、81、0、24、32
3、求x的值
(1)X2=9 (2)2X2=4
二、新知探究:
探究(一):
1、解一元二次方程x2=5, m2=16, x2-121=0。
2、你能求出一元二次方程 - x2+3=0 和 x2+1=0的解吗?若能请写出求解过程,若不能说
明为什么。
探究(二):
9x2=16都可以怎样求解?你们小组认为哪种解法更简便?
探究(三):
对比x2=4 的求解过程,一元二次方程(a-8)2=25该如何求解?试解出此方程。
归纳:1、上面的解法中,实质上是把一个一元二次方程_________转化为两个 方
程,我们把这种思想称为“降次转化思想”。如果方程能化成2x=p或2)nmx(=p (p≥0)
的形式,那么可得 x=±p 或mx+n=±p. 习惯把这种解法叫直接开平方法
2、我们发现一个一元二次方程的根可能有___个,也可能有___个,还可能_______
三、 典型例题
解下列方程:(1)32)1x( - 6=0 (2)226952xxx
四、跟踪练习
1、一元二次方程x2-4=0的根为 ( )
(A)x=2 (B)x=-2 (C)x1=2, x2=-2 (D)x1=2, x2=-2
2、方程232x的根是
3、方程2562x=0的根是
4、4)1(222yx,则22yx=
5、解方程
(1)2592x (2)09822x (3)27)1(32y
课后练习
1、已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,
则m、n必须满足的条件是( )
A.n=0 B.m、n异号 C.n是m的整数倍 D.m、n同号
2、用直接开平方法解方程(x+h)2=k ,方程必须满足的条件是( )
A.k≥o B.h≥o C.hk>o D.k<o
3、方程(1-x)2=4的根是( )
A.-1、3 B.1、-3 C.1- 、1+ D. -1、 +1
4、方程2x-81=0的根是_____.
5、若 82x- 16 =0,则 x=_____.
6、若代数式22x-x+1与51x的值互为相反数,则x的值为_____.
7、解下列一元二次方程
(1) 2x-6x+9=4 (2)42x+4x+1 =2 (3) 2x+4x+4=9
(4) 32x=27 (5) 2)1x(-144=0 (6) 2)1(y-2(y+1)+1=0
(7)1)1)(1(xx (8)22)13(9)52(4yy
8、当x为何值时,分式21232xx的值为0.
9、市区内有一块边长为15米的正方形绿地,经城市规划,需扩大绿化面积,预计规划后
的正方形绿地面积将达到300平方米,请问这块绿地的边长增加了多少米?