2002年春季高考理科综合能力测试(北京卷)
2002年普通高等学校招生全国统一考试理科综合能力测试

2002年普通高等学校招生全国统一考试理科综合能力测试佚名
【期刊名称】《物理教学》
【年(卷),期】2002(024)010
【总页数】6页(P35-40)
【正文语种】中文
【中图分类】G633.7
【相关文献】
1.2002年普通高等学校招生全国统一考试理科综合能力测试 [J],
2.对"2002年普通高等学校招生全国统一考试(全国卷)理科综合能力测试"生物学试题的分析 [J], 郑春和
3.2002年普通高等学校招生全国统一考试理科综合能力测试 [J], 无
4.2020年普通高等学校招生全国统一考试理科综合能力测试(全国Ⅲ卷)——生物部分 [J],
5.2020年普通高等学校招生全国统一考试理科综合能力测试(全国Ⅱ卷)——生物部分 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
2002年全国卷高考理科数学试题及答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ADEABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a参考答案二、填空题(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得 222251)1(mm m x --=,因012>-m所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1xx x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f . 若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤.(ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。
2002年全国卷高考理科数学试题及答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A)i - (B)i (C )1- (D)1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C)}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A)N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A)43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A)0≥b (B)0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D)20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C)127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I)当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i)当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+.(ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。
2002年全国高考数学真题(理科_含答案) WORD直接打印

2002年普通高等学校招生全国统一考试数学试卷(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)圆1)1(22=+-y x 的圆心到直线33=y 的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值。
2002年普通高等学校春季招生考试(北京卷)

2002年普通高等学校春季招生考试(北京卷)英语Matriculation English Test (NMET2002)本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至14卷页。
第二卷15至18页。
共150分。
考试时间120分钟。
第一卷(三部分,共115分)注意事项:1答第一卷前,考生务必将自己的姓名、准考证号,考试科目用铅笔写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.考试结束后,考生将本试卷和答题卡一并交回。
第一卷(三部分,共115分)第一部分听力(共两节,满分30分)作题时,先将答案划在试卷上。
