文刀川页丛书高考数学二轮复习专项:函数
2023高考数学二轮复习专项训练《函数的概念及其表示》(含答案)

2023高考数学二轮复习专项训练《函数的概念及其表示》一、单选题(本大题共12小题,共60分)1.(5分)函数f(x)=11−x(1−x)的最大值是()A. 45B. 54C. 34D. 432.(5分)函数f(x)=log2|x|的单调增区间为()A. (−∞,0)B. (0,+∞)C. (−∞,0)∪(0,+∞)D. (−∞,+∞)3.(5分)已知f(1+xx )=x2+1x2+1x,则f(x)=()A. (x+1)2B. (x−1)2C. x2−x+1D. x2+x+14.(5分)函数f(x)=√x−1−lnx的定义域为()A. (0,+∞)B. (1,+∞)C. (0,1]D. (0,1)∪(1,+∞)5.(5分)已知函数f(x)=|x|+1x,则函数y=f(x)的大致图象为()A. B.C. D.6.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A. f(x)=2xB. f(x)=3xC. f(x)=(12)x D. f(x)=≶x7.(5分)设f:A→B是集合A到B的映射,下列命题中真命题是:()A. A 中不同元素必有不同的象B. B 中每一个元素在A 中必有原象C. A 中每一个元素在B 中必有象D. B 中每一个元素在A 中的原象唯一8.(5分)已知函数f(x)=sin (ωx +ϕ)(ω>0,0<ϕ<π2),f(0)=−f(π2),若将f(x)的图象向左平移π12个单位后所得函数的图象关于原点对称,则ϕ=( )A. π12B. π6C. π4D. π39.(5分)函数f (x )=lg (lgx )的定义域为( )A. (0,+∞)B. (0,1)C. (0,1]D. (1,+∞)10.(5分)已知f(x)={^x +ax 2,x >01ex+ax 2,x <0,若函数f(x)有四个零点,则实数a 的取值范围( )A. (−∞,−e 216) B. (−∞,−e ) C. (−∞,−e 39)D. (−∞,−e 24)11.(5分)函数y =f(x)的图象如图所示,则函数y =f(x)的解析式可能为( )A. y =ln xx+1B. y =cos xx+1C. y =e xx+1D. y =|x|x+112.(5分)已知f(x)是R 上的奇函数,对x ∈R 都有f(x +4)=f(x)+f(2)成立,若f(−1)=−2,则f(2013)等于( )A. 2B. −2C. −1D. 2013二 、填空题(本大题共5小题,共25分)13.(5分)已知函数 ,设 ,且 ,则=.14.(5分)函数y =sin x +√3cos x(x ∈R)的值域为__________. 15.(5分)幂函数f(x)=x a 的图象经过点(12,√22),则其解析式为______ . 16.(5分)若函数y =f(x)的定义域是[−3,3],则函数g(x)=f(2x −1)x+1的定义域是________.17.(5分)函数f(x)对于任意实数x满足条件f(x+2)=1f(x),若f(1)=−5则f(f(5))=__________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数y=f(x)为偶函数,当x⩾0时,f(x)=x2+2ax+1(a为常数).(1)当x<0时,求f(x)的解析式:(2)设函数y=f(x)在[0,5]上的最大值为g(a),求g(a)的表达式;(3)对于(2)中的g(a),试求满足g(8m)=g(1m)的所有实数m的取值集合.19.(12分)已知函数f(x)=x2+2ax+3,x∈[−2,2].(1)当a=−1时,求函数f(x)的最大值和最小值;(2)记f(x)在区间[−2,2]上的最小值为g(a),求g(a)的表达式及值域.20.(12分)已知函数f(x)=2+1a −1a2x(实数a≠0).(1)若m<n<0,请判断函数f(x)在区间[m,n]上的单调性并证明;(2)若87⩽m<n且a>0时,函数f(x)的定义域和值域都[m,n],求n−m的最大值.21.(12分)定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x+1。
文刀川页丛书求解函数解析式

求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. ●难点磁场(★★★★)已知f (2-cos x )=cos2x +cos x ,求f (x -1).●案例探究[例1](1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t .因此f (t )=12-a a (a t -a -t ) ∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0) (2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a 并且f (1)、f (-1)、f (0)不能同时等于1或-1,所以所求函数为:f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.[例2]设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0).∴0=-2+b 即b =2,∴f (x )=x +2.(2)当-1<x <1时,设f (x )=ax 2+2.∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2.(3)当x ≥1时,f (x )=-x +2综上可知:f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A.3 B.23 C.