2016年初中升学考试数学模拟试题
2016中考模拟试题(数学)

2016年中考模拟考试(数学)数 学 试 卷(全卷总分150分,考试时间120分钟)一、(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1. 下列各数中是无理数的是( ▲ )A.13B.﹣ 2C. 0D.2. 如图所示,几何体的主视图是( ▲ )A B C D3.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ▲ )A. 0.25×10﹣5B. 2.5×10﹣5C. 2.5×10﹣6D. 2.5×10﹣74.如图,直解三角板的直角顶点落在直尺边上,若∠1=54°,则∠2的度数为( ▲) ) A.24° B.36° C.46° D.54° 5.计算2x 3•(﹣3x )2的结果是( ▲ )A. 18x 5 B .-18x 6C. ﹣6x 5 D .6x 66. 甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S 甲2=1.4,S 乙2=18.8,S 丙2=22,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( ▲ ) A. 甲队 B. 乙队 C. 丙队 D. 哪一个都可以7. 已知反比例函数xy 1=,下列结论中不正确的是( ▲ )A. 图象经过点(-1,-1)B. 图象在第一、三象限C. 当1>x 时,10<<yD. 当0<x 时,y 随着x 的增大而增大 8. 如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,下列结论中:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.正确的有( ▲ ) A .1个 B .2个 C .3个 D .4个 9. 将代数式x 2+6x +2化成(x +p)2+q 的形式为( ▲ )A .(x -3)2+11 B .(x +3)2-7 C .(x +3)2-11 D .(x +2)2+410. 如图, 点P 为平行四边形ABCD 边AD 上一点, 点E, F 分别为PB, PC 的中点, △PEF , △PDC , △PAB 的面积分别为S, S 1, S 2, 若S =3, 则S 1+S 2=( ▲ ) A.12 B.16 C. 9 D. 24 11. 如图所示,矩形纸片ABCD 中,6cm AB =,8cm BC =,现将其沿EF对折,使得点C 与点A 重合,则AF 长为( ▲ )A.25cm 2 B.25cm 8 C. 25cm 4D.8cm 12. 如图所示,已知11()2A y ,,2(2)B y ,为反比例函数1y x=图像上的D(C ) A B CEFD第11题图第10题图第8题图CBAE FDMN 第4题图两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达 到最大时,点P 的坐标是( ▲ )A.1(0)2,B.(10),C.3(0)2,D.5(0)2,二、填空题(本大题共6小题,每小题4分,共24分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上.)13. 已知:m 、n 为两个连续的整数,且m <<n ,则m+n= ▲ .14. 分解因式:2232xy y x x+-= ▲ .15. 已知(x -y +3)2+2-y =0,则2x +y = ▲ .16. 如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是 ▲ .17. 将1、2、3、6按如图所示的方式进行排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(21,10)表示的两数之积是 ▲ .18. 如图,扇形CAB 的圆心角∠ACB=90°,半径CA=8cm ,D 为弧AB 的中点,以CD 为直径的⊙O 与CA 、CB 相交于点E 、F ,则弧AB 的长为 ▲ cm ,图中阴影部分的面积是 ▲ cm 2.三、解答题(本大题共9小题,共90分。
2016年中考数学模拟试题精选

24.
25.解:过M作与AC平行的直线,与OA、FC分别相交于H、N,
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
10.(本题满分9分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1, ,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
(1)求b,k的值;(2)求△BDC的面积;
(3)在反比例函数 的图像上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
7.(本题满分7分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα= .
