沪科版七年级数学上册教学课件 2.1.2 代数式
沪科版七上数学第2章 小结与复习

第 2 章 整式加减
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
一、整式的有关概念
1.代数式:用加、减、乘、除及乘方等运算符号将 数或表示数的字母连接而成的式子,叫做代数式. 单个 的数或字母也是代数式.
2.单项式:都是数与字母的__积__,这样的式子叫做 单项式,单个的字母或数也是单项式.
针对训练
3.下列各项中,去括号正确的是( C ) A.x2-(2x-y+2)=x2-2x+y+2 B.-(m+n)-mn=-m+n-mn C.x-(5x-3y)+(2x-y)=-2x+2y D.ab-(-ab+3)=3
例4 若 A 是一个三次多项式,B 是一个四次多
项式,则 A+B 一定是( B )
分析:原式去括号合并得到最简结果,利用非负 数的性质求出 x 与 y 的值,代入计算即可求出值. 解:原式 = 5x2 - 2y - 8x2 + 16y + 6x2 - 9y = 3x2 - 5y. 因为 | x + 2 | + (y - 3)2 = 0,所以 x + 2 = 0,y - 3 = 0, 即 x = - 2,y = 3,则原式 = 12 - 15 = - 3.
Hale Waihona Puke 3.单项式的系数:单项式中的数字因数叫做这个单 项式的系数.
4.单项式的次数:一个单项式中,所有字母的指数 的和叫做这个单项式的次数.
5.多项式:几个单项式的_和___叫做多项式. 6.多项式的项:多项式中,每个单项式(连同符号) 叫做多项式的项.其中不含字母的项叫做常数项.一个多 项式有几项,这个多项式就叫做几项式. 7.多项式的次数:多项式里次数最高的项的次数, 叫做这个多项式的次数. 8.整式:____单__项__式__与__多__项__式____统称整式. 9.代数式的值:用数字替代代数式里的字母,按照 代数式中的运算关系得出的结果.
七年级数学上册 第2章2.1 代数式例题与讲解 (新版)沪科版

1.用字母表示数(1)偶数与奇数的概念及表示①像0,±2,±4,±6,…,能被2整除的整数叫做偶数.如果用k表示任意一个整数,那么任意一个偶数可以用2k表示.②像±1,±3,±5,…,不能被2整除的整数叫做奇数.如果用k表示任意一个整数,那么任意一个奇数可以用2k-1(或2k+1)表示.③偶数与奇数可以是负整数;0是偶数.(2)用字母表示数的意义用字母表示数,可以把一些数量关系更简明地表示出来,把具体的数换成抽象的字母,使所得式子反映的规律具有普遍意义,从而为叙述和研究问题带来方便.①用字母表示数可以简明地表达数学运算律.用字母可以简明地表示加法交换律、乘法交换律、加法结合律、乘法结合律、分配律等.②用字母表示数可以简明地表达公式、法则.用字母可以表示三角形面积公式、正方形、长方形、圆及梯形的周长、面积等公式,分数运算法则等.③用字母表示数可以简明地表达问题中的数量关系.例如,有两个数,其中第二个数比第一个数小4.用字母可以清楚地表明这种数量关系,如果用字母a表示第一个数,则第二个数为a-4;如果用字母b表示第二个数,则第一个数为b+4.④用字母表示数可以简洁、准确地表达一些数学概念.如用a与b表示互为相反数的两个数,则a+b=0;若a+b=0,则a与b互为相反数.(3)用字母表示数应注意的问题①字母的确定性:在同一个问题中,同一个字母表示同一个量,不同的量要用不同的字母来表示.如长方形的长和宽要分别用a,b两个字母表示,面积用S表示,则有S=ab.②字母的限制性:用字母表示实际问题的某一数量时,字母的取值须使实际问题有意义,并且符合实际.如表示人的数量的字母的取值必须是非负整数.③字母具有一般性:用字母可以表示我们已经学过的和今后要学的任何一个数.④字母的不确定性:同一个式子可以表示多种实际问题中的数量关系.⑤字母的抽象性:要逐步理解和接受有些问题的结果可能就是一个用字母表示的式子.【例1-1】若n为自然数,则三个连续的自然数可表示为______,三个连续的奇数可表示为______,三个连续的偶数可表示为______.解析:(1)每两个连续自然数相差1,所以如果中间的自然数为n,则较小的自然数为n -1,较大的自然数为n+1;(2)奇数一般用2n-1或2n+1表示,偶数一般用2n表示,而且每两个连续奇数或偶数相差2.答案不唯一,只要符合连续自然数相差1,连续奇数或偶数相差2都正确.实际上在表示连续的几个数时,一般先表示中间的那一个数,再根据数的特点表示其他的数.如表示三个连续的偶数时,先表示中间一个为2n,则另外两个可以表示为:2n-2,2n+2.答案:答案不唯一,如:n-1,n,n+1;2n-3,2n-1,2n+1;2n-2,2n,2n+2.【例1-2】填空:(1)买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要__________元;(2)今天,参加全省课改实验区的初中毕业考试的同学约有15万人,其中男生约有a 万人,则女生约有__________万人;(3)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴__________根.解析:(1)显然买3个篮球需要3m元,买5个排球需要5n元,则买3个篮球和5个排球共需要(3m +5n )元;(2)女生的人数等于总人数减去男生的人数,由于男女同学共15万人,而男生有a 万人,则女生有(15-a )万人;(3)观察发现:搭1条“金鱼”需要火柴8根,搭2条“金鱼”需要火柴14根,搭3条“金鱼”需要火柴20根,而8=6×1+2,14=6×2+2,20=6×3+2,…,所以搭n 条“金鱼”需要火柴(6n +2)根.注意:“(3m +5n )元”、“(15-a )万人”、“(6n +2)根”中表示和或差的式子一定要加括号.答案:(1)(3m +5n ) (2)(15-a ) (3)(6n +2)2.代数式(1)代数式的概念用加、减、乘、除及乘方等运算符号把数或表示数的字母连接而成的式子,叫做代数式.如:90a ,a +b ,2k -1,4a ,a 2,s v ,13πr 2h 等都是代数式. 单个的数或字母也是代数式.如m ,-2 013也是代数式.(2)代数式的书写规定①代数式中如果出现乘号,可以写成“·”或不写.字母与字母相乘时“×”省略,按字母表顺序书写,如m ×n 写成mn ,相同字母写成幂的形式,如a ×a 写成a 2,(a +b )×(a +b )写成(a +b )2.数字与字母相乘时省略“×”,数字要写在字母的前面,若数字是带分数要化成假分数,如4×n 写成4n ,112×a 写成32a . 数字与数字相乘时乘号不能省略,也不能写成“·”,仍用“×”.②在代数式中出现除法运算时,一般按照分数的写法来写,即除号不用,改用分数线.如s÷t 写成s t ,x ÷2一般写成x 2或12x . ③若是和差形式的代数式,式子后面有单位时,要在单位前把代数式括起来.如t ℃升高2 ℃后是(t +2) ℃,不能写成t +2 ℃.(3)代数式的读法代数式的读法一般有两种:一是按运算关系来读,如x +9读作x 加9;另一种是按运算结果来读,如x +9读作x 与9的和.另外,对于含有括号的代数式,应把括号里的代数式看作一个整体按运算结果来读.谈重点 如何判断一个式子是不是代数式(1)判断一个式子是不是代数式的关键是看式子中有没有运算符号,是不是数字和字母参与运算,单独的一个数或字母可以看成是它与1的积或它除以1的商,也可以看成是这个数与0的和或差.(2)代数式中只能有运算符号,不应含有“=”或“>”“<”“≥”“≤”等符号,即等式或不等式都不是代数式.(4)列代数式列代数式就是把问题中的一些数量关系用代数式表示出来.列代数式的实质就是把文字语言转化为数学符号语言.列代数式应遵循下列关键点:①抓住“多”“少”“大”“小”“和”“差”“积”“商”“倍”“分”“平方”“比”“几分之几”“除”“除以”等关键词语,弄清各量之间的关系.