解一元二次方程(直接开方法 配方法)练习题100+道
_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

观察(1)(2)看所填的常 数与一次项系数之间
有什么关系?
(3) x2 4x 22=( x 2 )2
1.会用直接开平方法解形如(x a)2 b(b 0)
的方程. 2.灵活运用因式分解法解一元二次方程. 3.了解转化、降次思想在解方程中的运用。
合理选择直接开平方法和因式分解法较熟练 地解一元二次方程。
a x 1.如果 x2 a(a 0) ,则 就叫做 的 平方根 。
2.如果 x2 a(a 0) , 则x = a
解:(1) χ2=25
(2)移项,得χ2=900
直接开平方,得χ=±5 直接开平方,得χ=±30
∴ χ1=5,χ2=-5
∴χ1=30 χ2=-30
2、利用直接开平方法解下列方程:
(1)(χ+1)2-4=0
(2) 12(20 (2) 12(2-χ)2-9=0
分析:我们可以先把(χ+1)看作一个整体,原方程便可
χ1=-1,χ2=1.
利用因式分解的方法解方程,这种方法 叫做因式分解法。
1、利用因式分解法解下列方程: 1) χ2-3χ=0; 2) 16χ2=25; 3)(2χ+3)2-25=0.
解:1)方程左边分解因式,得χ(χ-3)=0.
∴ χ=0,或χ-3=0,
解得 χ1=0,χ2=3. 2) 方程移项,得16χ2-25=0
问题2 要使一块矩形场地的长比宽多6m,并且
面积为16 m2 , 场地的长和宽应各是多少?
解:设场地的宽xm,长(x+6)m,根据矩形面积
为16 m2 ,列方程
X(x+6)=16
即x2 6x 16 0
怎样解?
想x2一想6x解 1方6 程 0x2 6x 16 0的流程怎样?
直接开平方法解一元二次方程基础练习50题含详细答案

此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键
6.C
【详解】
解:要利用直接开平方法解一元二次方程,先将一元二次方程进行变形,变形为等号左边是数的平方或完全平方形式,等号右边为常数,且当常数要大于或等于0时,方程有实数解,因为选项C,移项后变形为 ,根据平方根的性质,此时方程无解,
10. 2或-1.
【解析】
①∵- - ,
∴min{- ,- }=- ;
②∵min{(x−1)2,x2}=1,
∴当x>0.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
11.方程x2-3=0的根是__________.
12.一元二次方程 的解是______.
13.方程x2﹣4=0的解是_____.
14.如图,已知sinO= ,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,则AP=________.
15.方程(x−2)2=9的解是_________.
16.方程 的根是______________.
17.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则 =.
18.方程4x2-4x+1=0的解为_______.
三、解答题
19.解方程:
20.解方程: .
21.按指定的方法解方程:
(1)9(x﹣1)2﹣5=0(直接开平方法)
(2)2x2﹣4x﹣8=0(配方法)
(3)6x2﹣5x﹣2=0(公式法)
故选:A.
【点睛】
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。
1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。
一元二次方程的解法——配方法(含答案)

一元二次方程的解法——配方法一.填空题(共4小题)1.把一元二次方程x2﹣4x﹣8=0化成(x﹣m)2=n的形式,则m+n的值为.2.利用配方法解一元二次方程x2﹣6x+7=0时,将方程配方为(x﹣m)2=n,则mn=.3.方程(x﹣3)(x+5)﹣1=0的根x1=,x2=.4.把方程2x2﹣4x+1=0配方后得到的新方程是:.二.解答题(共8小题)5.解方程:(1)x2﹣2x﹣4=0;(2)(x+1)(x﹣3)=﹣4.6.解方程:(1)(x﹣1)(x+2)=4.(2)4x2﹣8x﹣3=0.7.解下列方程:(1)(x+3)2=16;(2)x2﹣4x﹣3=0.8.解方程:(1)(x﹣1)2﹣9=0.(2)x2﹣2x﹣5=0.9.解下列方程:(1)(x﹣3)2﹣4=0;(2)x2﹣4x﹣8=0.10.解方程:(1)4x2=81;(2)x2+2x﹣5=0.11.解方程:(1)x2+4x﹣1=0;(2)(y+2)2=(3y﹣1)2.12.解一元二次方程.(1)x2﹣2x﹣4=0;(2)(x﹣5)(x+2)=8.参考答案与试题解析一.填空题(共4小题)1.把一元二次方程x2﹣4x﹣8=0化成(x﹣m)2=n的形式,则m+n的值为14.【分析】利用配方法把一元二次方程变形,进而求出m、n,计算即可.【解答】解:x2﹣4x﹣8=0,移项,得x2﹣4x=8,配方,得x2﹣4x+4=8+4,∴(x﹣2)2=12,∴m=2,n=12,∴m+n=2+12=14,故答案为:14.【点评】本题考查的是一元二次方程的解法,熟记配方法解一元二次方程的一般步骤是解题的关键.2.利用配方法解一元二次方程x2﹣6x+7=0时,将方程配方为(x﹣m)2=n,则mn=6.【分析】方程移项后,两边加上一次项一半的平方,利用完全平方公式配方得到结果,求出m与n的值,即可求出mn的值.【解答】解:方程x2﹣6x+7=0,移项得:x2﹣6x=﹣7,配方得:x2﹣6x+9=2,即(x﹣3)2=2,∵方程配方为(x﹣m)2=n,∴m=3,n=2,则mn=3×2=6.故答案为:6.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.方程(x﹣3)(x+5)﹣1=0的根x1=﹣1+,x2=﹣1﹣.【分析】先观察再确定方法解方程,此题首先要化简,然后选择配方法较简单,因为二次项的系数为1.【解答】解:化简得,x2+2x﹣16=0∴x2+2x=16∴(x+1)2=17∴x1=﹣1+,x2=﹣1﹣.【点评】解此题的关键是先化简,再选择适宜的解题方法.求根公式法和配方法适用于任何一元二次方程,配方法对于二次项的系数为1方程要简单些.4.把方程2x2﹣4x+1=0配方后得到的新方程是:(x﹣1)2=.【分析】先移项,二次项的系数化成1,再根据完全平方公式配方,最后得出答案即可.【解答】解:2x2﹣4x+1=0,2x2﹣4x=﹣1,x2﹣2x=﹣,配方得:x2﹣2x+1=﹣+1,(x﹣1)2=,故答案为:(x﹣1)2=.【点评】本题考查了用配方法解一元二次方程,能够正确配方是解此题的关键.二.解答题(共8小题)5.解方程:(1)x2﹣2x﹣4=0;(2)(x+1)(x﹣3)=﹣4.