直接开平方解方程
二元一次方程解法大全--精选

二元一次方程解法大全二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n ≥0) 的方程,其解为 x=±根号下n+m.例1.解方程( 1)(3x+1)2=7 (2)9x2-24x+16=11剖析:(1)此方程明显用直接开平方法好做,(2)方程左侧是完整平方式(3x-4)2 ,右侧=11>0,因此此方程也可用直接开平方法解。
(1)解: (3x+1)2=7×∴(3x+1)2=5∴3x+1=±( 注意不要丢解 )∴x=∴原方程的解为x1=,x2=(2)解: 9x2-24x+16=11∴(3x-4)2=11∴3x-4= ±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a ≠0)先将常数 c 移到方程右侧: ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加前一次项系数的一半的平方: x2+x+()2=-+()2方程左侧成为一个完整平方式:(x+)2=当b^2-4ac ≥0 时, x+=±∴x=( 这就是求根公式 )例2.用配方法解方程 3x^2-4x-2=0( 注:X^2是X 的平方)解:将常数项移到方程右侧3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加前一次项系数一半的平方:x2-x+()2=+()2配方: (x-)2=直接开平方得: x-= ±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,而后计算鉴别式△=b2-4ac 的值,当b2-4ac ≥0 时,把各项系数 a,b,c 的值代入求根公式 x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac ≥0) 便可获得方程的根。
例3.用公式法解方程 2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b ±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,获得两个一元一次方程,解这两个一元一次方程所获得的根,就是原方程的两个根。
二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下 n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2 ,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为 x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为 x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边: ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式 )例2.用配方法解方程3x^2-4x-2=0( 注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为 x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△ =b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c 的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac ≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式: 2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4 ×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为 x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
(完整版)二元一次方程解法大全.,推荐文档

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2= 当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
一元二次方程的解法(知识梳理)

一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+
=±
∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解

一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:类型二、因式分解法解一元二次方程【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
22.2.1直接开平方法解一元二次方程

5
(3)4 x (4) x
2
1
2 2 20x ) 10 ( x 10
梳理
像上题,通过配成完全平方式的 形式解出一元二次方程的根的方法,
叫做配方法。
小技巧: 配方时, 如果二次项系数为1,方 程左右两边应同时加上一次项系数的一 半的平方.如果二次项系数不是1,应先 化为1,再配方
1.直接开平方法 用直接开平方法解一元二次方程,先把 方程左边变成x的平方(或关于x的一次式的平 方),右边变成一个非负常数的形式,再开平方。
化成
(mx+n)2=非负常数
(3)(x 5) 16
2
然后两边直接开平方
( 4)(x 1) 3 0
2
(5) y 4 x 4 3
2
1.直接开平方法
用直接开平方法解一元二次方程, 先把方程左边变成x的平方(或关于x的一 次式的平方),右边变成一个非负常数的形 式,再开平方。
如 果 方 程 能 化 成x p 或
2
(mx n) p( p )的 形 式 , 那 么 ≥ 0
2
可 得x p或mx n p .
2 2 2
a=-4,b=3,c=-5
2
a=1,b=0,c=-1
2 2
(4) x 3 0; (5)2 x 3x 2 x( x 1) 1; (6) y 0
a=1,b=0,c=3 a=1,b=0,c=0
解一元二次方程 化成 X2=非负常数 然后两边直接开平方
(1)x2-25=0
的一次式)的平方,右边变成非负常数的
形式就可以直接开平方求解了。
方程x2+6x=2如何解? 1、把下列各式的左边化成完全平方式
二元一次方程解法大全

二元一次方程解法大全小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。
1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。
〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。
例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
直接开平方法解方程(附当堂检测及答案)