②明确数量关系中的运算顺序,一般是先说的先算,后说的后算,如“和的积”是加在乘之前,而“积的和”是乘在加之前.③准确理解“的”和“与”划分的语句层次.“的”表示从属关系,“与”表示并列关系.解技巧 正确列代数式列代数式时,若先说低级运算,再说高级运算必须加括号,先说高级运算,再说低级运算,则不必使用括号.如x 与1的差的3倍应写成3(x -1),必须加括号,而x 的3倍与1的差,则写成3x -1,不必加括号.【例2-1】 “比a 的32大1的数”用代数式表示是( ). A .32a +1 B .23a +1 C .52a D .32a -1 解析:根据题意可知“a 的32”可以表示为32a ,大1,用加法,所以,“比a 的32大1的数”用代数式表示为32a +1,故选A. 答案:A【例2-2】 判断下列式子中,哪些是代数式?0,4x +5y ,x ,-40,20+5x ,3x =2y ,2+1=3,3x >0.分析:根据代数式的概念可判断4x +5y ,20+5x 是代数式,单独的一个数或一个字母也是代数式,则0,x ,-40也是代数式;而3x =2y ,2+1=3,3x >0不符合代数式的概念.因此它们不是代数式.解:0,4x +5y ,x ,-40,20+5x 是代数式.3.整式(1)单项式①单项式的概念由数与字母的乘积组成的代数式叫做单项式.如4a ,a 2,13πr 2h 等都是单项式. 单个的字母或数也是单项式.如-3,a 也是单项式.②单项式的系数单项式中的数字因数叫做这个单项式的系数.如4a ,a 2,-a ,13πr 2h 的系数分别是4,1,-1,13π. 单项式的系数是1或-1时“1”省略不写,如a 2,-a 的系数分别是1和-1,其中“1”要省略不写.③单项式的次数一个单项式中,所有字母的指数之和叫做这个单项式的次数.如4a ,a 2,13πr 2h 的次数分别是1,2,3. 析规律 判断单项式及其次数(1)判定一个代数式是否是单项式,关键是看式子中的数与字母或字母与字母之间是不是纯粹的乘积关系(乘方也是一种乘积形式).如果含有加、减、除的关系,那么它就不是单项式.凡是字母出现在分母中的代数式,也一定不是单项式.(2)单项式的次数指的是所有字母的指数的和,如果字母没有写指数,那么这个字母的指数是1,特别注意,π是常数不是字母,单项式的系数是带分数时,通常写成假分数.(2)多项式①多项式的概念几个单项式的和组成的代数式叫做多项式.如:a +b ,2k -1,x 2+2x -3等都是多项式.②多项式的项在多项式里,每个单项式叫做多项式的项.多项式的每一项都包括它前面的符号.如3x 2-2y -9的项是3x 2,-2y ,-9.③常数项不含字母的项,叫做常数项,注意常数项也包括它前面的符号.如多项式3x 2-2y -9中的常数项是-9,而不是9.④多项式的次数在多项式中,次数最高项的次数,叫做这个多项式的次数.如多项式3x 2-2y -9的次数是2,这个多项式是二次多项式.⑤一个多项式有几项,这个多项式叫做几项式如多项式3x 2-2y -9是三项式.于是可按多项式的次数与项数区分多项式.如4a 2b -3ab +2a -1是三次四项式.解技巧 对多项式及相关概念的理解(1)多项式至少是两项,多项式中一定含有加减运算;(2)一个多项式中,任意一项的次数都不大于这个多项式的次数;(3)当多项式中某项的系数是用科学记数法表示的形式时,不要把10的指数算成是该项次数的一个组成部分.(3)整式单项式与多项式统称整式.谈重点 单项式与多项式的区别(1)单项式的系数应包括前面的符号,单项式的次数是所有字母的指数相加的结果,只与字母有关,而与系数无关,数字单项式的次数是0.(2)多项式没有系数,它的次数与组成的各个单项式的次数有关,用次数最高的单项式的次数代表多项式的次数.我们可以用一个多项式的次数与项数对多项式进行分类.(3)判定一个式子是单项式还是多项式,首先判定它是否是整式,若分母中含有字母,则它一定不是整式,因此也不可能是单项式或多项式;而单项式与多项式的区别在于看是否含有加减运算,含有加减运算的整式是多项式,不含加减运算的整式是单项式.【例3-1】 找出下列各代数式中的单项式,并写出各单项式的系数和次数. 23ab 2,-y ,a mn ,xy 3+5,25x 7,-3x 2y 3z ,πr 2. 分析:代数式a mn 含有分母,并且分母中有字母,所以不是单项式;xy 3+5含有加法运算,也不是单项式.解:单项式是23ab 2,-y ,25x 7,-3x 2y 3z ,πr 2. 23ab 2的系数是23,次数是3;-y 的系数是-1,次数是1;25x 7的系数是25,次数是7;-3x 2y 3z 的系数是-3,次数是6;πr 2的系数是π,次数是2.【例3-2】 下列代数式,哪些是多项式?说出多项式的项,并指出它是几次几项式.(1)x 4-2x 3+x -5;(2)a 3-ab 2+3a 2b 2-14b 3-1; (3)2a +x y ;(4)t -s +9s 2.分析:第三个代数式2a +xy 中的第二项不是单项式,所以2a +x y 不是多项式.多项式x 4-2x 3+x -5的次数是4,多项式a 3-ab 2+3a 2b 2-14b 3-1的次数是4,多项式t -s +9s 2的次数是2.解:x 4-2x 3+x -5,a 3-ab 2+3a 2b 2-14b 3-1,t -s +9s 2是多项式. x 4-2x 3+x -5的项是x 4,-2x 3,x ,-5,它是四次四项式;a 3-ab 2+3a 2b 2-14b 3-1的项是a 3,-ab 2,3a 2b 2,-14b 3,-1,它是四次五项式;t -s +9s 2的项是t ,-s,9s 2,它是二次三项式.4.代数式的值(1)代数式的值的概念①概念:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.②代数式的值,一般不是一个固定的数,它是随着代数式中字母取值的变化而变化的,是根据问题的需要,用具体数值代替代数式中的字母,按照代数式的运算关系计算所得的结果.(2)注意事项①代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律,而代数式的值是这个规律下的特殊情形. ②代数式的字母取值,必须使要求的代数式有意义.如在代数式s t中,当t =0时,代数式没有意义.③当代数式表示实际问题的数量关系时,字母的取值还要保证具有实际意义.如a 表示学生人数,则a 只能取正整数.(3)求代数式的值求代数式的值,其步骤有两步:①用数值代替代数式里的字母,简称“代入”;②按照代数式指明的运算,计算出结果,简称“计算”.谈重点 求代数式的值需注意的几点(1)代入时,按已知给定的数值,将相应的字母换成数字,其他的运算符号、原来的数字都不能改变.(2)代数式中原来省略的乘号,代入数字后出现数字与数字相乘时,必须添上乘号.(3)代数式的值是由所含字母取值确定的,是随着代数式中字母的取值的变化而变化的,所以求代数式的值时,在代入前,必须写出“当……时”,表示代数式的值是在这种情况下求得的.(4)如果字母给出的数值是负数,代入时必须加括号.(5)如果字母给出的数值是分数,作乘方运算时也必须添上括号.【例4】 已知a =23,b =-4,求代数式a 2-b 2+3a -b 的值. 分析:把a ,b 的值代入到代数式中,可得a 2-b 2+3a -b =⎝ ⎛⎭⎪⎫232-(-4)2+3×23-(-4),再按有理数的运算法则计算.解:当a =23,b =-4时, a 2-b 2+3a -b=⎝ ⎛⎭⎪⎫232-(-4)2+3×23-(-4) =49-16+2+4=-959.5.列代数式的方法(1)正确列代数式的关键在于:①正确理清数量关系;②善于抓住关键词语;③能正确判断数量关系中的运算顺序.(2)两种常用的列代数式的方法方法一:“翻译法”.列代数式的关键之一在于分清数量关系中的运算层次和运算顺序,一般地叙述数量关系的顺序与代数式的书写顺序基本上是一致的,即可按照“先读的先写”这种类似英语中的“翻译”的方法来列代数式.方法二:“方程法”.