【分析】(1)公式法求解可得;(2)整理成一般式后,因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣4,∴Δ=4﹣4×1×(﹣4)=20>0,∴x==1±;∴x1=1+,x2=1﹣.(2)整理得:x2﹣2x+1=0,∴(x﹣1)2=0,则x﹣1=0或x﹣1=0,∴x1=x2=1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.解方程:(1)(x﹣1)(x+2)=4.(2)4x2﹣8x﹣3=0.【分析】(1)整理后,利用因式分解法求解即可;(2)利用公式法求解即可.【解答】解:(1)(x﹣1)(x+2)=4,整理得:x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2;(2)4x2﹣8x﹣3=0,a=4,b=﹣8,c=﹣3,∴b2﹣4ac=64﹣4×4×(﹣3)=112>0,∴x==,∴x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.解下列方程:(1)(x+3)2=16;(2)x2﹣4x﹣3=0.【分析】(1)利用直接开方法,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)利用配方法,再开方求解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)(x+3)2=16,∴x+3=±4,∴x+3=4或x+3=﹣4,∴x1=1,x2=﹣7;(2)x2﹣4x﹣3=0,x2﹣4x+4=7,即(x﹣2)2=7,∴或,∴,.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.8.解方程:(1)(x﹣1)2﹣9=0.(2)x2﹣2x﹣5=0.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;(2)x2﹣2x=5,x2﹣2x+1=5+1,(x﹣1)2=6,∴x﹣1=±,∴x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.解下列方程:(1)(x﹣3)2﹣4=0;(2)x2﹣4x﹣8=0.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.【解答】解:(1)∵(x﹣3)2=4,∴x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)∵x2﹣4x﹣8=0,∴x2﹣4x=8,则x2﹣4x+4=8+4,即(x﹣2)2=12,∴x﹣2=,∴x1=2+2,x2=2﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.解方程:(1)4x2=81;(2)x2+2x﹣5=0.【分析】(1)利用解一元二次方程﹣直接开平方法,进行计算即可解答;(2)利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:(1)∵4x2=81,∴x2=,∴x1=,x2=;(2)x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,x+1=±,x+1=或x+1=﹣,∴,.【点评】本题考查了解一元二次方程﹣直接开平方法,解一元二次方程﹣配方法,准确熟练地进行计算是解题的关键.11.解方程:(1)x2+4x﹣1=0;(2)(y+2)2=(3y﹣1)2.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,配方得:x2+4x+4=1+4,(x+2)2=5,开方得:x+2=,解得:x1=﹣2+,x2=﹣2﹣;(2)(y+2)2=(3y﹣1)2,开方得:y+2=±(3y﹣1),解得:y1=,y2=﹣.【点评】本题考查了解一元二次方程,能正确适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.12.解一元二次方程.(1)x2﹣2x﹣4=0;(2)(x﹣5)(x+2)=8.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)整理后把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可.【解答】解:(1)x2﹣2x﹣4=0,移项,得x2﹣2x=4,配方,得x2﹣2x+1=4+1,即(x﹣1)2=5,开方,得x﹣1=,解得:x1=1+,x2=1﹣;(2)(x﹣5)(x+2)=8,整理得:x2﹣3x﹣18=0,(x﹣6)(x+3)=0,x﹣6=0或x+3=0,解得:x1=6,x2=﹣3.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.。
初中数学《一元二次方程计算100题》训练

\ 1 /一元二次方程计算100题使用说明:本专题的制作目的是提高学生在一元二次方程这一部分的计算能力。
主要有以下几种方法:①直接开方法;②配方法;③公式法;④因式分解法;共100题。
建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。
模块一 直接开方法方法总结:形如x²=p 或(nx+m )²=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程。
如果方程化为x²=p (p≥0)的形式,那么可得x=±√p ;如果方程能化成(nx+m )²=p (p≥0)的形式,那么nx+m=±√p 。
易错总结:① 注意除0外,开方结果应该有两个;② 方程解的形式要写成x 1=……,x 2=……或“x=……或x=……”例题解析:解方程(x −2)2=1解:x −2=±1 ……【开平方】x −2=1或x −2=−1 ……【移项】x 1=3,x 2=1 ……【解出x 】巩固练习:1.解方程:(x −2)2−9=0.2.解方程:(3y −1)2=(y −3)2.3.解方程:(3x −4)2=(2x +3)2.\ 2 /4.解方程:14(x +1)2=25.5.解方程:13(2x −3)2−25=0.6.解方程:x 2−6x +9=(5−2x)2.7.解方程:√3(x −1)2=√27.8.解方程:2(3x+1)25=8.9.解方程:4(2x −5)2=9(3x −1)2.10.解方程:4(x −2)2−(3x −1)2=0.11.解方程3(x −1)2=48.模块二 配方法方法总结:配方法解一元二次方程的一般步骤:①先将已知方程化为一般形式; ②化二次项系数为1 ③常数项移到右边 ④方程两边分别加上一次项系数一半的平方,使左边配成一个完全平方式 ⑤ 变形为(x+p )²=q 的形式,如果q ≥0,方程的根是x=p ±√q ;如果q <0,方程无实根。
(完整版)解一元二次方程配方法练习题