2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效;2. 答题前,请认真阅读答题卷上的注意事项;3. 考试结束后,将本试卷和答题卷一并交回.一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7.为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第7题图)8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的(第9题图)(第11题图)(第12题图)(第17题图)(第18题图)斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)°(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见一、选择题题号1 2 3 45 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而(第24题图)(第26题图)降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=A CBBDECA22 主视图左视图俯视图 OBOA‘14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年河北省初中毕业生升学文化课模拟考试数学试卷(带答案 Word版)

2016年河北省初中毕业生升学文化课模拟考试数学试卷试卷说明:本试卷满分120分,考试时间120分钟.第I卷(选择题共42分)一.选择题(共16小题)1.与﹣3的积为1的数是()A.3 B.C.﹣ D.﹣32.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c) B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)3.2016年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是()A.23.2×108B.2.32×109C.232×107 D.2.32×1084.已知a﹣b=1,则代数式2a﹣2b+2013的值是()A.2015 B.2014 C.2012 D.20115.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t (h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个6.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%7.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20 B.7:30 C.7:45 D.7:508.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③B.①③④C.①②④D.①②③④9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1 D.010.如图,嘉淇同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C. D.11.如图,挂着“庆祝人民广场竣工”条幅的氢气球升在广场上空,已知气球的直径为4m,在地面A点测得气球中心O的仰角∠OAD=60°,测得气球的视角∠BAC=2°(AB、AC为⊙O的切线,B、C为切点).则气球中心O离地面的高度OD为()(精确到1m,参考数据:sin1°=0.0175,=1.732)A.94m B.95m C.99m D.105m12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x,y,z,则++的值为()A.1 B.C.D.14.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC15.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.16.正实数a1,a2,…,a2011满足a1+a2+…+a2011=1,设P=,则()A.p>2012 B.p=2012C.p<2012 D.p与2012的大小关系不确定第II卷(非选择题共78分)二.填空题(共4小题)17.今年3月12日植树节活动中,我市某单位的职工分成两个小组植树,已知他们植树的总数相同,均为100多棵,如果两个小组人数不等,第一组有一人植了6棵,其他每人都植了13棵;第二组有一人植了5棵,其他每人都植了10棵,则该单位共有职工人.18.对正实数a,b作定义,若4*x=44,则x的值是.19.今年我省5月份进行了中考体育测试,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“掷实心球””立定跳远”“800/1000米长跑”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“掷实心球”的概率是.20.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为.三.解答题(共6小题)21.观察第一行3=4﹣1第二行5=9﹣4第三行7=16﹣9第四行9=25﹣16…(1)如果等式左边为2015,那么是第几行?求这一行的完整等式(等式右边用平方差的形式标书)(2)第n行的等式为(等式右边用平方差的形式)(3)说明(2)中等式的正确性.22.为了了解学生关注热点新闻的情况,“两会”期间,小刚对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体多某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小刚给出了男生的部分统计量,根据你所学过的统计知识,适当计算女生的有关统计量,进而23.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG 是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.25.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B 点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x 轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD 的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.26.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.2016年河北省初中毕业生升学文化课模拟考试数学试卷参考答案一.选择题(共16小题)1.C.2.B.3.B.4.A.5.B.6. D .7.A.8.C.9.A.10.A.11.C.12.B.13.C.14.C.15.B.16.A.二.填空题(共4小题)17.32.18.36.19..20.﹣.三.解答题(共6小题)21.解:观察发现:第1行2×1+1=22﹣12,第2行2×2+1=32﹣22,第3行2×3+1=42﹣32,第4行2×4+1=52﹣42,…第n行2n+1=(n+1)2﹣n2,(1)当2n+1=2015时,解得:n=1007,所以如果等式左边为2015,那么是第1007行;这一行的完整等式为:2015=10082﹣10072;(2)答案为:2n+1=(n+1)2﹣n2;(3)(n+1)2﹣n2=(n+1﹣n)(n+1+n)=2n+1;22.