列代数式的关键之一在于正确地理清各数量之间的关系.一般问题中数量间的关系是容易找到的,但当题目中所涉及的各数量之间的关系不容易理清时,可借助方程的思想来帮助分析.【例5-1】用代数式表示:(1)a,b两数和的2倍与a,b两数积的差;(2)a,b两数和的平方与a,b两数平方差的商;(3)a,b两数和的倒数与它们的积的差的平方.解:(1)2(a+b)-ab;(2)a+b2a2-b2;(3)⎝⎛⎭⎪⎫1a+b-ab2.【例5-2】汛期来临时,某地区决定实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击该地区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设该地区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了多少天.(用含a的代数式表示)解:完成整个任务原计划用的时间-完成整个任务的实际时间=完成整个任务的实际时间比原计划时间少用的天数.原计划用a60天,实际上用了a60×1.5天,所以少用了a60-a90=a180(天).6.用字母表示数学规律(1)数字规律一组数字或等式有一定的规律,可以用字母来表示.常见的有两类:①数字:如偶数、奇数、比某一个数的几倍多(少)多少.②等式:具有一定规律的计算等式.(2)图形规律图形中的数学规律用具体数字表示有些困难,而用字母表示非常简洁.用字母表示图形中的规律的方法及步骤:①根据题目中提供的图形分析其中蕴含的规律;②用字母列出式子.释疑点用字母表示数学规律(1)用字母表示图形中的规律与用数字表示规律本质是一致的.(2)规律探索是一种观察、归纳、猜想验证的过程,对于这样的题目要数形结合,从特殊到一般,用字母表示最终的结果,更能反映图形的变化规律.【例6-1】观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④____________________;……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来.解:(1)4×6-52=24-25=-1.(2)答案不唯一.如n(n+2)-(n+1)2=-1(n∈正整数).【例6-2】用火柴棒按如下方式搭图:(1)填写下表:三角形个数 1 2 3 4 5火柴棒根数(2)分析:(1)可采用数的办法填空;(2)有两种方法:一是观察图形,确定每增加一个三角形需要增加的火柴棒的根数;二是通过观察上表中数的关系,从而找到规律.解:(1)3 5 7 9 11 (2)照题中规律搭下去,搭n个这样的三角形需要火柴棒的根数为3+2(n-1).7.代数式求值的方法求代数式的值常用的方法有:直接代入计算、整体代入计算、按指定的程序代入计算.(1)直接代入计算当已知一个代数式中各字母的取值时,可以用直接代入计算的方法.(2)整体代入计算已知含有两个字母或多个字母的代数式的值,求另一个代数式的值时,可以选用整体代入的方法.整体代入步骤:①对已知代数式或所求代数式进行适当变形;②整体代入求值.(3)按指定的程序代入计算按指定的程序代入计算,即数值转换机.给出一个代数式,或提供运算程序,给出字母的取值,代入求值即可.【例7】下图是一组数值转换机,(1)当x=-3时,写出图a的输出结果;(2)找出图b的转换步骤,并求出当x=2.5时输出的结果.分析:(1)先根据题图提供的程序写出代数式,代数式是3x-2,再将x=-3代入求值;(2)根据代数式中指明的运算顺序,先算加法再算除法,所以其步骤分别是+4和÷5.解:(1)由转换机程序可知代数式是3x-2,当x=-3时,原式=(-3)×3-2=-11.(2)观察可知转换机的步骤是:+4和÷5.当x=2.5时,原式=(2.5+4)÷5=1.3.8.代数式的应用(1)列代数式求阴影部分的面积一般有三种方法:①和差法:就是不改变图形的位置,将阴影部分的面积用规则图形的和或差来表示,经过计算后可以求出阴影部分的面积.②移动法:就是将图形的位置进行移动,以便利用和差法所提供的条件,具体的做法是平移、旋转、割补、等积变换等.③覆盖法:就是几个图形覆盖在一起,重叠的部分的面积就是阴影部分的面积.(2)探究图形排列的规律,利用代数式表示所需图形的个数.主要考查学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.找规律的题目,要通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决此类题目的难点在于找出能够代表一般规律的代数式.很多题目考查对于数字变化规律的运算猜想能力,需要有一定的数学思想.【例8-1】如图所示,求图中阴影部分的面积:分析:阴影部分的面积等于长方形的面积减去空白部分的面积,即:(1)长方形的面积减去长方形的面积;(2)长方形的面积减去四个正方形的面积;(3)长方形的面积减去两个长方形的面积再加上一个长方形的面积;(4)长方形的面积减去两个小扇形的面积,即a (a +b )-π4a 2-π4b 2. 解:(1)mn -pq ;(2)ab -4x 2;(3)ab -an -bm +mn ;(4)⎝⎛⎭⎪⎫1-π4a 2-π4b 2+ab . 【例8-2】 下面是由一些火柴棒拼出的一系列图形,第n 个图形由n 个正方形组成,通过观察图形:(1)用n 表示火柴棒根数s 的公式;(2)当n =20时,计算s 的值.解:(1)s =3n +1.(2)当n =20时,s =3×20+1=61(根).9.用单项式、多项式的概念求字母的值数学中的概念是通过事物的特征下的定义,因此还具有判定特征的作用,即,在知道是某种事物的前提下,我们又可以知道这种事物必备的特点,因此在整式的应用中,我们可以通过概念规定的条件,在知道是某种式子的前提下,推理认识它所具备的性质,从而通过列式,求出某些未知数的值.如:由单项式-2x 4可知它的系数是-2,次数是4,反过来若知道-ax m 的系数是-2、次数是4,就可以知道-a =-2,m =4,从而求出a =2,多项式的运用也是如此.【例9-1】 若m 3x 2y n +1是关于x ,y 的五次单项式,且系数为18,则m =______;n =______. 解析:因为单项式是关于x ,y 的五次单项式,所以m 是常数,因为系数为18,因此有m 3=18,m =12;2+n +1=5,n =2. 答案:122 【例9-2】 已知多项式5x m y 2+(m -2)xy -3x ,如果它的次数为4次,则m 应为多少?如果多项式只有两项,则m 为多少?分析:①次数最高项的次数是多项式的次数,在已知的多项式中只有5x m y 2次数能成为多项式的次数,所以m +2应该等于4;②如果多项式是二项式,只有(m -2)xy 这项不存在才可以,所以这项的系数只能是0.解:如果多项式的次数为4次,则m +2=4,即m =2;如果多项式只有两项,则m -2=0,即m =2.。
七年级数学上册第2章整式加减21代数式2代数式第2课时代数式的意义教案(新版)沪科版