解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1 ;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.1 •用适当的数填空:①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2;③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 22 .将二次三项式2X2-3X-5进行配方,其结果为•3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ .4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b的形式为_______ , ?所以方程的根为___________ .5. 若x2+6x+m2是一个完全平方式,则m的值是()A . 3B . -3 C.± 3 D .以上都不对6. 用配方法将二次三项式a2-4a+5变形,结果是( )A. (a-2) 2+1B. (a+2) 2-1C. (a+2) 2+1 D . ( a-2) 2-17. 把方程X+3=4X配方,得()A . ( X-2 ) 2=7B . ( X+2)2=21C. (X-2 ) 2=1 D . ( X+2)2=2&用配方法解方程X2+4X=10的根为()A. 2± \10B. -2 ±14C. -2+ 10D. 2- -109. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2B.总不小于7C.可为任何实数 D .可能为负数10. 用配方法解下列方程:(1) 3X2-5X=2 . (2) X2+8X=9(5) 6X2-7X+仁0 (6) 4X2-3X=5211.用配方法求解下列问题(1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。
一元二次方程直接开平方和配方法

一元二次方程的解法直接开平方法和配方法解一元二次方程一、选择题1. 解方程23270x+=,得该方程的根是( )A .3x =±B .3x =C .3x =-D .无实数根2. 用配方法解下列方程时,配方有错误的是()A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3. 用配方法解下列方程时,配方错误的是()A .22350x x +-=化为2(1)36x += B .2740y y --=化为2765()24y -=C .2890x x ++=化为2(4)25x += D .23420x x --=化为2210()39x -=4. 用配方法解方程22103x x ++=,正确解法是( )A .21839x ⎛⎫+= ⎪⎝⎭,133x =-±.B .21839x ⎛⎫+=- ⎪⎝⎭,原方程无实数根.C .22539x ⎛⎫+= ⎪⎝⎭,x =. D .22539x ⎛⎫+=- ⎪⎝⎭,原方程无实数根.5. 用配方法解下列方程时,配方错误的是( )A .22800x x --=,化为2(1)81x -=. B .2530x x --=,化为253724x ⎛⎫-= ⎪⎝⎭.C .2890t t ++=,化为2(4)25t +=. D .23420t t +-=,化为221039t ⎛⎫+= ⎪⎝⎭.6. 用配方法将二次三项式245a a ++变形,结果是( ) A .2(2)1a -+ B .2(2)1a ++ C .2(2)1a -- D .2(2)1a +-7. 关于x 的方程22()(2)02a x a x +-+=的两根分别为( )A .12a x =,232a x =-. B .12a x =,22a x =-. C .13x a =,22a x =-. D .132a x =,232ax =-.8. 一元二次方程240x -=的解是( ) A .2x = B .2x =-C .12x =,22x =-D .1x =2x =二、填空题9. 用适当的数(式)填空:23x x -+(x =-2);10. 用适当的数(式)填空:2x px -+=(x -2)11. 用适当的数(式)填空:23223(x x x +-=+2)+.12. 方程22103x x -+=左边配成一个完全平方式,所得的方程是.13. 填空(1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a-+( )=(y - )2.14. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 15. 关于x 的方程22220x ax b a +-+=的解为16. 把方程22(21)0x m x m m -+++=化成2()x a b +=的形式是: . 17. 用配方法解一元二次方程的一般步骤是:化二次项系数为1,把方程化为2x mx n ++=的形式;把常数项移到方程右边即 方程两边同时加上24m ,整理得到24m n =-;当204m n -≥时,(2m x +=,当204m n -<时,原方程 .18. 若方程20x m -=有整数根,则m 的值可以是 (只填一个). 19. 用适当的数(式)填空:235x x -+(x =-2)20. 设实数x ,y 满足2242420x y x y ++-+=,则22y x +的值等于.21. 用适当的数(式)填空:2(b a x x a++)(a x =+2).22. 把方程2890x x --=的左边配成一个完全平方式得 . 23. 完成下列配方过程:2221[2x px x px ++=++( )]+( )=(x + )2+( )24. 解一元二次方程20ax c +=的步骤是:(1)把原方程变形为 ;(2)根据平方根意义,①当0a ≠,0c ≠且a ,c 异号时,方程的解是1x = ,2x = .②当0a ≠,0c =时,原方程的解是0x =,当0a ≠,0c ≠且a ,c 同号时,原方程 .25. 一个一元二次方程,只要左边能化成含未知数的 的形式,而右边是一个非负常数,就可以根据平方根的意义,用开平方法解. 26. 方程249810x -+=的解是 .27. 241(x x x ++=+ )2+ .28. 一元二次方程2220x x --=用配方法化成2()x a b +=的形式为 则此方程的根为 .三、证明题29. 用配方法证明:(1)21a a -+的值恒为正;(2)2982x x -+-的值恒小于0.30. 用配方法证明:代数式231x x --+的值不大于1312.。
专题1.13解一元二次方程(精选100题)(全章专项练习)1「含答案」