-23 D.-3 2.(★★★★★)设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )A.f (x )=(x +3)2-1B.f (x )=(x -3)2-1C.f (x )=(x -3)2+1D.f (x )=(x -1)2-1二、填空题3.(★★★★★)已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________. 4.(★★★★★)已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________.三、解答题5.(★★★★)设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式.6.(★★★★)设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图.8.(★★★★★)已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5.(1)证明:f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式;(3)试求y =f (x )在[4,9]上的解析式.参考答案难点磁场解法一:(换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4)解法二:(配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4).歼灭难点训练一、1.解析:∵f (x )=34-x mx . ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3. 答案:A2.解析:利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1.答案:B二、3.解析:由f (x )+2f (x 1)=3x 知f (x 1)+2f (x )=3x 1.由上面两式联立消去f (x 1)可得f (x )=x 2-x . 答案:f (x )= x2-x 4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1.故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x . 答案:21x 2+21x 三、5.解:利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x . 6.解:(1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4.(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764,当且仅当2t 2=2-t 2,即t =36时取等号.∴S 2≤27864⨯即S ≤9616,∴S max =9616. 7.解:(1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为:f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解.如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x ).故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x 8.(1)证明:∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)解:∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,又f (1)=k ·1=k ,∴k =-3.∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64( 1532x x x x .。
高考数学(文)二轮复习专题一 三角函数和平面向量 第2讲 平面向量、解三角形 Word版含答案

第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
高考数学(文)二轮复习课件:专题二 函数与导数 2.4.2

解题策略一 解题策略二
-2-
求参数的取值范围(多维探究)
解题策略一 构造函数法 角度一 从条件关系式中构造函数 例1 已知函数f(x )= (x+ 1)ln x-a (x- 1). (1)当a= 4 时,求曲线y=f (x )在(1,f(1))处的切线方程; (2)若当x ∈(1,+∞ )时,f(x )> 0,求a的取值范围.
难点突破(作差构造) 证明当x ∈(0,1)时,1+ (c-1)x>c x 设
g (x )= 1 + (c-1)x-c x,证g (x )> 0,
通过对g (x )求导判断g (x )的单调性,再由g (x )的单调性和g (x )的
几个特殊值证出g (x )> 0 .
-22 -
-23 -
-24 -
又切线过原点O , 所以-ax 0+ ln x 0=-ax 0+ 1, 由ln x 0= 1,解得x 0= e,所以切点的横坐标为e.
解题策略一 解题策略二
-8-
(2)∵不等式ax- ln x ≥a(2x-x 2)对 x ∈[1,+∞ )恒成立, ∴等价于a(x 2-x )≥ln x 对 x ∈[1,+∞ )恒成立. 当x= 1 时,a∈R 都有不等式恒成立;
-16 -
于是h (x )在[1,+∞ )内递增,则h (x )≥h (1)> 0,则g'(x )> 0, 于是g (x )在[1,+∞ )内递增,g (x )≥g (1)= 2,则k的取值范围是k≤2 .