解:(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3;故答案为:20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则,解得:x=25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为=3,女生收看“两会”新闻次数的方差为:=,∵2>,∴男生比女生的波动幅度大.23.解:(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,在R t△AFD中,AF=5,sin∠FAD=,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=,∴,∵AB=20,∴BE=12.24.解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.25.解:(1)∵直线AB:y=x+3与坐标轴交于A(﹣3,0)、B(0,3),代入抛物线解析式y=﹣x2+bx+c中,∴∴抛物线解析式为:y=﹣x2﹣2x+3;(2)∵由题意可知△PFG是等腰直角三角形,设P(m,﹣m2﹣2m+3),∴F(m,m+3),∴PF=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m,△PFG周长为:﹣m2﹣3m+(﹣m2﹣3m),=﹣(+1)(m+)2+,∴△PFG周长的最大值为:.(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等,∵D(﹣1,4),∴E(﹣1,2)、则N(﹣1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1,∴x+5=﹣x2﹣2x+3或x+1=﹣x2﹣2x+3,∴x1=﹣1,x2=﹣2,x3=,x4=,∴M1(﹣2,3),M2(,),M3(,).26.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,∵S A+S B+S C+S D+S E+S F+S G=S大正方形,∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003==26532801.故一切看不见的棱长为1的小立方体的总个数为26532801.故答案为:62;.。
最新)2016年中考模拟数学试题(含答案)

最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。
A。
4/3443 B。
3443/3 C。
-4/3443 D。
-3443/42.右图是某几何体的三视图,该几何体是()。
A。
圆锥 B。
圆柱 C。
正三棱柱 D。
正三棱锥3.下列运算中正确的是()。
A。
π=1 B。
x2=x C。
2-2=-4 D。
--2=24.不等式组{x≤-2,x-2>1}的解集是()。
A。
x≤-2 B。
x>3 C。
3<x≤-2 D。
无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。
灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。
截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。
科学计数法表示为()元。
A。
8.01×107 B。
80.1×107 C。
8.01×108 D。
0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。
A。
19,15 B。
15,14.5 C。
19,14.5 D。
15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。
A。
115° B。
120° C。
100° D。
80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。
9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。
10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。
2016中考数学模拟试卷

2016中考数学模拟试卷(时间:120分钟 满分:120分)1、选择题( 每题2分,共24分 ) -12的倒数是 ( )A .-2B .-12C .12D .22、2012年全国春运客流量在历史上首次突破三十亿人次,达到31.58亿人次,将31.58亿用科学计数法表示为( )A. 3.158910⨯ B. 3.158810⨯ C. 31.58810⨯ D. 3.1581010⨯3、双曲线21k yx -=的图像经过第二、四象限,则k 的取值范围是( )A.12k >B. 12k < C. 12k= D.不存在4、如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于( )A. 55°B. 60°C.65°D. 70° 7、下列正多边形,不能单独用来镶嵌的是( )A .正三角形B .正方形C .正六边形D .正八边形8、如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止,设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )10、梯形ABCD 中 AD ∥BC ,AC ⊥BD 于点O ,AC =6,BD =8,则梯形AD+BC 的值是( )A .8B . 10C .12D .1411、某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元B .100元C .120元D .160元12.、如图,在Rt △ABC 中,AB =CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F , 连结DE 、EF .下列结论:①tan ∠ADB =2;②图中有4对全等三角形; ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD =BF ; ⑤S 四边形DFOE = S △AOF ,上述结论中错误的个数是( )A .1个B .2个C .3个D .4个 二、填空题( 每题3分,共18分 ) 13、若二次根式32-x 有意义,则x 的取值范围是 .14、若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 . 15、如图,在等边三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于16、若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 . 17、因式分解4a 2-8a+4= .18、让我们动脑做一个数字游戏: 第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3; ……依此类推,则a 2012= .三、解答题(本大题共8个小题,共78分.解答应写出文字说朋、证明过程或演算步骤) 19 (本题共2个小题.第1小题8分,第2小题5分,共13分)(第12题图) DCEFAB第15题图l 2l 1321(1)先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1, ,其中x 满足x 2-x -1=0. (2)解方程 442=-x x20、(本题6分)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在 格点上,请按要求完成下列各题:(1) 用铅.笔.画AD ∥BC (D 为格点),连接CD ;线段CD 的长为 ; (2) 若E 为BC 中点,则tan ∠CAE 的值是21、(本题7分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3∶4∶5∶8∶2,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?