录音内容结后,你将有两分钟的时间将试卷的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分;满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A,B,C 三个答案中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt ?A. & 19.15B. & 9.15C. & 9.18答案是B。
1.Who is the woman looking for ?A. Mr BushB. M r SmithC. Mr Green2.Where is John’s birthday ?September 1st B. September 9th C. September 19th3.What’s the weather like in Hefei no w ?A. FineB. Rainy C .cloudy4.What will Tom do ?A. He will read a storyB. He will watch TVC. He will play TV games5.Where is Jim going ?A. To the libraryB. To the dining hallC. To the language lab.第二节(共15小题,每小题1.5分,满分22.5分)听下面5段对话或独白。
2002年北京海淀区高考理综仿真试题二

试卷类型:A高考理科综合仿真试题(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分为300分,考试时间为150分钟。
第Ⅰ卷 (选择题 共120分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
考试结2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
本卷共24题,每题5分,共120分。
在下列各题的四个选项中,只有一个选项是符合题1.A.30%B.10%C.5%D.1%2.外界空气中的O2进入人体血液中并与血红蛋白结合要通过几层磷脂分A.10层B.4C.6层D.83.要检验绿色植物在呼吸过程放出CO 2,以下哪一项实验条件是必要的A.要用一株叶子多的植物B.C.把植物淹没在水中D.4.人类多指基因(T)对正常基因(t)是显性,白化基因(a)对正常基因(A)是隐性,都在常染色上,而且都独立遗传,一个家庭中,父亲是多指,母亲正常,他们有一个白化病和手指正常A.3/4,1/4B.1/4,1/4C.3/4,3/8D.1/2,1/85.据报道,我国市场上现销售的冰箱,一半以上是“绿色冰箱”。
到2010年将彻底淘汰以氯氟化碳为制冷剂的冰箱,代之以“绿色冰箱”。
造成这A.B.C.“绿色冰箱”省电、节省,D.6.用NAA.35.5 g Cl2作氧化剂参加反应时,可接受0.5N AB.6.4 g Cu 与S 反应失去电子数为0.2N AC.1 L 、0.1 mol ·L -1的CH3COOH溶液中含CH3COO-和CH3COOH粒子数之和为0.1 N AD.16 g2NH 所含电子数为16N A7.科学家把不同的原子核称为“核素”。
最近,中国科学院兰州近代物理研究所合成新核素13564Gd ,关于13564GdA.它是一种元素B.其原子核内有135C.它是元素钆(Gd)的一种新的同位素D.它的相对原子质量为1358.A.沸点由高到低的顺序:H2O>NH3>C2H6>CH4B.氧化能力由强到弱的顺序:Cu2+>Fe3+>Fe2+>Al3+C.稳定性由强到弱的顺序:HCl>HBr>HF>H2SD.溶点由高到低的顺序:Mg>Al>K>Na9.邻甲基苯甲酸有多种同分异构体,其中属于酯类、且结构中含有苯环和甲基的同分异构体有A.3种B.4C.5种D.610.某同学配制0.1 mol·L-1NaOH溶液100 mL,下列操作会造成实际浓度偏高的是A.B.C.定容时俯视容量瓶的D.使用在空气中部分变质的NaOH11.有某铁的氧化物样品,用140 mL 5 mol·L-1的盐酸恰好完全溶解,所得溶液能吸收0.56 L(标准状况)氯气,使其中的Fe2+全部转化为Fe3+A.Fe2O3B.Fe3O4C.Fe4O5D.Fe5O712.取m g金属钠与n g铝分别放入足量盐酸中,在标准状况下产生H2分别为2.24 L和10.08 L,若把m g钠和n g铝分别同时投入一盛足量水的烧杯中,充分反应,理论上产生H2的体积在A.2.24 LB.6.72 LC.8.96 LD.12.32 L13.氡是放射性元素,某些建筑材料若含有氡,人居住其中将危害健康,222Rn来自镭称为镭射气,220Rn来自钍称为钍射气,219Rn来自锕称为锕射气。
2002年高考数学试题