解题策略一 解题策略二
-17 -
解题心得有些函数与导数的综合问题即使构造函数正确,也存在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文刀川页丛书 我们共同努力! 高考数学二轮复习专项:函数
1. 甲乙两公司生产同一种新产品,经测算,对于函数8xxf,12xxg,及任意的0x,当甲公司投入x万元作宣传时,乙公司投入的宣传费若小于xf万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入x万元作宣传时,甲公司投入的宣
传费若小于xg万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题:
(1)请解释0,0gf;w.w.w.k.s.5.u.c.o.m (2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费? (3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少
投入费用原则,投入自己的宣传费:若甲先投入121a万元,乙在上述策略下,投入最少费用1b;而甲根据乙的情况,调整宣传费为2a;同样,乙再根据甲的情况,调整宣传费为2b,,如此得当甲调整宣传费为na时,乙调整宣传费为nb;试问是否存在limnna,n
nb
lim
的值,若存在写出此极限值(不必证明),若不存在,说明理由.
2. 已知三次函数cbxaxxxf23)(在y轴上的截距是2,且在),2(),1,(上单调递增,在(-1,2)上单调递减. (Ⅰ)求函数f (x)的解析式;
(Ⅱ)若函数)ln()1()2(3)()(mxmxxfxh,求)(xh的单调区间.
3. 已知函数155)(2xxx)(Rx,函数)(xfy的图象与)(x的图象关于点)21,0(中心对称。
(1)求函数)(xfy的解析式; (2)如果)()(1xfxg,)2,)](([)(1nNnxgfxgnn,试求出使0)(2xg成立的 文刀川页丛书 我们共同努力! x取值范围;
(3)是否存在区间E,使0)(xfxE对于区间内的任意实数x,只要Nn,且2n时,都有0)(xgn恒成立?
4.已知函数:)(1)(axRaxaaxxf且 (Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.
(Ⅱ)当f(x)的定义域为[a+21,a+1]时,求证:f(x)的值域为[-3,-2]; (Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .
5. 设()fx是定义在]1,0[上的函数,若存在*x)1,0(,使得()fx在],0[*x上单调递增,在]1,[*x上单调递减,则称()fx为]1,0[上的单峰函数,*x为峰点,包含峰点的区间为含峰区间. 对任意的]1,0[上的单峰函数()fx,下面研究缩短其含峰区间长度的方法. (1)证明:对任意的21,xx)1,0(,21xx,若)()(21xfxf,则),0(2x为含峰区间;若)()(21xfxf,则)1,(1x为含峰区间; (2)对给定的)5.00(rr,证明:存在21,xx)1,0(,满足rxx212,使得由(1)所确定的含峰区间的长度不大于r5.0;
6. 设关于x的方程0222axx的两根分别为、,函数14)(2xaxxf (1)证明)(xf在区间,上是增函数; (2)当a为何值时,)(xf在区间,上的最大值与最小值之差最小 文刀川页丛书 我们共同努力! 7. 已知函数31()(,)3fxxaxbabR在2x处取得的极小值是43. (1)求()fx的单调递增区间;
(2)若[4,3]x时,有210()3fxmm恒成立,求实数m的取值范围.
8. 已知二次函数),,0(1)(2Rbabxaxxf设方程f(x)=x有两个实数根x1、x2. (Ⅰ)如果4221xx,设函数f(x)的对称轴为x=x0,求证x0>—1; (Ⅱ)如果201x,且f(x)=x的两实根相差为2,求实数b 的取值范围.