专题1.13 解一元二次方程(精选100题)(全章专项练习)1.用适当的方法解下列方程.(1)()2224x x +=+(2)2314x x-=2.解下列方程:(1)267x x -=;(2)23520x x -+=.3.解方程:(1)2430x x ++=;(2)()()()21332x x x --+=.4.解方程:(1)()()628x x x -=-(2)()()221230x x +--=5.解方程:(1)()22250x +-=(2)2420x x --=6.解方程:(1)2340x x -=;(2)2313162x x -=--.7.解下列方程:(1)231x x =-;(2)2430x x -+=.8.解方程:(1)2680x x ++=;(2)3(1)22x x x -=-.9.解方程:(1)2412x x =(2)22430x x +-=10.解方程:(1)2360x x -=(2)2420y y ++=11.(1)解方程:()()439239x x x +=+.(2)解分式方程:26124x x x -=--;12.(1)解方程:()230x x -=;(2)用配方法解方程:2240x x --=.13.解方程:(1)2410x x -=+(2)()()221230x x +--=14.解方程:(1)()294x x x -+=;(2)226x x +=.15.解方程:(1)22410x x -+=;(2)()()3424x x x +=+.16.选择合适的方法解方程.(1)2572x x=-(2)()()3121x x x -=-17.解方程:(1)2210x x --=;(2)()()()23213x x x -+=-.18.解方程(1)()220x x x -+-=(2)2213x x +=19.解方程:(1)2410x x -+=(2)2(3)2(3)0x x x -+-=20.解方程:(1)20x x -=.(2)22350x x --=.21.用配方法解下列方程:(1)2440x x ++=;(2)22320x x -+=.22.解方程(1)2240x x --=(2)()()2232x x -=-.23.解方程(1)()428x x x-=-(2)23210x x --=24.解方程:(1)22530x x +-=(用配方法)(2)22390x x --=25.解方程:(1)2220x x +-=;(配方法)(2)()236x x x -=-.26.解下列方程:(1)280x x +=;(2)22460x x --=.27.解方程:(1)(41)3(41)x x x -=-;(2)24120x x --=.28.解方程:(1)()()2233x x x +=+;(2)2521x x +=29.解方程:(1)22350x x --=;(2)()2326x x +=+.30.解方程:(1)2430x x -+=;(2)()()()3111x x x +=-+.31.解下列方程:(1)20x -=(2)257311x x x ++=+32.解方程:(1)2280x -=;(2)24320x x --=.33.解下列方程:(1)()220x x x -+-=(2)2430x x -+=34.解下列方程:(1)250x x +=(2)2240x x --=35.解下列方程.(1)()()3121x x x -=-(2)22610x x -+=36.解一元二次方程:(1)()2214x -=;(2)2410x x --=.37.用适当的方法解方程:(1)2250x x --=(2)()()23492230x x ---=38.解下列方程(1)22125x x -+=;(2)2100x ++=39.解一元二次方程:(1)()5133x x x +=+(2)23640x x +-=40.解方程:(1)()()135x x ++=;(2)2267x x +=.41.用适当的方法解下列方程.(1)223x +=;(2)()()22132120y y ++++=.42.解方程:(1)4(3)3-=-x x x ;(2)22860x x -+=(配方法).43.(1)解方程:2230x x --=;(2)解方程:228122-=--x x x x.44.解下列一元二次方程:(1)2470x x --=(2)2531x x x -=+45.解方程(1)()220x x x -+-=(2)2178x x-=46.用适当的方法解下列方程:(1)2410x x -+=(2)(1)(2)2(2)x x x -+=+47.解方程:(1)260x x -=;(2)1(3)623x x x -=-.48.用适当的方法解方程(1)()2516x -=(2)2510x x --=49.解方程:(1)220x x -=;(2)2720x x -+=.50.解方程:(1)2280x -=(2)()2240x x -+=1.(1)10x =,22x =-(2)1x =2x =【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)()2224x x +=+24424x x x ++=+220x x +=()20x x +=∴0x =或20x +=解得10x =,22x =-;(2)2314x x-=23410x x --=3a =,4b =-,1c =-()()22Δ44431280b ac =-=--´´-=>∴x ==解得x ,.2.(1)127,1x x ==-(2)1221,3x x ==【分析】本题考查了解一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.(1)运用因式分解法解方程即可;(2)运用因式分解法解方程即可.【详解】(1)解:267x x -=2670x x --=()()710x x -+=70x -=或10x +=\127,1x x ==-;(2)解:23520x x -+=()()1320x x --=10x -=或320x -=\1221,3x x ==.3.(1)1213x x =-=-,(2)12121x x =-=,【分析】本题考查了解一元二次方法,熟练掌握一元二次方程的求解方法是解题关键.(1)利用因式分解法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵2430x x ++=,()()130x x \++=,∴10x +=或30x +=,∴1213x x =-=-,;(2)()()()23=213x x x --+,整理得:211120x x +-=,∴()()1210x x +-=,120x \+=或10x -=,12121x x =-\=,.4.(1)124x x ==;(2)12243x x ==,.【分析】本题主要考查解一元二次方程,解一元二次方程的常用方法有直接开平方法、公式法、因式分解法.(1)整理成一般式,再利用公式法将方程的左边因式分解后求解可得;(2)利用公式法将方程的左边因式分解后求解可得.【详解】(1)解:()()628x x x -=-Q ,26216x x x \-=-,则28160x x -+=,即2(4)0x -=,124x x \==;(2)解:∵()()221230x x +--=.∴()()1231230x x x x ++-+-+=,∴1230x x ++-=或1230x x +-+= ∴12243x x ==,.5.