第2课时代数式的意义【知识与技能】能根据代数式和具体问题说出一个代数式表示的数量关系.【过程与方法】经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.【情感态度】在与他人交流过程中,感受数学活动的生动魅力,激发学生学习数学的兴趣.【教学重点】会求代数式的值并解释代数式值的实际意义.【教学难点】利用代数式求值推断代数式所反映的规律.一、情境导入,初步认识【情境】一位医生研究得出由父母身高预测子女成年后身高的公式:儿子身高是由父母身高的和的一半,再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2.(1)已知父亲身高a米,母亲身高b米,试用代数式表示儿子和女儿的身高;(2)女生小红父亲身高1.75米,母亲身高1.62米;男生小明的父亲身高1.70米,母亲身高1.60米.预测成年以后小红和小明谁个子高?【教学说明】利用学生十分关注的身高问题,调动起学生的兴趣,由此也告知学生数学来源于生活.二、思考探究,获取新知代数式的意义问题代数式的意义是什么?【教学说明】让学生明确代数式的意义,说出一个代数式所表示的实际意义.【归纳结论】说出代数式的意义,关键是要弄清它们所表示的数量之间的运算关系.三、运用新知,深化理解2-b2,正确的是()A.a,b两数的平方差D.b,a两数的平方差()a+b3的意义是()ab3.说出下列代数式的意义:(1)2a-b (2)2(a-b) (3)a-2b【教学说明】学生通过分析,与同伴交流,正确地列出代数式,让学生初步感受怎样列代数式.3.(1)a的2倍与b的差.(2)a与b的差的2倍.(3)a与b的2倍的差.四、师生互动,课堂小结1.让学生充分发表自己的感受,相互补充.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?1.布置作业:从教材第60、62页“练习”和第67页“”中选取.2.完成同步练习册中本课时的练习.这节课学生进一步理解了代数式和代数式值的概念,锻炼学生的计算能力,激发学生的兴趣.。
最新沪科版七年级数学上册《代数式》全课时教学设计

第2章整式加减2.1 代数式第1课时用字母表示数教学目标【知识与技能】经历探索规律并用字母表示数的过程,能用字母表示以前学过的运算律和计算公式.【过程与方法】体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.【情感、态度与价值观】激发强烈的求知欲,培养积极探索,勇于创新的精神和团结合作的习惯.教学重难点【重点】用字母表示数的意义及用字母表示规律.【难点】用字母表示规律.教学过程一、创设情境,引入新课国庆节到了,妈妈要加班,上班前嘱咐读初一的儿子方舟在家里打扫卫生,方舟按妈妈的要求做完后,坐在窗边想着想买的玩具,可又愁自己没钱,忽然,他计上心来,趁妈妈下班回家之前在桌子上留了一张纸条,然后躲在房间里看妈妈的动静.妈妈回家看到纸条是这样写的:“拖地收3元,叠被子收2元,擦窗户收4元,丢垃圾袋收2元,共计11元”.妈妈看后,一言不发,拿笔在纸条后加上几行字:“吃饭收x元,穿衣收y元,带你去看病收z元,关心收a元……共计应收b元”.写完后就到厨房做饭去了,方舟溜出来一看,心生惭愧,赶忙收起了纸条.你知道妈妈写的x元、y元……是多少吗?方舟为什么惭愧?今天这节课,我们就来学习用字母表示数.活动(一) 问题1:2003年10月15日,我国成功发射了“神舟五号”载人飞船,它在椭圆轨道上环绕地球飞过14周,历时21h.(1)该飞船绕地球飞行一周需要多少分?(2)若绕地球飞行n周,需多少分?生:(1)=90(分) (2)×n=90n(分).问题2:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数,如果用k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.整数:…-3 -2 -1 0 1 2 3 …k …偶数:…-6 -4 -2 0 2 4 6 …( ) …奇数:…-7 -5 -3 -1 0 1 3 5 …( ) …学生思考并举手回答.教师通过探究,我们发现字母可以表示任何一个数.二、讲授新课1.你知道扑克牌中的字母表示什么数吗?2.一则招领启事是这样写的:“小明同学今天在操场上拾到人民币n元,请失主到政教处认领”.你知道这里为什么要用字母n吗?活动(二) 问题3:在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?请同学们填写下表:运算定律字母表示语言表述加法交换律a+b=b+a加法结合律乘法交换律乘法结合律乘法分配律学生讨论交流并举手回答.师:请同学们比较一下,哪一种表示方法更简明、更有利于掌握、交流呢?学生回答.师:通过问题3,使我们认识到正确使用字母表示所学过的运算律、公式和法则既简单又明了.三、举例应用1.用字母表示下列法则:(1)有理数的减法法则;(2)分数的加法法则. 2.你会填下表中各图形的周长和面积公式吗?名称图形用字母表示公式周长(C)面积(S) 正方形C=4aS=a 2三角形C=a+b+c S=ah梯形C=a+b+c+d S=(a+ b)h 圆C=2πrS=πr 2活动(三) 问题4:(1)如图所示,用长方形框任意框出月历中的三个数之间有什么关系?请用一个等式表示这个关系.(2)如图所示,若用正方形框任意框出月历中的四个数,我们又能用什么等式表示呢?学生观察、探究并写出结果.四、随堂练习我们按如图所示的摆法摆小正方形,记录你所搭的正方形的个数和所用的火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为.2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为.3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为.4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为.【答案】 1.4+(n-1)×3 2n+n+(n+1) 3.4n-(n-1) 4.1+3n五、课堂小结这节课我们通过活动探索规律,得出规律,并用含字母的式子表示出来,使我们知道:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数字和公式,这样给我们研究问题带来很大的方便.第2课时列代数式教学目标【知识与技能】1.了解代数式的概念.2.能分析简单问题的数量关系,并用代数式表示,会正确书写代数式.【过程与方法】1.在探索现实世界数量关系的过程中,建立符号意识.2.初步体会数学中抽象概括的思维方法.【情感、态度与价值观】1.激发学生从事探索性活动的积极性.2.培养学生自主学习的习惯.教学重难点【重点】1.根据实际问题列出代数式.2.解释代数式的意义.【难点】根据实际问题列出代数式并解释代数式的意义.教学过程一、创设情境,引入新课如图为一阶梯纵截面,一只老鼠沿长方形的两边A—B—D的路线逃跑,一只猫同时沿阶桥(折线)A—C—D的路线去追,结果在距离C点0.6m的D处,猫捉住老鼠,已知老鼠的速度是猫的,你能求出阶梯A—C的长度吗?要想解决这个问题,让我们先来学习本节课的内容——代数式.师:请同学们自主探究,完成下面的问题:1.今日大米x元/千克,食用油y元/千克,妈妈买10千克大米、2千克食用油共需元.2.一隧道长s米,一列火车长180米,如果该火车穿过隧道所花的时间为t分,则列车的速度可表示为米/分.3.将三个边长为acm的正方体拼成一个长方体,则这个长方体的体积为cm3.【答案】 1.10x+2y 2. 3.3a3学生解答.教师点评、分析:像这样把数和字母加、减、乘、除及乘方等用运算符号连接而成的式子,我们称为代数式.注:①单独一个数或一个字母也是代数式;②运算符号是指加、减、乘、除、乘方、开方.代数式书写格式的规定,请同学们阅读课本.二、讲授新课1.指出下列各式中哪些是代数式,哪些不是代数式?(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.2.在式子xy+a,-3,abc,3÷a,a·5,(a+b)2中符合代数式书写要求的有个.学生思考并举手回答.师:通过以上讲解及练习,你知道什么是代数式吗?它与等式、不等式的区别是什么?书写要注意哪些要求?学生讨论交流.教师指导、评价.三、例题讲解【例1】设甲数为a,乙数为b,用代数式表示:(1)甲数的3倍与乙数的一半的差;(2)甲、乙两数和的平方.【答案】(1)3a-b. (2)(a+b)2.【例2】填空:(1)某商店上月收入x元,本月收入比上月的2倍还多5万元,该商店本月收入为元;(2)一件a元的衬衫,降价10%后,价格为元;(3)含盐10%的盐水800g,在其中加入盐ag后,盐水含盐量的百分率为.