9. 函数)(xf的定义域为R,并满足以下条件:①对任意Rx,有0)(xf; ②对任意x、Ry,有yxfxyf)]([)(;③.1)31(f 则 (1)求)0(f的值; (4分) (2)求证:)(xf在R上是单调增函数; (5分) (3)若acbcba2,0且,求证:).(2)()(bfcfaf
10. 已知函数14)(234axxxxf在区间[0,1]上单调递增,在区间[1,2]上单调递减; (1)求a的值; (2)求证:x=1是该函数的一条对称轴;
(3)是否存在实数b,使函数1)(2bxxg的图象与函数f(x)的图象恰好有两个交点?若存在,求出b的值;若不存在,请说明理由. 11. 定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有
)()(xqfxfq. 文刀川页丛书 我们共同努力! (1)求证:方程f(x)=0有且只有一个实根; (2)若a>b>c>1,且a、b、c成等差数列,求证:)()()(2bfcfaf;
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有)2(2)()(nmfnfmf,求证:322m
12. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x2 – 10x3(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本) (1) 利润函数P(x) 及边际利润函数MP(x); (2) 年造船量安排多少艘时, 可使公司造船的年利润最大? (3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
13. 已知函数33(1)()xafxax(0a且1a). (1) 试就实数a的不同取值,写出该函数的单调递增区间;
(2) 已知当0x时,函数在(0,6)上单调递减,在(6,)上单调递增,求a的值并写出函数的解析式;
(3) (理)记(2)中的函数的图像为曲线C,试问是否存在经过原点的直线l,使得l为曲线C
的对称轴?若存在,求出l的方程;若不存在,请说明理由. (文) 记(2)中的函数的图像为曲线C,试问曲线C是否为中心对称图形?若是,请求出对称中心的坐标并加以证明;若不是,请说明理由.
14. 已知函数()logafxx和()2log(22),(0,1,)agxxtaatR 的图象在2x处的切线互相平行.
(Ⅰ) 求t的值; 文刀川页丛书 我们共同努力! (Ⅱ)设)()()(xfxgxF,当1,4x时,()2Fx恒成立,求a的取值范围.
15. 设函数()fx定义在R上,对任意的,mnR,恒有()()()fmnfmfn,且当1x时,()0fx。试解决以下问题:
(1)求(1)f的值,并判断()fx的单调性; (2)设集合(,)|()()0,(,)|(2)0,AxyfxyfxyBxyfaxyaR,若AB,求实数a的取值范围;
(3)若0ab,满足|()||()|2|()|2abfafbf,求证:322b
16. (理科)二次函数f(x)=)(2Rbabaxx、 (I)若方程f(x)=0无实数根,求证:b>0;
(II)若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-a)=)1(412a; (III)若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k,使得41)(kf. (文科)已知函数f(x)=cbxax2,其中.,,*ZcNbNa (I)若b>2a,且 f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(II)若对任意实数x,不等式)1(2)(42xxfx恒成立,且存在)1(2)(0200xxfx使得成立,求c的值。
17. 定义在(-1,1)上的函数f(x)满足:对任意x、y (-1,1)都有。 (I)求证:函数f(x)是奇函数; 文刀川页丛书 我们共同努力! (II)如果当 时,有f(x)>0,判断f(x)在(-1,1)上的单调性,并加以证明; (III)设-1
18. 设)(xf是定义域在]1,1[上的奇函数,且其图象上任意两点连线的斜率均小于零. (l)求证)(xf在]1,1[上是减函数; (ll)如果)(cxf,)(2cxf的定义域的交集为空集,求实数c的取值范围; (lll)证明若21c,则)(cxf,)(2cxf存在公共的定义域,并求这个公共的空义域.
19. 已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。 (1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值; (2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0,使得f(x0)<2(x02+1)成立,求c的值。
20. (理)已知)0()1()(2≤++=aaxxInxf (1)讨论)(xf的单调性;
(2)证明:2),()11()311)(211(*444≥∈<+++nNnen其中无理数)71828.2=e. (文)设函数)(31)(23cbacxbxaxxf,其图象在点))(,()),1(,1(mfmBfA处的切线的斜率分别为ao-,.
(1)求证:10<≤ab; (2)若函数)(xf的递增区间为],[ts,求]-[ts的取值范围.
21.设函数)10(3231)(223abxaaxxxf (1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;
(2)当x∈[a+1, a+2]时,不等axf|)(|,求a的取值范围.