(1)13x =,27x =-(2)1222x x =+=【分析】本题考查一元二次方程的解法.(1)先移项,然后直接开平方即可;(2)利用配方法解此方程,即可求解.【详解】(1)解:()22250x +-=,()2225x \+=,25x \+=±,25x \+=或25x +=-,13x \=,27x =-;(2)2420x x --=,242x x \-=,24424x x \-+=+,()226x \-=,2x \-=1222x x \==.6.(1)10x =,243x =(2)分式方程的根为0.5x =【分析】(1)用因式分解法解二元一元方程.(2)按照解分式方程的步骤解方程即可.【详解】(1)解:∵2340x x -=,∴()340x x -=,则0x =或340x -=,解得10x =,243x =;(2)2313162x x -=--两边都乘以()231x -,得:()42313x --=,解得:0.5x =,检验:当0.5x =时,()2310x -¹,∴x =7.(1)1x =2x =(2)13x =,21x =【分析】本题主要考查解一元二次方程.(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.【详解】(1)解:231x x =-整理得:2310x x -+=2D ,x =,∴1x (2)2430x x -+=()3(1)0x x --=,30x -=或10x -=,解得:13x =,21x =.8.(1)12x =-,24x =-;(2)11x =,223x =-.【分析】本题考查了一元二次方程的解法-因式分解法,利用因式分解法解一元二次方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(1)利用十字相乘法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:2680x x ++=,()()240x x ++=,20,40x x \+=+=,12x \=-,24x =-.(2)解:3(1)22x x x -=-,3(1)2(1)0x x x -+-=,(1)(32)0x x -+=,10x \-=或320x +=,11x \=,223x =-.9.(1)10x =,23x =(2)1x =2x =【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)2412x x=24120x x -=()430x x -=∴40x =或30x -=解得10x =,23x =;(2)22430x x +-=2a =,4b =,3c =-()2244423400b ac D =-=-´´-=>∴x =∴1x 10.(1)10x =,22x =(2)12y =-22y =-【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】(1)2360x x -=()320x x -=∴30x =或20x -=解得10x =,22x =;(2)2420y y ++=2442y y ++=()222y +=2y +=解得12y =-22y =-11.(1)12x =,23x =-;(2)1x =【分析】本题主要考查解一元二次方程,分式方程,熟练掌握一元二次方程和分式方程的解法是解题的关键,(1)利用因式分解法解一元二次方程即可;(2)先化为整式方程,再解一元一次方程,然后对所求的方程的解进行检验即可得.【详解】解:(1)()()439239x x x +=+()()4392390x x x +-+=(()42)390x x -+=∴420x -=或390x +=,解得:12x =,23x =-.(2)26124x x x -=--去分母得,()()()2226x x x x +-+-=解得1x =检验:将1x =代入()()220x x +-¹∴原方程的解为1x =.12.(1)10x =,23x =;(2)11x =21x =-【分析】本题考查了解一元二次方程的因式分解法和配方法,熟练其解法是解题的关键.(1)由()230x x -=得,20x =或30x -=,即可求解;(2)将2240x x --=,配方得2215x x -+=,即()215x -=,开方后即可求解;【详解】解:(1)()230x x -=,20x \=或30x -=,解得:10x =,23x =;(2)2240x x --=,配方得:2215x x -+=,即()215x -=,开方得:1x -=,解得:11x =21x =-13.(1)12x =,22x =(2)123x =,24x =【分析】本题考查了用配方法与因式分解法解一元二次方程;根据方程的特点灵活选用合适的方法是解题的关键.(1)利用配方法求解即可;(2)利用平方差公式进行因式分解即可求解.【详解】(1)解:配方得:2445x x ++=,即()225x +=,两边开平方得:2x +=即12x =-,22x =;(2)解:分解因式得:()()3240x x --+=,即320x -=或40x -+=,故123x =,24x =.14.(1)123x x ==(2)11=-x 21=-x .【分析】本题主要考查了用直接开平方法和公式法解一元二次方程.(1)用直接开平方法,即可求解;(2)利用公式法解一元二次方程即可.【详解】(1)解:()294x x x -+=,整理得:2690x x -+=,即()230x -=,∴123x x ==.(2)226x x +=整理得:2260x x +-=,()24446280b ac D =-=-´-=>,∴x ==∴11=-+x 21=-x .15.(1)11x =21x =(2)14x =-,223x =【分析】本题考查了解一元二次方程,选择合适方法解一元二次方程是解题的关键.(1)利用配方法或公式法解一元二次方程即可;(2)先移项,再利用因式分解法解一元二次方程即可.【详解】(1)解:22410x x -+=,移项,得:2122x x -=-,配方,得:212112x x -+=-+,即()2112x -=,开方,得1x -=,∴11x =21x =;(2)()()3424x x x +=+,移项,得:()()34240x x x +-+=,因式分解,得()()4320x x +-=,∴40x +=或320x -=,∴14x =-,223x =.16.(1)12715x x =-=(2)12213x x =-=,【分析】本题考查了因式分解解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先移项,再进行因式分解,得()()5710x x +-=,令每个因式为0,进行计算,即可作答.(2)先移项,提公因式得()()3210x x +-=,令每个因式为0,进行计算,即可作答.【详解】(1)解:2572x x=-25270x x +-=()()5710x x +-=解得12715x x =-=,(2)解:()()3121x x x -=-()()31210x x x ---=()()31210x x x -+-=()()3210x x +-=解得12213x x =-=,17.