2002年普通高等学校春季招生考试数学试卷北京附简解一、选择题(1)不等式组⎩⎨⎧<-<-030122x x x 的解集( )(A ){x|–1<x<1} (B ){x|0<x,3} (C ){x|0<x<1} (D ){x|–1<x<3}(2)已知三条直线m 、n 、l ,三个平面α、β、γ,下列四个命题中,正确的是( )(A )βαγβγα//⇒⎭⎬⎫⊥⊥ (B )ββ⊥⇒⎭⎬⎫⊥l m l m //(C )n m n m //////⇒⎭⎬⎫γγ (D )n m n m //⇒⎭⎬⎫⊥⊥γγ (3)已知椭圆的焦点是F 1、F 2、P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 (4)如果θ∈(π/2,π)那么复数(1+i)(cos θ+isin θ)的辐角的主值是( )(A )θ+9π/4 (B )θ+π/4 (C )θ–π/4 (D )θ+7π/4 (5)若角α满足条件sin2α<0,cos α–sin α<0,则α在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(6)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (7)在∆ABC 中,AB=2,BC=1.5,∠ABC=120︒(如图).若将∆ABC绕直线BC 旋转一周,则所形成的旋转体的体积是()(A )9π/2 (B )7π/2 (C )5π/2 (D )3π/2 (8)(理)圆2x 2+2y 2=1与直线xsin θ+y –1=0 (θ∈R, θ≠π/2+k π, k ∈Z)的位置关系是( ) (A )相交 (B )相切 (C )相离 (D )不能确定 (文)到两坐标轴距离相等的点的轨迹方程是( )(A )x –y=0 (B )x+y=0 (C )|x|–y=0 (D )|x|–|y|=0 (9)(理)在极坐标系中,如果一个圆的方程ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是( )(A )ρsin θ=3 (B )ρsin θ = –3 (C )ρcos θ =2 (D )ρcos θ = –2 (文)函数y=2sinx 的单调增区间是( )(A )[2k π–π/2, 2k π+π/2] (k ∈Z) (B )[2k π+π/2, 2k π+3π/2] (k ∈Z) (C )[2k π–π, 2k π] (k ∈Z) (D )[2k π, 2k π+π] (k ∈Z) (10)(理)对于二项式(1/x+x 3)n ,四位同学作出了四种判断:①存在n ∈N ,展开式中有常数项;②对任意n ∈N ,展开式中没有常数项;③对任意n ∈N ,展开式中没有x 的一次项;④存在n ∈N ,展开式中有x 的一次项.上述判断中正确的是( )(A )①与③ (B )②与③ (C )②与④ (D )④与① (文)在(1/x+x 2)6的展开式中,x 3的系数和常数项依次是( )(A )20,20 (B )15,20 (C )20,15 (D )15,15(11)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项 (12)用一张钢板制作一个容积为4m 3的无盖长方体水箱.可用的长方形钢板有四种不同的规格(长×宽的尺寸如各项所示,单位均为m ).若既要够用,又要所剩够用,则应选择钢板的规则是( ) (A )2×5 (B )2×5.5 (C )2×6.1 (D )3×5 二、填空题(13)若双曲线x 2/4–y 2/m=1的渐近线方程为y=±√3 x/2,则双曲线的焦点坐标是 (14)如果cos θ= –12/13 θ∈(π, 3π/2),那么cos(θ+π/4)的值等于_____(15)正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图所示).M 为矩形AEFD 内 的一点,如果∠MBE=∠MBC ,MB 和平面BCF 所成角的正切值 为1/2,那么点M 到直线EF 的距离为________(16)对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算⊙为: z 1⊙z 2=x 1x 2+y 1y 2.设非零复数w 1、w 2在复平面内对应的点分别为P 1、P 2,点为O 为坐标原点.如果w 1⊙w 2=0,那么在∆P 1OP 2中,∠P 1OP 2的大小为_______ 三、解答题(17)在∆ABC 中,已知A 、B 、C 成等差数列,求tg(A/2)+3tg(A/2)tg(C/2)+tg(C/2)的值. (18)已知f(x)是偶函数,而且在(0,+∞)上是减函数.判断f(x)在(–∞,0)上是增函数还是减函数,并加以证明(19)在三棱锥S –ABC 中,∠SAB=∠SAC=∠ACB=90︒,AC=2,BC=√13,SB=√29. (Ⅰ)证明:SC ⊥BC ;(Ⅱ)求侧面SBC 与底面ABC 所成的二面角大小; (Ⅲ)(理)求异面直线SC 与AB 所成的角的大小(用反三角函数表示). (文)求三棱锥的体积V S –ABC .(20)假设A 型进口汽车关税税率在2001年是100﹪,在2006年是25﹪,2001年A 型进口车每辆价格为64万元(其中含32万元关税税款).