【答案】(1)(2x+50 000) (2)(1-10%)a (3)×100%=×100%【例3】说出下列代数式的意义:(1)圆珠笔每支售价a元,练习簿每本售价b元,那么3a+4b表示什么?(2)长方形的长、宽分别为a、b,那么a(b+1)表示什么?【答案】(1)3支圆珠笔与4本练习簿的总价格.(2)长为a、宽为b+1的长方形的面积.四、随堂练习用代数式表示:(1)比a的倒数多8的数是;(2)x的倒数与m除n的商的和是;(3)与a+b的和是30的数是;(4)m、n两个数平方和的3倍是.【答案】(1)+8 (2)+ (3)30-(a+b) (4)3(m2+n2)教师指导、评价.列代数式的一般方法有:(1)依据公式(关系)列代数式;(2)依据实际问题列代数式;(3)依据式子或图形探索规律列代数式.五、组织练习,巩固提高1.甲、乙两数差的平方与甲、乙两数平方的和的积.2.a与b的和除以a与b的差.3.x千克含盐为10%的盐水中含水千克.4.观察下列等式:39×41=402-1,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,……请把你发现的规律用字母表示出来:m·n= .生:()2-()2.5.师:你能用语言表述3a+5b的意义吗?学生思考并举手回答.教师示范:从两方面考虑:(1)根据运算顺序的要求去表述,如可以说“a的3倍与b的5倍的和”;(2)结合具体的实际情况去表述,如一本笔记本的价格为a元,一支铅笔的价格为b 元,3a+5b表示3本笔记本与5支铅笔的价格.六、变式训练用语言表述下列代数式的意义:1.2(a+b)2.ab学生思考、举手回答,教师指导、点评.七、课堂小结通过本课的学习,你获得了哪些新的知识?你认为自己有哪些方面的进步?第3课时单项式教学目标【知识与技能】1.理解单项式及单项式系数、次数的概念.2.会准确迅速地确定一个单项式的系数和次数.【过程与方法】通过用字母表示数和数量关系的学习,初步培养学生观察、分析、抽象、概括等思维能力和应用意识.【情感、态度与价值观】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.教学重难点【重点】掌握单项式及单项式的系数与次数的概念,并会准确迅速地确定一个单项式的系数和次数.【难点】单项式概念的建立.教学过程一、复习引入1.师:请用含字母的式子填空:(1)若正方形的边长为a,则正方形的面积是;(2)若三角形的一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方体的棱长,则正方体的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元.【答案】(1)a2(2)ah (3)x3(4)-m (5)12x2.师:请学生观察所列代数式包含哪些运算,有何共同运算特征.由小组讨论后,经小组推荐代表回答,教师适当点拨.二、讲授新课1.单项式.通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书单项式的概念,即由数与字母的乘积组成的代数式称为单项式,然后教师补充,单独一个数或一个字母也是单项式,如a,5.2.练习.师:请你们判断下列各代数式哪些是单项式.(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)【答案】略3.单项式的系数和次数.直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式次数的概念并板书.三、例题讲解教师板书例题.【例1】判断下列各代数式是否是单项式.若不是,请说明理由;若是,请指出它们的系数和次数.(1)x+1;(2);(3)πr2;(4)-a2B.【答案】(1)不是,因为原代数式中出现了加法运算;(2)不是,因为原代数式是1与x的商;(3)是,它的系数是π,次数是2;(4)是,它的系数是-,次数是3.【例2】下面各题的判断是否正确?(1)-7xy2的系数是7;(2)-x2y3与x3没有系数;(3)-ab3c2的次数是0+3+2;(4)-a3的系数是-1;(5)-32x2y3的次数是7;(6)πr2h的系数是.教师通过其中的反例练习及例题,强调应注意以下几点:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和不能省略.【例3】(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积;(4)用式子表示数n的相反数.【答案】(1)现价是每千克0.8p元;(2)去年的产量是mn件;(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·hcm3,即a2hcm3;(4)数n的相反数是-n.四、课堂练习(1)游戏:一个小组学生说出一个单项式,然后指定另一个小组的学生回答它的系数和次数,然后交换,看两小组哪一组回答得快而准.(2)用单项式填空,并指出它们的系数和次数:①每包书有12册,n包书有册;②一辆汽车的速度是vkm/h,它t小时行驶的路程为km;③一台电视机原价为a元,现9折出售,这台电视机的售价元;④长是0.9,宽为a的长方形面积是.【答案】①12n ②vt ③0.9a ④0.9a师:上题中③和④的结果一样,这说明用字母表示数后,同一个式子可以表示不同的含义,你能赋予0.9a一个含义吗?五、课堂小结教师引导学生理解并掌握单项式及单项式的系数,次数的概念.第4课时多项式教学目标【知识与技能】1.掌握多项式及其项数、常数项的概念和整式的概念.2.会判断一个式子是不是整式,会求整式的次数、系数、项和项数.【过程与方法】通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵和外延,有利于学生知识的迁移和知识结构体系的更新..【情感、态度与价值观】通过整式的学习,认识整式产生的背景,激发学生学好数学的信心.教学重难点【重点】掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数以及常数项等概念.【难点】多项式的次数.教学过程一、问题引入1.师:同学们,你们能列出下列问题中的代数式吗?教师板书题目.(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只.2.师:观察以上所得出的四个代数式与上节课所学单项式有何区别与联系.(1)2(a+b);(2)21+x;(3)a+b;2a+4b.学生分组回答,教师补充完善,从而归纳出多项式的特点.二、讲授新课板书由学生自己归纳得出的多项式的概念.上面这些代数式是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式x2-2x+5有三项,它们是x2,-2x,5.其中5是常数项.一个多项式含有几项,就叫做几项式.多项式里次数最高项的次数,就是这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号.(教师介绍多项式的项、次数以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想)整式是单项式和多项式的统称.三、例题讲解教师出示例题.【例1】判断:(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.(这两个判断能使学生清楚地理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数)【例2】指出下列多项式的项和次数,各是几次几项式:(1)3x-1+3x2;(2)4x3+2x-2y2.(让学生口答,老师在黑板上规范书写格式.应特别提醒学生注意多项式的项包括前面的符号,多项式的次数应为最高次项的次数.)【例3】(1)一条河的水流速度是2.5km/h,船在静水中的速度是vkm/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球,5个排球,2个足球共需要的钱数;(3)如图1(图中长度单位:cm),用式子表示三角尺的面积;(4)图2是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.