(1)1211x x ==(2)1234x x ==-,【分析】本题考查了解一元二次方程;(1)根据配方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2210x x --=,∴221x x -=,∴22111x x -+=+,∴2(1)2x -=,∴1x -=解得:1211x x ==;(2)()()()23213x x x -+=-,∴20()3)((21)3x x x -+--=,∴0(3213)()x x x -+-+=,∴(3)(4)0x x -+=,∴30x -=或40x +=,解得:1234x x ==-,18.(1)121,2x x =-=(2)121,0.5x x ==【分析】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解.【详解】(1)∵()220x x x -+-=∴()()210x x -+=∴20x -=或10x +=∴121,2x x =-=(2)∵2213x x+=∴22310x x -+=∴()()2110x x --=∴10x -=或210x -=∴121,0.5x x ==19.(1)12x =22x =(2)13x =,21x =【分析】(1)根据配方法得到2(2)3x -=,再开平方即可解答;(2)根据因式分解法得到(3)(32)0x x x --+=,进而可得30x -=或320x x -+=即可解答.本题考查一元二次方程,熟练运用一元二次方程的解法是解题的关键.【详解】(1)解:∵2410x x -+=,∴241x x -=-,∴2443x x -+=,∴2(2)3x -=,∴2=x∴12x =22x =(2)解:∵2(3)2(3)0x x x -+-=,∴(3)(32)0x x x --+=,∴30x -=或320x x -+=,∴13x =,21x =.20.(1)10x =,21x =(2)152x =,21x =-【分析】本题考查了解一元二次方程,熟练掌握利用因式分解法、公式法解一元二次方程是解题的关键.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)解:20x x -=,∴()10x x -=,∴0x =或10x -=,解得:10x =,21x =;(2)解:22350x x --=,则2a =,3b =-,5c =-,∴()()23425490D =--´´-=>,∴x 解得:152x =,21x =-.21.(1)122x x ==-(2)原方程无实数根【分析】本题主要考查一元二次方程的解法,熟练掌握配方法解方程是解题的关键;(1)由题意易得244x x +=-,然后进行配方即可求解;(2)由题意易得2232x x -=-,则有2312x x -=-,然后进行配方即可求解【详解】(1)解:移项,得244x x +=-,配方,得2224242x x ++=-+,即2(2)0x +=,122x x \==-.(2)解:移项,得2232x x -=-.二次项系数化为1,得2312x x -=-.配方,得2223331244x x æöæö-+-=-+-ç÷ç÷èøèø,即237416x æö-=-ç÷èø.因为任何实数的平方都不会是负数,所以原方程无实数根.22.(1)1211x x ==(2)122,5x x ==【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【详解】(1)解:224x x -=Q ,22141x x \-+=+,即2(1)5x -=,则1x -=,1x \=±\1211x x =+=;(2)解:2(2)3(2)0x x ---=Q ,()()2230x x \---=,(2)(5)0x x \--=,则20x -=或50x -=,\122,5x x ==.23.(1)1222x x =-+=-(2)12113x x =-=,【分析】本题主要考查了解一元二次方程:(1)先去括号,再把含未知数的项移到方程左边,然后利用配方法解方程即可;、(2)把方程左边利用十字相乘法分解因式,进而解方程即可.【详解】(1)解:∵()428x x x -=-,∴2482x x x -+=,∴242x x +=,∴2446x x ++=,∴()226x +=,∴2x +=,解得1222x x =-=-(2)解:∵23210x x --=,∴()()3110x x +-=,∴310x +=或10x -=,解得12113x x =-=,.24.(1)21132x x ==-,(2)12332x x =-=,【分析】本题主要考查了解一元二次方程:(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方,最后解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵22530x x +-=,∴2253x x +=,∴25322x x +=,∴25254921616x x ++=,∴2549416x æö+=ç÷èø,∴5744x +=±,解得21132x x ==-;(2)解;∵22390x x --=,∴()()2330x x +-=,∴230x +=或30x -=,解得1x =25.(1)1x 2x =(2)1232x x ==,【分析】本题主要考查了解一元二次方程:(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方,最后解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:2220x x +-=,222x x \+=,2112x x \+=,2111121616x x \++=+,2117416x æö\+=ç÷èø,x \,1x \, 2x =(2)解:()236x x x -=-,()()232x x x \-=-,()()2320x x x \---=,()()230x x \--=,2030x x \-=-=,,1232x x \==,.26.(1)10x =,28x =-(2)11x =-,23x =【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵280x x +=,∴()80x x +=,∴0x =或80+=x ,解得10x =,28x =-;(2)解:∵22460x x --=,∴2230x x --=,∴()()310x x -+=,∴30x -=或10x +=,解得11x =-,23x =.27.(1)1213,4x x ==(2)126,2x x ==-【分析】本题考查了因式分解来解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先移项,再提公因式,然后令每个因式为0,进行计算,即可作答.(2)运用十字相乘法进行因式分解,然后令每个因式为0,进行计算,即可作答.