直接开平方法解方程(附当堂检测及答案)学习目标:1.会把一元二次方程降次转化为两个一元一次方程.2.运用开平方法解形如x 2=p 或(x +n )2=p (p ≥0)的方程.重点:运用开平方法解形如x 2=p 或(x +n )2=p (p ≥0)的方程.难点:理解一元二次方程“降次”的转化思想,并能把一元二次方程降次转化为两个一元一次方程.一、知识链接1.如果 x 2=a ,则x 叫做a 的 .2.如果 x 2=a (a ≥0),则x = .3.如果 x 2=64,则x = .4.任何数都可以作为被开方数吗?二、要点探究探究点1:直接开平方法解形如x 2=p (p ≥0)的方程 问题1 一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?试一试 解下列方程,并说明你所用的方法,与同伴交流.(1) x 2=4 (2) x 2=0 (3) x 2+1=0要点归纳:一般的,对于可化为方程x 2 = p ,(I)(1)当p >0 时,根据平方根的意义,方程(I)有两个不等的实数根1x p ,2x p ;(2)当p =0 时,方程(I)有两个相等的实数根120x x ;(3)当p <0 时,因为任何实数x ,都有x 2≥0 ,所以方程(I)无实数根..典例精析(1) x 2=6; (2) x 2-900=0.方法总结:通过移项把方程化为x 2 = p 的形式,然后直接开平方即可求解探究点2:直接开平方法解形如(x+n)2=p (p≥0)的方程想一想对照上面的方法,你认为怎样解方程(x+3)2=5?方法总结:解形如(x+n)2=p (p≥0)的方程,先降次转化为两个一元一次方程,再求解即可.例2 解下列方程:(1)(x+1)2= 2 ;(2)(x-1)2-4 = 0;(3)12(3-2x)2-3 = 0.方法总结:通过移项化简将方程转化为(x+n)2=p(p≥0)的形式,再进行降次转化为两个一元一次方程.例3 解下列方程:21445;x x22961 4.x x方法总结:通过因式分解将方程转化为(x+n)2=p(p≥0)的形式.1.下列解方程的过程中,正确的是()A.x2=-2,解方程,得x=B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x1=11 4x=,x2=27 4x=D.(2x+3)2=25,解方程,得2x+3=±5,x1= 1,x2=-42.填空:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:2x 5 4 或 2x 5 4;
x1
9 2
x2
1 2
上一页 下一页
ax 例5、用直接开平方法解方程: 2 c 0 a 0
解: a 0
x2
c a
;
1当c a源自0时,方程的根是x
c a
;
即:x1
c a
1 a
ac,
x2
42x2
128;
52x2
1 2
0;
63y2
4 3
;
7 x
172
49;
注意:解方程 x2 b b 0; 或
时,应先把方
程变形为: x a2 b b 0。
练习2、解下列方程:
1 x2 256; 2 x2 9 0; 3 t2 45 0
教学目的:
1、使学生掌握直接开平方法并 会解某些一元二次方程。
2、使学生会解 x a2 bb 0 型
的方程,为进一步学习公式法作好 准备。
教学重点与难点:
一元二次方程的解法重 点是公式法。在公式法中, 包含了直接开平方法、配方 法。配方法是一元二次方程 解法中的难点。
一元一次方程的解法(1)
解: 3m
52
1 3
无论m取何值,3m 52 0;
此方程无解。
例4、用直接开方法解方程:32x 52 12 22x 52 4
解:32x 52 22x 52 12 4; 2x 52 16;
2x 5 4;
416x2 49 0; 52x 32 5; 6x 52 36 0; 76x 12 25;
上一页 下一页
课堂小结:
用直接开平方法可解下列类型 的一元二次方程:
x2 b b 0或 x a2 b b 0;
根据平方根的定义,要特别注意: 由于负数没有平方根,
所以,当b<0时,原方程无解。
上一页 下一页
作业1、解下列方程:
1y 62 100; 2mx 2 n 0 m 0;
34 a
2
2 8 a
2
2 20;
作业、解下列关于x的方程:
1 x2 a
1
a
0 ;
2x2 a 0 a 0;
复习提问:
1、什么叫整式方程?试举两例。
2、什么样的方程叫做一元一次方程、一 元二次方程?
3、说明一元一次方程与一元二次方程的 相同点与不同点。
4、一元二次方程的一般形式是什么?其 中a应具备什么条件? 为什么?
下一页
例1、解方程 x2 4 0
x 先移项,得: 2 4
可见,上面的 x2 4
3x a2 b2;
4ax c2 d d 0, a 0
上一页
返回
若 a=0, b≠0 则方程ax2+bx+c=0是 一元一次方程。
返回
1、整式方程的定义:方程的两边都是关于未知数的整 式的方程。
2、判断下列方程哪些是整式方程、哪些不是整式方程:
3x 2 5x 3;
求一个数的平方根的运算叫做 开平方。
例2、 解方程 x 32 2
解: x 3 2
显然,方程中的(x+3) 是2的平方根。
x 3 2,或x 3 2;
即: x1 3 2, x2 3 2;
例3、用直接开方法解方程:93m 52 3 0
2、a应具备的条件是不为 零。
为什么?
复习:a2 ?
返回
a a 0
a2
a
0 a
0
a a 0
1
1
a2
a
c a
ac 1 a2 a
ac
上一页
整式方程
3 4
x
2
5x
3;
整式方程
3 4x
2
5x
3;
分式方程
返回
1、只含有一个未知数,并且未知数的次数是1 的整式方程叫一元一次方程。
2、只含有一个未知数,并且未知数的最高次数 是2的整式方程叫一元二次方程。 3、一元二次方程与一元一次方程相比较,相同 点是方程的两边都只含有一个未知数;不同点 是二次方程的最高次数是2(一次方程无所谓最 高次数)。
单击此处见判断题
返回
下列方程哪些是一元一次方程?哪些 是一元二次方程?
3x 2 5x 3;
一元一次方程
x2 4
一元二次方程
x 1x 2 x2 8; 一元一次方程
x 33x 4 x 22; 一元二次方程
返回
1、一元二次方程的一般 形式是:ax2 bx c 0(a 0)
实际上就是求4的平方 根。
因此:x 4 2
以上解某些一元二 次方程的方法叫做 直接开平方法。
上一页 下一页
这里,一个数(x)的平方根等于4, 这个数(x)叫做4的什么? 这个数(x)叫做4的平方根(或二次 方根)。 一个正数有几个平方根? 一个正数有两个平方根,它们 互为相反数。 求一个数的平方根的运算叫做 什么?
c a
1 a
ac;
2当
c a
0时,原方程无实数根。
为什么分 母要加绝 对值?
提问:下列方程有解吗?
(1) x 42 3; (2) 3x 12 3;
上一页 下一页
练习1、用直接开平方法解下列方程:
1x2 0; 2x2 16 0; 3y2 121 0;