捐款数不少于20元的概率是多少? (2)这组数据的众数、中位数各是多少?(3)若该校共有2310名学生,请估算全校学生共捐款多少元?22、(本题8分).如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC 、AC 于D 、E 两点,过点D 作DF ⊥AC ,垂足为F . (1)求证:DF 是⊙O 的切线;(2)若 AE = DE ,DF =2,求⊙O 的半径.23、(本题9分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数4y x=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x 、y 满足4y x<的概率.24、(本题9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小英家3月份用水24吨,她家应交水费多少元?元(第21题)第20题图25、(本题12分)请阅读下列材料:问题:如图(12),在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)若图(12)中60ABCBEF ∠=∠= ,写出线段PG 与PC 的位置关系及PGPC的值,并说明理由; (2)将图(12)中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变(如图13).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图(12)中2(090)ABC BEFαα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG 与PC 的位置关系是 ;PGPC= .26、(本题14分)已知抛物线y =ax 2-2ax -3与x 轴交于A 、B 两点,其顶点为C ,过点A 的直线交抛物线于另一点D (2,-3),且tan ∠BAD =1. (1)求抛物线的解析式;(2)连结CD ,求证:AD ⊥CD ;(3)如图2,P 是线段AD 上的动点,过点P 作y 轴的平行线交抛物线于点E ,求线段PE 长度的最大值;(4)点Q 是抛物线上的动点,在x 轴上是否存在点F ,使以A ,D ,F ,Q 为顶点的四边形是平行四边形?若存在,直接写出点F 的坐标;若不存在,请说明理由.DABE F CPG图(12)DCG PABF图(13)。
2016年中考数学模拟试卷及答案(精选两套)
1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
2016年辽宁中考数学模拟考卷及答案
2016年辽宁中考数学模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是增函数的是()A. y=x^3B. y=x^2C. y=2xD. y=2x2. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 483. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √14. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^2 = a^2 + 2ab + b^25. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 81二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 两条平行线的斜率相等。
()3. 一元二次方程的解一定是实数。
()4. 相似三角形的面积比等于边长比的平方。
()5. 互为相反数的两个数的和为0。
()三、填空题(每题1分,共5分)1. 若a=3,b=2,则a+b=______。
2. 已知平行四边形的对角线互相平分,若一条对角线长度为10,另一条对角线长度为12,则平行四边形的面积是______。
3. 函数y=2x+1的图象是一条______线。
4. 在直角坐标系中,点(3, 4)关于x轴的对称点是______。
5. 三个连续的奇数分别为2n1、2n+1、2n+3,则它们的和为______。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 请写出三角形面积的两个计算公式。
3. 什么是无理数?请举例说明。
4. 请列举两种解一元二次方程的方法。
5. 简述概率的基本性质。
五、应用题(每题2分,共10分)1. 某商品原价为200元,打折后售价为160元,求打折折扣。
2. 甲、乙两地相距600公里,一辆汽车从甲地出发,以每小时80公里的速度行驶,求汽车到达乙地所需时间。
2016中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无.........效.;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 60°的值等于A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个 3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为 A. 1.8×10 B. 1.8×108 C. 1.8×109D. 1.8×1010 4. 估计8-1的值在 A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是圆弧 角 扇形 菱形 A. B. C.7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五 类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名 C. 400名 D. 300名 8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为A. (x + 2)2 = 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2 =19. 如图,在△中,,是两条中线,则S △∶S △ =A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x -2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 111. 如图,是⊙O 的直径,点E 为的中点, = 4,∠ = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C. 23D. 112. 如图,△中,∠C = 90°,M 是的中点,动点P 从点A出发,沿方向匀速运动到终点C ,动点Q 从点C 出发,沿方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接,, . 在整个运动过程中,△的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)13. 计算:│-31│= .14. 