【详解】(1)解:(41)3(41)x x x -=-(41)3(41)0x x x ---=方程可化为()()3410x x --=,30x \-=或410x -=,解得1213,4x x ==.(2)解:24120x x --=,得()()620x x -+=,60x \-=或20x +=,解得126,2x x ==-.28.(1)13x =-,26x =-(2)1x =2x =【分析】本题考查了一元二次方程的解法,根据一元二次方程的特点选取适当的方法是解题的关键.(1)利用因式分解法解一元二方程即可;(2)利用公式法直接解方程即可 .【详解】(1)解:()()2233x x x +=+,∴()()3260x x x ++-=,∴()()360x x ++=,则30x +=或60x +=,∴13x =-,26x =-;(2)解:2521x x +=,原方程可变为25210x x +-=,这里5a =,2b =,1c =-.∵()2242451240b ac -=-´´-=>,∴x 即1x 29.(1)17x =,25x =-(2)13x =-,21x =-【分析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:22350x x --=,因式分解得()()750x x -+=,即70x -=或50x +=,解得17x =,25x =-.(2)解:()2326x x +=+,移项得()()23230x x +-+=,因式分解得()()3320x x ++-=,即30x +=或320x +-=,解得13x =-,21x =-.30.(1)13x =,21x =(2)11x =-,24x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)根据因式分解法解一元二次方程即可求解;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2430x x -+=,∴()()310x x --=,∴30x -=或10x -=,∴13x =,21x =;(2)解:()()()3111x x x +=-+,∴()()()31110x x x +--+=,∴()()1310x x +-+=,∴()()140x x +-=,∴10x +=或40x -=,∴11x =-,24x =.31.(1)10x =,2x =(2)11x =,21x =-【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】(1)解:(0x x -=10x =,2x =(2)解:整理得:224x x +=22141x x ++=+()215x +=1x +=11x =,21x =32.(1)122,2x x ==-(2)124,8x x =-=【分析】此题考查了解一元二次方程,熟知解一元二次方程的因式分解法和直接开方法是解题的关键.(1)将方程的常数项移到右边,方程两边同时除以2,开方后即可得到方程的解;(2)利用因式分解法解答即可.【详解】(1)解:2280x -=移项得,228x =,系数化为1得,24x =,直接开平方得,2x =±,122,2x x \==-;(2)24320x x --=()()480x x +-=,40x +=或80x -=,\124,8x x =-=.33.(1)12x =,21x =-;(2)121,3x x ==【分析】本题考查解一元二次方程,熟练掌握用因式分解法解一元二次方程是解题的关键.(1)用因式分解法求解即可;(2)用因式分解法求解即可.【详解】(1)解: ()220x x x -+-=(2)(1)0x x -+=,20x -=或10x +=,12x \=,21x =-;(2)解:2430x x -+=,()()130x x --=,121,3x x \==.34.(1)1250x x =-=,(2)1211x x ==+【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解方程即可;(2)利用配方法解方程即可.【详解】(1)解:∵250x x +=,∴()50x x +=,∴0x =或50x +=,解得1250x x =-=,;(2)解:∵2240x x --=,∴224x x -=,∴2215x x -+=,∴()215x -=,∴1x -=,解得1211x x ==+35.(1)11x =,2x =(2)1x =2x 【分析】此题主要考查一元二次方程的解法,熟练掌握因式分解法和公式法解一元二次方程是解题关键.(1(2)根据求根公式x =即可求解.【详解】(1)解:()()3121x x x -=-()()31210x x x ---=,∴()()1320x x --=,解得11x =,223x =;(2)解:22610x x -+=∴2a =,6b =-,1c =,∴()224642128b ac -=--´´=,∵x =∴x =,解得36.(1)1231,22x x ==-(2)1222x x ==【分析】本题考查了解一元二次方程的方法:配方法、直接开平方法.(1)运用直接开平方即可求得x 的值;(2)运用配方法解一元二次方程即可求解.【详解】(1)解:()2214x -=212x -=或212x -=-,解得1231,22x x ==-;(2)解:2410x x --=24414x x -+=+()225x -=2x -=2x -=37.(1)11x =21x =;(2)132x =,276x =-;【分析】此题考查了一元二次方程的解法,熟练掌握公式法和因式分解法是解题的关键.(1)用公式法解方程即可;(2)用因式分解法解方程即可.【详解】(1)2250x x --=由题意得,1,2,5a b c ==-=-,则()()22Δ4241524b ac =-=--´´-=,∴1x ===即11x =21x =;(2)()()23492230x x ---=则()()()323232230x x x +---=∴()()2332320x x éù-+-=ëû()()23670x x -+=∴230x -=或670x +=∴132x =,276x =-38.(1)16x =,24x =-(2)原方程无解.【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用配方法解一元二次方程即可;(2)首先计算判别式得到(2244110200b ac D =-=-´´=-<,进而得到原方程无解.【详解】(1)22125x x -+=()2125x -=15x -=±解得16x =,24x =-;(2)2100x ++=1a =,b =10c =(2244110200b ac D =-=-´´=-<∴原方程无解.39.(1)11x =-,235x =(2)1x =2x =【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解答,即可求解;(2)利用公式法解答,即可求解.