(Ⅰ)已知与A 型车性能相近的B 型国产车,2001年每辆价格为46万元.若A 型车的价格只受关税降低影响,为了保证2006年B 型车的价格不高于A 型车价格的90﹪,B 型车价格要逐年降低,问平均每年至少下降多少万元? (Ⅱ)某人在2001年将33万元存入银行,假如该银行扣利息税后的年利率为1.8﹪(五年内不变),且每年按复利计算(例如,第一年的利息记入第二年的本金),那么五年到期时这笔钱连本带息是否一定够买一辆按(Ⅰ)中所述降价后的B 型汽车? (21)(理)已知点的序列A n (x n ,0),n ∈N ,其中x 1=0,x 2=a (a>0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,···,A n 是线段A n –2A n –1的中点,···. (Ⅰ)写出x n 与x n –1、x n –2之间的关系式 (n ≥3);(Ⅱ)设a n =x n+1–x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明;(Ⅲ)求n n x ∞→lim .(文)同理(22)(Ⅰ)(Ⅱ) (22)(理)已知某椭圆的焦点是F 1(–4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B|+|F 2B|=10,椭圆上不同的两点A(x 1,y 1)、C(x 2,y 2)满足条件:|F 2A|、|F 2B|、|F 2C|成等差数列.(Ⅰ)求该椭圆方程;(Ⅱ)求弦AC中点的横坐标;(Ⅲ)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.(文)同理(21)【答案】一、选择题:CDABB BDC(D)A(A)D(C) AC二、填空题;(13)(±√7, 0);(14)-7√2/26;(15)√2/2;(16)π/2.三、解答题:(17)√3;(18)增函数;(19)(Ⅰ)略;(Ⅱ)60︒;(Ⅲ)(理)arccos√17/17,(文)125√3/6;(20)(Ⅰ)2万元;(Ⅱ)5年后本息和为36 .07692>36,可以.(21)(理)(Ⅰ)x n=(x n–1+x n–2)/2;(Ⅱ)a n=(–1/2)n–1 (n∈N);(Ⅲ)2a/3;(文)同理(Ⅰ)(Ⅱ).(22)(理)(Ⅰ)x2/25+y2/9=1;(Ⅱ)x0=4;(Ⅲ)–16<m<16/5;(文)同理(21).2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ADE(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分。
2002年高考全国卷理科数学试题及答案
普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间( - )每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市 末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设 末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。
2002年全国高考理科综合
2002年全国普通高等学校招生统一考试理科综合试题第I卷(选择题共20题每题6分共120分)试卷类型:A在下列各题的四个选项中,只有一个选项是符合题目要求的。
以下数据可供解题时参考:原子量:H 1 C 12 N 14 O 16 Na 23 P 31 Cl 35.5 Ca 40 Fe 56 Cu 64 1.下列各类人群中,一段时期内人体摄入和排出的氮量基本相等的是()A.健康儿童B.重创伤恢复期病人C.健康成年男子D.禁食期病人2.下列关于细胞周期的叙述,正确的是()A.成熟的生殖细胞产生后立即进入下一细胞周期B.机体内所有的体细胞处于细胞周期中C.抑制DNA的合成,细胞将停留在分裂期D.细胞分裂间期为细胞分裂期提供物质基础3.番茄种子在苗床上,在适宜的条件下,第6天子叶展开,第9天幼叶出现。
研究人员从种子到幼苗形成期间每天测定其干重,并绘制成曲线。
下面四个曲线图中,正确的是()4.一只羊的卵细胞核被另一只羊的体细胞核置换后,这个卵细胞经过多次分裂,再植入第三只羊的子宫内发育,结果产下一只羊。
这种克隆技术具有多种用途,但是不能()A.有选择地繁殖某一性别的家畜B.繁殖家畜中的优秀个体C.用于保存物种D.改变动物的基因型5.自然界中生物钟内及种间是相互作用、相互影响的。