已知一次函数y = + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若(第9题(第11(第12题(第7题设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰△的直角边长为1,以△的斜 边为直角边,画第二个等腰△,再以△的 斜边为直角边,画第三个等腰△ ……依此类推直 到第五个等腰△,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分)(1)计算:4 45°8(π-3) +(-1)3;(2)化简:(1 - n m n +)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△中, = ,∠ = 72°. (1)用直尺和圆规作∠的平分线交于点D (保留作图 痕迹,不要求写作法); (2)在(1)中作出∠的平分线后,求∠的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x + 1. ……② (第17题(第18题(第21题图) °(1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树,树底 部B 点到山脚C 点的距离为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪的水平距离 = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 的高度. (参考数值:20°≈0.34,20°≈0.94,20°≈0.36)24. (本小题满分8分)如图,,分别与⊙O 相切于点A ,B ,点M 在上,且 ∥,⊥,垂足为N. (1)求证: = ; (2)若⊙O 的半径R = 3, = 9,求的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y 212 21 – 2图象上,过点B 作⊥x 轴,垂足为D ,且B 点横坐标为-3.(第23题(第24题(1)求证:△ ≌ △;(2)求所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△是以为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △ 21△;当点P 、Q 分别运动到,的中点时,此时,S △ =21×21. 21 41△;当点P 、Q 继续运动到点C ,B 时,S △ 21△,故在整个运动变化中,△ 的面积是先减小后增大,应选C.二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16.x 2400-x %)201(2400 = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题 19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m n m ++-nm n +)·m n m 22- …………2分 = nm m +·m n m n m ))((-+ …………3分 = m – n …………4分20. 解:由①得3(1 + x )- 2(1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵平分∠,∠ = 72°,∴∠ =21∠ = 36°, …………4分 ∵ = ,∴∠C =∠ = 72°, …………5分 ∴∠ 36°,∴∠ =∠∠ = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x 50551841737231⨯+⨯+⨯+⨯+⨯ 3.3, …………1分 ∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. (4)分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在△中,∠= 90°,= 63米,∠= 30°,∴= ·30°……………………1分= 63×23= 9,……………………2分∴= + = 9 + 1 = 10,…………………3分∴= = 10. …………………4分在△中,∠= 20°,∴= ·20°…………………5分=10×0.36=3.6,…………………6分在△中,∠= 45°,∴= = 10,……………………7分∴= –= 10 - 3.6 = 6.4.答:树的高度约为6.4米. ……………8分24. 解(1)如图,连接,则⊥. ………………1分∵⊥,∴∥. ………………2分∵∥,∴四边形是矩形.∴= . ………………3分(2)连接,则⊥,∵= ,= ,∥,∴= ,∠=∠.∴△≌△. ………………5分∴= .设= x,则= 9- x. ………………6分在△中,有x2 = 32+(9- x)2.∴x = 5. 即= 5 ……………8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. ……………1分∴4x + 5(x + 40)=1820. ………………………………………2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴ (4)分180 a + 220(200- a)≤40880.解得78≤a≤80. (5)分∵a为整数,∴a = 78,79,80∴共有3种方案. (6)分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)40a + 44000. (7)分∵-40<0,y随a的增大而减小,∴当 a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、 选择题 1、数2-中最大的数是()A 、1- BC 、0D 、22、9的立方根是() A 、3± B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则1xA 、4B 、3 C、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b>6、如图∥,∠20°,∠80°,则∠() A 、20° B 、80° C 、60° D 、100°7、已知、是⊙O 的直径,则四边形是()A 、正方形B 、矩形C 、菱形D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=则一定成立的是()DEA 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且’=5,3, O ’4,则( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
最新2016 年中考模拟数学试题(含答案)
2016年中考模拟数学试题时间120分钟满分120分 2016.2.4一、选择题(共10 小题,每小题3分,满分30分)1.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.4.已知k、b是一元二次方程(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD 的面积不变D.四边形ABCD的周长不变6.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为 x,则 x 满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=7.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限8.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0 时,y1随x 的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.48题图 9题图 10题图9.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是()A.2B.C.D.10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1 个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共24分)11.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是.12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.13.