【详解】(1)解:()5133x x x +=+()()51310x x x +-+=,∴()()5310x x -+=,∴530,10x x -=+=,解得:11x =-,235x =;(2)解:23640x x +-=,∵3,6,4a b c ===-,∴()2246434840b ac D =-=-´´-=>,∴x =,2x =40.(1)12x =-+22x =-(2)12x =,232x =.【分析】本题考查求解一元二次方程.掌握各类求解方法是解题关键.(1)利用公式法即可求解;(2)利用因式分解法即可求解;【详解】(1)解:将原方程化简可得:2420x x +-=,∴()2441224D =-´´-=∴1222x x ==-==-(2)解:移项可得:22760x x -+=,∴()()2320x x --=∴12x =,2x41.(1)1x =2x =(2)11y =-,2 1.5y =-【分析】本题主要考查了用适当的方法解一元二次方程.(1)用公式法解一元二次方程即可.(2)设21y x +=,则原式变形为:2320x x ++=,用因式分解法解出11x =-,22x =-,再把11x =-,22x =-代入21y x +=,解两个一元一次方程即可得到原方程的解.【详解】(1)解:原方程化为:2230x +-=,2a =,b =3c =-,()224423270b ac D =-=-´´-=>,x ==即(2)解:设21y x +=,则原式变形为:2320x x ++=,分解因式得:()()120x x ++=,解得:11x =-,22x =-,当211y +=-时,11y =-,当212y +=-时,2 1.5y =-,∴原方程的解为:11y =-,2 1.5y =-.42.(1)114x =,23x =(2)13x =,21x =【分析】本题考查解一元二次方程:(1)先移项,再用因式分解法求解;(2)先变形、移项,得到243x x -=-,再通过配方求解.【详解】(1)解:()433x x x -=-4(3)(3)0x x x ---=()()4130x x --=,410x -=或30x -=,114x \=,23x =;(2)解:(2)22860x x -+=方程变形得:243x x -=-,配方得:2441x x -+=,即2(2)1x -=,解得:13x =,21x =.43.(1)11x =-,23x =;(2)4x =-【分析】题目主要考查解一元二次方程及分式方程.(1)利用因式分解法求解即可;(2)先去分母,然后解一元二次方程,最后进行检验即可.【详解】解:(1)2230x x --=()()130x x +-=10x +=,30x -=,∴11x =-,23x =;(2)解:2812(2)x x x x -=--228(2)x x x -=-,2280x x +-=,解得124,2=-=x x ,经检验,2x =是增根,应舍去.故原方程的解为4x =-.44.(1)12x =,22x =(2)115x =-,21x =【分析】本题考查解一元二次方程:(1)利用公式法求解;(2)先化成一般形式,再利用因式分解法求解.【详解】(1)解:2470x x --=,Q 1a =,4b =-,7c =-,\()()224441744b ac D =-=--´´-=,\2x ==±,\12x =+,22x =;(2)解:2531x x x -=+,25410x x --=,()()5110x x +-=,510x +=或10x -=,解得115x =-,21x =.45.(1)1221x x ==-,(2)1244x x ==【分析】本题考查了因式分解法或公式法解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先提公因式,再令每个因式为0,进行计算,即可作答.(2)先化为一般式,再运用公式法解方程,即可作答.【详解】(1)解:()220x x x -+-=()()210x x -+=∴2010x x -=+=,解得1221x x ==-,(2)解:2178x x-=∴28170x x --=则()246441176468132b ac D =-=-´´-=+=∴4x ===±1244x x ==46.(1)1222x x ==(2)122,3x x =-=【分析】本题考查解一元二次方程;(1)根据配方法解一元二次方程;(2)先将方程整理成右边为0的等式,再结合因式分解法解题.【详解】(1)解:2410x x -+=,∴2443x x -+=,∴()223x -=,∴2x -=解得:1222x x ==;(2)解:(1)(2)2(2)x x x -+=+,∴()()()12220x x x -+-+=,∴()()2120x x +--=,∴20x +=或30x -=,解得:122,3x x =-=.47.(1)10x =,26x =;(2)13x =,26x =-.【分析】本题考查解一元二次方程-因式分解法,解题的关键是掌握解一元二次方程的方法.(1)提公因式分解因式解方程即可(2)移项后,提公因式,利用因式分解法解方程即可.【详解】(1)解:260x x -=,(6)0x x -=,0x \=或60x -=,∴10x =,26x =;(2)解:1(3)623x x x -=-,(3)6(3)x x x -=--,(3)(6)0x x -+=,30x \-=或60x +=,∴13x =,26x =-.48.(1)19x =,21x =;(2)1x 2x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的解法:直接开平方法和公式法是解题的关键.(1)根据平方根的定义可得54x -=±,解方程就可以解决问题;(2)先求得290D =>,再利用公式法求出方程的解即可.【详解】(1)解:()2516x -=,∴54x -=±,∴19x =,21x =;(2)解:2510x x --=,1a =,=5b -,1c =-,()()2Δ5411290=--´´-=>,∴x =,∴1x 2x 49.(1)10x =,212x =(2)1x =,2x 【分析】本题主要考查了解一元二次方程,对于(1),根据因式分解法求出解;对于(2),根据公式法即可得出方程的解.【详解】(1)220x x -=,解:因式分解,得(21)0x x -=,即0x =或210x -=,∴10x =,212x =;(2)2720x x -+=,解:由1a =,7b =-,2c =,则()2247412410b ac -=--´´=>,∴x =,∴1x ,2x 50.(1)122,2x x =-=(2)124,2x x ==-【分析】本题考查了解一元二次方程;(1)根据直接开平方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2280x -=∴228x =∴24x =解得:122,2x x =-=(2)解:()2240x x -+=∴228=0x x --∴()()420x x -+=解得:124,2x x ==-,。