下述观点不正确的是()A.林鸽群较大时被苍鹰捕食的几率降低B.鲈鱼有时捕食鲈鱼的幼鱼,这有利于鲈鱼种的维持C.自然界中的猴群经过争斗建立了优劣等级制度,并依次占资源,这对种的保持是有利的D.自然界中物种间捕食对一个种有利,但会使另一个种消失6.以下说法正确的是 ( ) A .纳米材料是指一种称为“纳米”的新物质制在的材料 B .绿色食品是指不含任何化学物质的食品 C .生物固氮是指植物通过叶面直接吸收空气中的氮气 D .光导纤维是以二氧化硅为主要原料制成的7.0.01mol ·L -1的某一元弱酸溶液pH=4,则它的电离度为 ( ) A .1% B .2% C .5% D .10% 8.某温度下,100g 饱和氯化钠溶液中含有氯化钠26.5g.若向此溶液中添加3.5g 氯化钠和6.5g水,则所得溶液的溶质质量分数是 ( ) A .30% B .%1005.61005.35.26⨯++C .26.5%D .%1005.35.61005.35.26⨯+++9.人有曾建议用AG 表示溶液的酸度(acidity grade ),AG 的定义为AG=1g ([H +]/[OH -])。
2002年普通高等学校春季招生全国统一考试物理试卷及答案
2002年普通高等学校春季招生全国统一考试物理部分第I卷<选择题)本卷共24题,每题6分。
在下列各题的四个选项中,只有一个选项是符合题目要求的。
16.下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F 为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是wZOVLt2lO3A B C D17.如图所示,在两个固定电荷+q和-q之间放入两个原来不带电的导体,1、2、3、4为导体上的四个点,在达到静电平衡后,各点的电势分别是φ1、φ2、φ3、φ4,则wZOVLt2lO3A φ4>φ3>φ2>φ1B φ4=φ3>φ2=φ1C φ4<φ3<φ2<φ1D φ4=φ3<φ2=φ118.图中所示为一简谐横波在某一时刻的波形图,已知此时质点A正向上运动,如图中箭头所示,由此可断定此横波wZOVLt2lO3A 向右传播,且此时质点B正向上运动B 向右传播,且此时质点C正向下运动C 向左传播,且此时质点D正向上运动D 向左传播,且此时质点E正向下运动19.氢原子的能级是氢原子处于各个定态时的能量值,它包括氢原子系统的电势能和电子在轨道上运动的动能,氢原子的电子由外层轨道跃迁到内层轨道时,wZOVLt2lO3A 氢原子的能量减小,电子的动能增加B 氢原子的能量增加,电子的动能增加C 氢原子的能量减小,电子的动能减小D 氢原子的能量增加,电子的动能减小20.在高速公路上发生一起交通事故,一辆质量为1500kg向南行驶的长途客车迎面撞上了一质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前以20m/s的速率行驶,由此可判断卡车碰前的行驶速率wZOVLt2lO3A 小于10m/sB 大于10m/s小于20m/sC 大于20m/s小于30m/sD 大于30m/s小于40m/s21.图为云室中某粒子穿过铅板P前后的轨迹,室中匀强磁场的方向与轨迹所在平面垂直<图中垂直于纸面向里,)由此可知此粒子wZOVLt2lO3A 一定带正电 B 一定带负电C 不带电D 可能带正电,也可能带负电22.图中L 是凸透镜,OO ′是它的主轴,AB 是垂直于主轴的肖源,P 是垂直于主轴的光屏,当两者到透镜的距离相等时,在光屏上得到清晰的像,如将AB 向右移动任意一段距离后,再移动P ,则在P 上wZOVLt2lO3A 总能得到缩小的像 B 总能得到较大的像C 可能得到放大的像,也可能得到缩小的像D 可能得到放大的像,也可能得不到像23.质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为:wZOVLt2lO3Aθθμθcos )]cos (sin [++g a m B )sin (cos )sin (θμθθ+-g a m C )sin (cos )]cos (sin [θμθθμθ-++g a m D )sin (cos )]cos (sin [θμθθμθ+++g a m 24.一个点源S 对平面镜成像,设光源不动,平面镜以速率v 沿OS 方向向光源平移,镜面与OS 方向之间的夹角为30º,则光源的像S′将wZOVLt2lO3A 以速率0.5v沿S′S连线向S运动B 以速率v沿S′S连线向S运动C 以速率3v沿S′S连线向S运动D 以速率2v沿S′S连线向S运动第II卷<非选择题)29.<18分)图甲、乙是两组同样的器材实物图,用来测量待测电阻R的阻值,每组器材中包括:电池,电键,变阻器,电压表,电流表,等测电阻R,若干导线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年春季高考理科综合能力测试(北京卷)
在下列各题的四个选项中,只有一个选项是符合题目要求的。
16.下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是
A B C D
17.如图所示,在两个固定电荷+q和-q之间放入两个原来不带电的导体,1、2、3、4为导体上的四个点,在达到静电平衡后,各点的电势分别是φ1、φ2、φ3、φ4,则