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.13题图 14题图 15题图14.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).15.如图,矩形EFGH 内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF= EH,那么EH的长为.16.将一副三角板按图叠放,则△AOB 与△DOC的面积之比等于.16题图 17题图 18题图17.如图,港口A 在观测站O 的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为.18.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x 轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.三、解答题(共66分)19.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.20.已知关于 x 的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中 a、b、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;若四边形AFCE是菱形,求菱形AFCE的周长.22.如图,在平面直角坐标系中,O为原点,直线AB分别与x 轴、y轴交于B和A,与反比例函数的图象交于 C、D,CE⊥x 轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;求△OCD的面积.23.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2 米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5 米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;试计算出电线杆的高度,并写出计算的过程.25.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N 处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A 在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到 1米)(参考数据:≈1.73,≈1.41)26.如图1,在正方形ABCD 中,P是对角线BD 上的一点,点E在AD 的延长线上,且PA=PE,PE交CD 于F.(1)证明:PC=PE;求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题1.故选D.2.故选C3.故选:C.4.故选B.5.故选C.6.故选B.7.故选:D.8.故选C9.故选:D.10.故选B.二、填空题11.m<.12.1.4.13.2.14 故答案为:③.15.1.516故答案为:1:3.17. 2km .18.三、解答题19.解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.20.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∵方程有两个相等的实数根,∴2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.21.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x= ,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.22.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3= ,∴m=﹣6.∴该反比例函数的解析式为y=﹣.联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC 的面积=4×3÷2=6,故△OCD 的面积为2+6=8.23.解:(1)甲同学的方案不公平.理由如下:列表法,5 (5,2)(5,3)(5,4)8种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;不公平.理由如下:所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.24.解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以 AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.25.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(10+10 )米,∴AN=AH+EF=米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=10 ≈17米,答:条幅的长度是17米.26.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年初中升学考试数学模拟试题秦市中学 曾祥圣注意事项:1.本卷满分为120分,考试时间为120分钟。
2.本卷是试题卷,不能答题,答题必须写在答题卡上。
解题中的辅助线和标注角的字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B 铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★ 祝 考 试 顺 利 ★一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分) 1. 下列运算中,正确的是 ( ▲ )A .5a -2a =3B .()22224x y x y +=+ C .842x x x ÷= D .41)2(2=-- 3.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是( ▲ )A .40°B .50°C .60°D .140° 3. 计算的结果是( ).+﹣4. 实数a 、b 在轴上的位置如图所示,且|a |>|b |,则化简-2a ∣a +b ∣的结果为( ▲ )A . 2a +bB . ﹣2a +bC .bD .2a ﹣b5. 方程x (x -2)+x -2=0的解是( ▲ )A .x=2B .x=-2或1C .x=-1D .x=2或-16.如图, △ABC 中,DE∥BC,AD=5,BD=10,AE=3,则CE 的值为( ▲ ) A.9 B.6 C.3 D.47. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ▲ ). A . k ≥1 B . k ≤1 C . k >1 D . k <18. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ▲ )A .118 B .112 C .19D .169.如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点, 且∠EPF =40°,则图中阴影部分的面积是( ▲ )A .984π-B .94π-C .948π- D .988π-10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ▲ )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分) 11.计算:计算:()0232cos 45π---+︒= ▲ .12. 