分析(1)船在河流中行驶时,船的速度需要分两种情况讨论:顺水行驶时,船的速度=船在静水中的速度+水流速度;逆水行驶时,船的速度=船在静水中的速度-水流速度.解:(1)船在这条河中顺水行驶的速度是(v+2.5)km/h,逆水行驶的速度是(v-2.5)km/h.(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元.(3)三角尺的面积等于三角形的面积减去圆的面积.根据图中的数据,得三角形的面积是abcm2,圆的面积是πr2cm2.因此三角尺的面积(单位:cm2)是`ab-πr2.(4)住宅的建筑面积等于四个长方形面积的和,根据图中标出的尺寸,可得这所住宅的建筑面积(单位:m2)是x2+2x+18.从上面的例子可以看出,用字母表示数,字母和数一样可以参与运算,可用式子把数量关系简明地表示出来.学生完成,教师点评.四、课堂练习(1)填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项.(2)已知代数式3x n-(m-1)x+1是关于字母x的三次二项式,求m、n的值.【答案】(1)三三- -ab 1-a2b、-ab、1 (2)m=1 n=3五、课堂小结1.理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.2.这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充)第5课时求代数式的值教学目标【知识与技能】1.会求代数式的值,感受代数式求值可以理解成一个转换过程或某种算法.2.能解释代数式值的实际意义.3.根据代数式求值推断代数式所反映的规律.【过程与方法】学会从数学的角度提出问题、理解问题,能综合运用所学的知识和技能解决问题.【情感、态度与价值观】初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.教学重难点【重点】会求代数式的值.【难点】利用代数式求值推断代数式所反映的规律.教学过程一、创设情境,引入新课据报载,一位医生研究得出由父母身高预测子女身高的公式:若父亲的身高为a米,母亲的身高为b米,则儿子成年的身高为×1.08米,女儿的身高为米.七年级男生张小华父亲的身高为1.76米,母亲身高为1.60米,请你预测张小华成年后的身高是多少.你能通过你父母的身高预测自己成年后的身高吗?学生计算预测.师:本节课我们来学习求代数式的值.活动一代数式的值问题展示:请同学们回答下列问题:1.下图是一组数值转换机,请写出输出结果.2.你能写出下图的转换步骤吗?学生举手回答.师:我们知道,表示数的字母具有任意性和确定性,如6x-3中的x可取任意有理数,当给出未知数(字母)的值时,如x=5,则6x-3就是一个确定的数.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.二、讲授新课1.按图(1)输入-2,0,0.26,输出的结果分别为多少?按图(2)输入-2,0,0.26,输出的结果又分别为多少?2. 根据所给的x的值,求-5x+1的值.(1)x=4; (2)x=-2.生解答:(1)当x=4时,原式=-5×4+1=-19;(2)当x=-2时,原式=-5×(-2)+1=11.师评:当代入负值时,要用括号把负数括起来.3.一项调查研究显示:一个10岁~50岁的人,每天所需的睡眠时间th与他的年龄n岁之间的关系为t=h,如30岁的人每天所需的睡眠时间为t==8(h).算一算,你每天需要多少睡眠时间.学生计算回答.4.若x+2y2+5的值为7,求代数式3x+6y2+4的值.活动二巩固新知例:堤坝的横截面是梯形,测得梯形上底a=18m,下底b=36m,高h=20m,求这个截面的面积.解:梯形面积公式S=(a+b)h.将a=18,b=36,h=20代入上面的公式,得S=×(18+36)×20=540(m2).答:堤坝的横截面面积是540m2.师评:求代数式的值的第一步是“代入”即用数值替代代数式里的字母,其他的运算符号及原来的数字都不能改变.第二步是“求值”,即按照代数式指明的运算计算出结果.三、例题讲解【例1】如图,某堤坝的横截面是梯形,测得梯形上底a=18m,下底b=36m,高h=20m,求这个截面的面积.【解】梯形面积公式是S=(a+b)h.将a=18,b=36,h=20代入上面公式,得S=(a+b)h=×(18+36)×20=540(m2)【例2】当x=-3,y=2时.求下列代数式的值:(1)x2-y2;(2)(x-y)2.【解】(1)x2-y2=(-3)2-22=9-4=5.(2)(x-y)2=(-3-2)2=(-5)2=25.四、变式训练一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L.1.用代数式表示行驶xh后,油箱中的剩余油量Q= .2.计算行驶2h,5h,8h后,油箱中的剩余油量.3.这里,能求x=12h时剩余油量Q的值吗?学生解答.师评:代数式的值是由所含字母的值确定的,是随代数式中字母的取值变化而变化的,字母取不同的值,代数式的值可能不同,也可能相同.代数式中字母的取值不能取使代数式和它表示的实际问题失去意义的值.活动(三) 合作探究填写下表,看谁做得又对又快.n12345678…5n+6…n2…1.通过观察计算结果,随着n值逐渐变大,两个代数式的值如何变化?2.估计一下,哪个代数式的值先超过100?学生计算,回答.师评:求出代数式的值后,根据值的变化趋势还可以进行预测,推断代数式所反映的规律.五、随堂练习1.某市为鼓励市民节约用水,对自来水用户按如下标准收费,若每月用户用水不超过15m3,则每立方米水价按a元收费,若超过15m3,则超过部分每立方米按2a元收费.(1)某户居民在一个月内用水n(n≥15)立方米,那么他该月应缴水费多少元?(2)该户居民在10月份用水35立方米,11月份用水28m3,12月份用水40m3.他在这三个月中各缴水费多少元?2.已知m2+n-1=3,求m2+n-6的值.【答案】 1.15a+2a(n-15) 55a 41a 65a 2.-2六、课堂小结1.本节课学习了哪些内容?(1)“代数式的值”的定义;(2)求代数式的值.2.求代数式的值应分哪几步?应注意哪些问题?步骤:(1)代入;(2)计算.注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.。
2.1代数式的概念和列代数式(第2课时列代数式)(教学课件)-七年级数学上册(湘教版2024)

那么儿子和女儿的身高有多高?
新知探究
观察右图,并完成下表:
六边形的个数
图案
所需火柴(根)
1
6
2
6+5=11
3
6 + 5 × 2=26
4
21
6 + 5 × (4-1) =______
…
…
…
m(m为正整数)
…
6 + 5 × (m-1) =______
课本例题
例4 填空:
4.07
超过 260m3 的部分
6.07
(1) 若某个 5 人及以下的家庭一年总用水量为 a m3,其中 a 不超过
180,则该家庭一年的水费是多少?
解 (1) 由于一年总用水量为 a m3,且 a 不超过 180,因而其价
格为每立方米 2.07 元,故这样的家庭一年的水费为 2.07a 元.
(2) 若某个 5 人及以下的家庭前十个月用水量为 180 m3,后两个月用
++−
5 本,则剩余3 本,由此可知学生人数为_________.
例5 为了增强公民节水意识,某市鼓励居民合理利用水资源,对
自来水的水费实行阶梯水价,并实行“一户一表”计费. 对于 5 人
及以下的家庭,规定如下:
每户每年用水量
水价/(元/m3)
180 m3 及以下
2.07
超过 180 m3 但不超过 260m3 的部分
物不超过20 kg时,去掉重物后,弹簧能恢复原状.)