A φ4>φ3>φ2>φ1
B φ4=φ3>φ2=φ1
C φ4<φ3<φ2<φ1
D φ4=φ3<φ2=φ1
18.图中所示为一简谐横波在某一时刻的波形图,已知此时质点A正向上运动,如图中箭头所示,由此可断定此横波
A 向右传播,且此时质点B正向上运动
B 向右传播,且此时质点C正向下运动
C 向左传播,且此时质点D正向上运动
D 向左传播,且此时质点E正向下运动
19.氢原子的能级是氢原子处于各个定态时的能量值,它包括氢原子系统的电势能和电子在轨道上运动的动能,氢原子的电子由外层轨道跃迁到内层轨道时,
A 氢原子的能量减小,电子的动能增加
B 氢原子的能量增加,电子的动能增加
C 氢原子的能量减小,电子的动能减小
D 氢原子的能量增加,电子的动能减小20.在高速公路上发生一起交通事故,一辆质量为1500kg向南行驶的长途客车迎面撞上了一质量为3000kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前以20m/s的速率行驶,由此可判断卡车碰前的行驶速率A 小于10m/s B 大于10m/s小于20m/s
C 大于20m/s小于30m/s
D 大于30m/s小于40m/s
21.图为云室中某粒子穿过铅板P 前后的轨迹,室中匀强磁场的方向与轨迹所在平面垂直(图中垂直于纸面向里,)由此可知此粒子
A 一定带正电
B 一定带负电
C 不带电
D 可能带正电,也可能带负电
22.图中L 是凸透镜,OO ′是它的主轴,AB 是垂直于主轴的肖源,P 是垂直于主轴的光屏,当两者到透镜的距离相等时,在光屏上得到清晰的像,如将AB
向右移动任意一段距离后,再移动P ,则在P 上
A 总能得到缩小的像
B 总能得到较大的像
C 可能得到放大的像,也可能得到缩小的像
D 可能得到放大的像,也可能得不到像
23.质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为:
A θθμθcos )]cos (sin [++g a m
B )
sin (cos )sin (θμθθ+-g a m C )
sin (cos )]cos (sin [θμθθμθ-++g a m D
)sin (cos )]cos (sin [θμθθμθ+++g a m 24.一个点源S 对平面镜成像,设光源不动,平面镜以速率v 沿OS 方向向光源平移,镜面与OS 方向之间的夹角为30º,则光源的像S ′将
A 以速率0.5v 沿S ′S 连线向S 运动
B 以速率v 沿S ′S 连线向S 运动
C 以速率3v 沿S ′S 连线向S 运动
D 以速率2v 沿S ′S 连线向S 运动
29.(18分)图甲、乙是两组同样的器材实物图,用来测量待测电阻R 的阻值,每组器材中包括:电池,电键,变阻器,电压表,电流表,等测电阻R ,若干导线。
(1)如果待测电阻R 的阻值比电压表的内阻不是小很多,但R 的阻值比电流表的内阻大很多,试在图甲中连线使之成为测量电路;如果待测电阻R 的阻值比电流表的内阻不是大很多,但R 的阻值比电压表的内阻小很多,试在图乙中连线使之成为测量电路。
(2)如果已知上述电压表的内阻R V 和电流表的内阻R A ,对图甲和图乙中连成的测量电路,分别写出计算待测电阻的公式(用测得的量和给出的电表内阻来表示)。
30.(28分)如图所示,竖直放置的气缸内盛有气体,上面被一活塞盖住,
活塞通过劲度系数k =600N/m 的弹簧与气缸相连接,系统处于平衡状态,
已知此时外界大气压强p 0=1.00×105N/m 2,活塞到缸底的距离l =0.500m ,
缸内横截面积S =1.00×102m 2,今在等温条件下将活塞缓慢上提到距缸底
为2l 处,此时提力为F =500N ,弹簧的原长l 0应为多少?若提力为F =
700N ,弹簧的原长l 0又应为多少?
不计摩擦及活塞和弹簧的质量,并假定在整个过程中,气缸不漏气,弹簧都遵从胡克定律。
31.(43分)Fe 是地壳中含量很丰富的元素,也是生物体所必需的元素。
(1)(17分)自然界中铁矿石主要有赤铁矿和磁铁矿,金属铁是在高炉中冶炼的,高炉炼铁除了加入铁矿石外,还需加入焦炭和石灰石。
请填空: ①写出磁铁矿主要成分的化学式:。
②写出赤铁矿被还原成铁的化学方程式:。
③写出焦炭在高炉中参与反应的两个化学方程式:。
④写出CaCO 3所参与反应的两个化学方程式:。
(2)(20分)磁铁在电器中有广泛的应用,如发电机,如图所示,已知一台单和发电机转子导线框共有N 匝,线框长为l 1,宽为l 2,转子的转动角速度为 ,磁极间的磁感强度为B ,试导出发电机的瞬时电动热E 的表达式。
现在知道有一种强水磁材料钕铁硼,用它制成发电机的磁极时,磁感强度可增大到原来的K 倍,如果保持发电机结构和尺寸,转子转动角速度,需产生的电动热都不变,图甲 图乙
那么这时转子上的导线框需要多少匝?
(3)(6分)铁是叶绿素生物合成过程中必需的元素,缺铁植标最明显的症状是叶片发黄,请问这一症状首先出现在植株的幼叶还是老叶上?为什么?。