已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则nm 11+= ▲ . 13. 若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 ▲ .14. 如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P =46°,则∠BAC = ▲ 度. 15. 如图,△ACE 是以▱ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣3),则D 点的坐标是 ▲16. 如图,四边形ABCD 中,∠BAD =∠BCD =900,AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是 ▲cm .第14题 第15题 第16题17. 小明用上图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是 ▲ cm .18. 如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为 B 20,53⎛⎫-⎪⎝⎭,D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在OBA第17题5cmDC第9题图对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 ______▲_______.三、解答题(本大题共7题,共66分) 19.(本题满分7分) 先化简22a a a a a -+⎛⎫÷- ⎪⎝⎭,再从代入求值。
20. (本题满分8分)我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选根据图表信息,回答下列问题:(1)参加活动选拔的学生共有 人;表中m= ,n= ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A 、B 、C 、D ,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A 和B 的概率.21. (本题满分8分)图1所示的遮阳伞,伞的外边缘是一个正八边形,伞炳垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开.已知伞在撑开的过程中,总有PM =PN =CM =CN =6.0分米,CE =CF =18.0分米,BC =2.0分米. (1)当∠CPN=60度时,求AP 的长度;(2)设阳光直射下伞的阴影(正八边形)面积的最大值.(精确到0.1 1.4=1)22(本题满分9分)如图1,已知正方形ABCD 的对角线AC 、BD 相交于点O,E 是AC 上一点,连接EB,过点A 作AM ⊥BE,垂足为M, AM 交BD 于点F . (1)求证:OE=OF ;(2)如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M,交DB 的延长线于点F,其它条件不变,则结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.23, (本题满分10分)我县一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元. (1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?24. (本题满分12分)已知: 关于x 的方程0)2(2=+++-n m x n m mx ①.(n ≠0) (1)求证: 方程①必有实数根; (2)若2=+n m ,m 为正整数且方程①有两个不相等的整数根时,确定关于x 的二次函数n m x n m mx y +++-=)2(2的解析式;(3)若把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0), BC = 5 (点C 在第一象限); 将△ABC 沿x 轴平移,当点C 落在抛物线上时,求△ABC 平移的距离. 25. (本题满分12分)抛物线y=24ax bx ++(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C . (1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.参考答案一、选择题1.D2.B3.B4.C5.D6.B7.D8.C9.A 10.C 二、填空题11. 1+53- 13. k >2 14. 23° 15.()5,0xy 12-= 三、解答题19.解:原式=222a a a a a---÷ =()()21211a a a a a a -⨯=-++ ∵a ≠-1,0,2,∴-1≤a ≤2的范围内的整数a=1 原式=1220.解: (1) 50 ; 10; 15 (2)95485107515652174.450x -⨯+⨯+⨯+⨯==(3)P(恰好选中A和B)=21126= 21. 解: (1)AP =6分米,(2)S=888.3≈平方分米22, 略23. 解:解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50; 答一次至少买50只,才能以最低价购买(2) 220137(0501[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪-⎪⎩<≤)<<≥(说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可) (3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.24.解:. 解:(证明:(1)当m =0时,x=1当m ≠0时,∵ n m c n m b m a +=+-==),2(, ∴)(4)]2([422n m m n m ac b +-+-=-=∆=mn m n mn m 4444222--++=2n ∵无论n 取何值时,都有02≥n ∴0≥∆(2)mnn m m n n m a ac b b x 22222422±+=±+=-±-= ∴1,21=+=x mnm x ∴方程①有一个实数根为.由题意可知:方程①的另一个根为,1mnm x +=∵2=+n m ,m 为正整数且方程①有两个不相等的整数根∴1=m∴二次函数的解析式:232+-=x x y (3)由题意可知:AB =3, 由勾股定理得:AC =4 ∴C 点的坐标为(1,4)当△ABC 沿x 轴向右平移,此时设C 点的坐标为(a ,4) ∵ C 在抛物线上 ∴{2323422=--+-=a a a a∴2173±=a ∴2173+=a∴△ABC 平移的距离:217112173+=-+或211721731-=-- 25,(1)将点A 、B 的坐标代入抛物线的解析式得:,解得:.∴抛物线得解析式为y=x 2﹣6x+4.(2)如图所示:设点P 的坐标为P (m ,m 2﹣6m+4)∵平行四边形的面积为30,∴S△CBP=15,即:S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD.∴m(5+m2﹣6m+4+1)﹣×5×5﹣(m﹣5)(m2﹣6m+5)=15.化简得:m2﹣5m﹣6=0,解得:m=6,或m=﹣1.∵m>0,∴点P的坐标为(6,4).(3)连接AB、EB.∵AE是圆的直径,∴∠ABE=90°.∴∠ABE=∠MBN.又∵∠EAB=∠EMB,∴△EAB∽△NMB.∵A(1,﹣1),B(5,﹣1),∴点O1的横坐标为3,将x=0代入抛物线的解析式得:y=4,∴点C的坐标为(0,4).设点O1的坐标为(3,m),∵O1C=O1A,∴,解得:m=2,∴点O1的坐标为(3,2),∴O1A=,在Rt△ABE中,由勾股定理得:BE===6,∴点E的坐标为(5,5).∴AB=4,BE=6.∵△EAB∽△NMB,∴.∴.∴NB=.∴当MB为直径时,MB最大,此时NB最大.∴MB=AE=2,∴NB==3.。