物体质量
m(kg)
0
弹簧长度l
(cm)
6 6+0.5 6+1 6+1.5
沪科版七年级上2.1代数式教案(共3课时)

2.1代数式(第1课时,共3课时)撰写人:新博初中 夏明荣【教学目标】1.在具体情境中进一步体验字母表示数的意义,理解代数式的有关概念,能解释一些简单代数式的实际背景或几何意义,发展符号感;2.掌握代数式的书写规范,能把文字语言表述的数量关系用代数式表示出来;3.经历列代数式的过程,体会代数式可以表示数量关系,培养学生观察、分析和抽象思维能力。
【教学重点】1.说出代数式所表达的数量关系;2.根据语言文字表述的数量关系写出规范的代数式。
【教学难点】正确理解题意,从中找出数量关系中的运算顺序,并能准确地写成代数式。
【教学过程】一、复习回顾,引入新课:1.上节课我们共同学习了“用字母表示数”,我们知道了用字母表示数有许多优点,实际上用字母表示数就是代数。
让我们共同回忆一下上一节课我们用字母代替数得到了哪些式子。
2190,,2,21,4,3n a b k k a r h π++ 2.设甲数为x ,你能用含x 的式子表示乙数吗?⑴、乙数比甲数大5; ⑵、乙数比甲数的2倍小3;⑶、乙数比甲数的倒数小7; ⑷、乙数比甲数大16% 。
二、合作交流,探索新知:1.观察上面所列式子,这些式子有什么特征?2.代数式:用加、减、乘(乘方)、除等运算符号把数和表示数的字母连接而成的式子。
注意:单独的一个数字或字母也是代数式。
强调:代数式与等式、不等式的联系和区别。
3.代数式的书写格式:⑴、数字与字母、字母与字母相乘,乘号可以写成“●”或省略不写,数字与字母相乘时,数字写在字母的前面,字母与字母相乘时,相同的字母要写成幂的形式,数字与数字相乘时,乘号不能省略;⑵、如果式子中出现除法一般写成分数形式;⑶、如果字母前面的数字是带分数,要把它化成假分数。
⑷、代数式后有单位,和、差形式的代数式应添上括号。
4.你能完成吗?⑴、填一填:(详见教材第60页 例1)⑵、练一练:(详见教材第61页 练习)5.代数式的意义:代数式中的字母可以表示很多的量,字母代表不同的意义,代数式含义也不相同,一般来讲代数式的意义可分为两部分,一是代数意义,就是按运算顺序读出来,二是几何意义。
最新沪科版七年级数学上册《代数式》全课时教学设计(精品教案)
第2章整式加减2.1 代数式第1课时用字母表示数教学目标【知识与技能】经历探索规律并用字母表示数的过程,能用字母表示以前学过的运算律和计算公式.【过程与方法】体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.【情感、态度与价值观】激发强烈的求知欲,培养积极探索,勇于创新的精神和团结合作的习惯.教学重难点【重点】用字母表示数的意义及用字母表示规律.【难点】用字母表示规律.教学过程一、创设情境,引入新课国庆节到了,妈妈要加班,上班前嘱咐读初一的儿子方舟在家里打扫卫生,方舟按妈妈的要求做完后,坐在窗边想着想买的玩具,可又愁自己没钱,忽然,他计上心来,趁妈妈下班回家之前在桌子上留了一张纸条,然后躲在房间里看妈妈的动静.妈妈回家看到纸条是这样写的:“拖地收3元,叠被子收2元,擦窗户收4元,丢垃圾袋收2元,共计11元”.妈妈看后,一言不发,拿笔在纸条后加上几行字:“吃饭收x元,穿衣收y元,带你去看病收z元,关心收a元……共计应收b元”.写完后就到厨房做饭去了,方舟溜出来一看,心生惭愧,赶忙收起了纸条.你知道妈妈写的x元、y元……是多少吗?方舟为什么惭愧?今天这节课,我们就来学习用字母表示数.活动(一) 问题1:2003年10月15日,我国成功发射了“神舟五号”载人飞船,它在椭圆轨道上环绕地球飞过14周,历时21h.(1)该飞船绕地球飞行一周需要多少分?(2)若绕地球飞行n周,需多少分?生:(1)=90(分) (2)×n=90n(分).问题2:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数,如果用k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.整数:…-3 -2 -1 0 1 2 3 …k …偶数:…-6 -4 -2 0 2 4 6 …( ) …奇数:…-7 -5 -3 -1 0 1 3 5 …( ) …学生思考并举手回答.教师通过探究,我们发现字母可以表示任何一个数.二、讲授新课1.你知道扑克牌中的字母表示什么数吗?2.一则招领启事是这样写的:“小明同学今天在操场上拾到人民币n元,请失主到政教处认领”.你知道这里为什么要用字母n吗?活动(二) 问题3:在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?请同学们填写下表:运算定律字母表示语言表述加法交换律a+b=b+a加法结合律乘法交换律乘法结合律乘法分配律学生讨论交流并举手回答.师:请同学们比较一下,哪一种表示方法更简明、更有利于掌握、交流呢?学生回答.师:通过问题3,使我们认识到正确使用字母表示所学过的运算律、公式和法则既简单又明了.三、举例应用1.用字母表示下列法则:(1)有理数的减法法则;(2)分数的加法法则.2.你会填下表中各图形的周长和面积公式吗?名称 图形用字母表示公式周长(C) 面积(S) 正方形C=4a S=a 2 三角形C=a+b+cS=ah梯形C=a+b+c+d S=(a+ b)h 圆C=2πrS=πr 2活动(三) 问题4:(1)如图所示,用长方形框任意框出月历中的三个数之间有什么关系?请用一个等式表示这个关系.(2)如图所示,若用正方形框任意框出月历中的四个数,我们又能用什么等式表示呢?学生观察、探究并写出结果.四、随堂练习我们按如图所示的摆法摆小正方形,记录你所搭的正方形的个数和所用的火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为.2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为.3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为.4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为.【答案】 1.4+(n-1)×32n+n+(n+1) 3.4n-(n-1) 4.1+3n 五、课堂小结这节课我们通过活动探索规律,得出规律,并用含字母的式子表示出来,使我们知道:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数字和公式,这样给我们研究问题带来很大的方便.第2课时列代数式教学目标【知识与技能】1.了解代数式的概念.2.能分析简单问题的数量关系,并用代数式表示,会正确书写代数式.【过程与方法】1.在探索现实世界数量关系的过程中,建立符号意识.2.初步体会数学中抽象概括的思维方法.【情感、态度与价值观】1.激发学生从事探索性活动的积极性.2.培养学生自主学习的习惯.教学重难点【重点】1.根据实际问题列出代数式.2.解释代数式的意义.【难点】根据实际问题列出代数式并解释代数式的意义.教学过程一、创设情境,引入新课如图为一阶梯纵截面,一只老鼠沿长方形的两边A—B—D的路线逃跑,一只猫同时沿阶桥(折线)A—C—D的路线去追,结果在距离C点0.6m的D处,猫捉住老鼠,已知老鼠的速度是猫的,你能求出阶梯A—C的长度吗?要想解决这个问题,让我们先来学习本节课的内容——代数式.师:请同学们自主探究,完成下面的问题:1.今日大米x元/千克,食用油y元/千克,妈妈买10千克大米、2千克食用油共需元.2.一隧道长s米,一列火车长180米,如果该火车穿过隧道所花的时间为t分,则列车的速度可表示为米/分.3.将三个边长为acm的正方体拼成一个长方体,则这个长方体的体积为cm3.【答案】 1.10x+2y 2. 3.3a3学生解答.教师点评、分析:像这样把数和字母加、减、乘、除及乘方等用运算符号连接而成的式子,我们称为代数式.注:①单独一个数或一个字母也是代数式;②运算符号是指加、减、乘、除、乘方、开方.代数式书写格式的规定,请同学们阅读课本.二、讲授新课1.指出下列各式中哪些是代数式,哪些不是代数式?(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.2.在式子xy+a,-3,abc,3÷a,a·5,(a+b)2中符合代数式书写要求的有个.学生思考并举手回答.师:通过以上讲解及练习,你知道什么是代数式吗?它与等式、不等式的区别是什么?书写要注意哪些要求?学生讨论交流.教师指导、评价.三、例题讲解【例1】设甲数为a,乙数为b,用代数式表示:(1)甲数的3倍与乙数的一半的差;(2)甲、乙两数和的平方.【答案】(1)3a-b. (2)(a+b)2.【例2】填空:(1)某商店上月收入x元,本月收入比上月的2倍还多5万元,该商店本月收入为元;(2)一件a元的衬衫,降价10%后,价格为元;(3)含盐10%的盐水800g,在其中加入盐ag后,盐水含盐量的百分率为.【答案】(1)(2x+50 000) (2)(1-10%)a (3)×100%=×100%【例3】说出下列代数式的意义:(1)圆珠笔每支售价a元,练习簿每本售价b元,那么3a+4b表示什么?(2)长方形的长、宽分别为a、b,那么a(b+1)表示什么?【答案】(1)3支圆珠笔与4本练习簿的总价格.(2)长为a、宽为b+1的长方形的面积.四、随堂练习用代数式表示:(1)比a的倒数多8的数是;(2)x的倒数与m除n的商的和是;(3)与a+b的和是30的数是;(4)m、n两个数平方和的3倍是.【答案】(1)+8 (2)+ (3)30-(a+b) (4)3(m2+n2)教师指导、评价.列代数式的一般方法有:(1)依据公式(关系)列代数式;(2)依据实际问题列代数式;(3)依据式子或图形探索规律列代数式.五、组织练习,巩固提高1.甲、乙两数差的平方与甲、乙两数平方的和的积.2.a与b的和除以a与b的差.3.x千克含盐为10%的盐水中含水千克.4.观察下列等式:39×41=402-1,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,……请把你发现的规律用字母表示出来:m·n=.生:()2-()2.5.师:你能用语言表述3a+5b的意义吗?学生思考并举手回答.教师示范:从两方面考虑:(1)根据运算顺序的要求去表述,如可以说“a的3倍与b的5倍的和”;(2)结合具体的实际情况去表述,如一本笔记本的价格为a元,一支铅笔的价格为b元,3a+5b表示3本笔记本与5支铅笔的价格.六、变式训练用语言表述下列代数式的意义:1.2(a+b)2.ab学生思考、举手回答,教师指导、点评.七、课堂小结通过本课的学习,你获得了哪些新的知识?你认为自己有哪些方面的进步?第3课时单项式教学目标【知识与技能】1.理解单项式及单项式系数、次数的概念.2.会准确迅速地确定一个单项式的系数和次数.【过程与方法】通过用字母表示数和数量关系的学习,初步培养学生观察、分析、抽象、概括等思维能力和应用意识.【情感、态度与价值观】通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.教学重难点【重点】掌握单项式及单项式的系数与次数的概念,并会准确迅速地确定一个单项式的系数和次数.【难点】单项式概念的建立.教学过程一、复习引入1.师:请用含字母的式子填空:(1)若正方形的边长为a,则正方形的面积是;(2)若三角形的一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方体的棱长,则正方体的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元.【答案】(1)a2(2)ah (3)x3(4)-m (5)12x2.师:请学生观察所列代数式包含哪些运算,有何共同运算特征.由小组讨论后,经小组推荐代表回答,教师适当点拨.二、讲授新课1.单项式.通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书单项式的概念,即由数与字母的乘积组成的代数式称为单项式,然后教师补充,单独一个数或一个字母也是单项式,如a,5.2.练习.师:请你们判断下列各代数式哪些是单项式.(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)【答案】略3.单项式的系数和次数.直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式次数的概念并板书. 三、例题讲解教师板书例题.【例1】判断下列各代数式是否是单项式.若不是,请说明理由;若是,请指出它们的系数和次数.(1)x+1;(2);(3)πr2;(4)-a2B.【答案】(1)不是,因为原代数式中出现了加法运算;(2)不是,因为原代数式是1与x的商;(3)是,它的系数是π,次数是2;(4)是,它的系数是-,次数是3.【例2】下面各题的判断是否正确?(1)-7xy2的系数是7;(2)-x2y3与x3没有系数;(3)-ab3c2的次数是0+3+2;(4)-a3的系数是-1;(5)-32x2y3的次数是7;(6)πr2h的系数是.教师通过其中的反例练习及例题,强调应注意以下几点:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和不能省略.【例3】(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积;(4)用式子表示数n的相反数.【答案】(1)现价是每千克0.8p元;(2)去年的产量是mn件;(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·hcm3,即a2hcm3;(4)数n的相反数是-n.四、课堂练习(1)游戏:一个小组学生说出一个单项式,然后指定另一个小组的学生回答它的系数和次数,然后交换,看两小组哪一组回答得快而准.(2)用单项式填空,并指出它们的系数和次数:①每包书有12册,n包书有册;②一辆汽车的速度是vkm/h,它t小时行驶的路程为km;③一台电视机原价为a元,现9折出售,这台电视机的售价元;④长是0.9,宽为a的长方形面积是.【答案】①12n ②vt ③0.9a ④0.9a师:上题中③和④的结果一样,这说明用字母表示数后,同一个式子可以表示不同的含义,你能赋予0.9a一个含义吗?五、课堂小结教师引导学生理解并掌握单项式及单项式的系数,次数的概念.第4课时多项式教学目标【知识与技能】1.掌握多项式及其项数、常数项的概念和整式的概念.2.会判断一个式子是不是整式,会求整式的次数、系数、项和项数.【过程与方法】通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵和外延,有利于学生知识的迁移和知识结构体系的更新..【情感、态度与价值观】通过整式的学习,认识整式产生的背景,激发学生学好数学的信心.教学重难点【重点】掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数以及常数项等概念.【难点】多项式的次数.教学过程一、问题引入1.师:同学们,你们能列出下列问题中的代数式吗?教师板书题目.(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只.2.师:观察以上所得出的四个代数式与上节课所学单项式有何区别与联系.(1)2(a+b);(2)21+x;(3)a+b;2a+4b.学生分组回答,教师补充完善,从而归纳出多项式的特点. 二、讲授新课板书由学生自己归纳得出的多项式的概念.上面这些代数式是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式x2-2x+5有三项,它们是x2,-2x,5.其中5是常数项.一个多项式含有几项,就叫做几项式.多项式里次数最高项的次数,就是这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号.(教师介绍多项式的项、次数以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想)整式是单项式和多项式的统称.三、例题讲解教师出示例题.【例1】判断:(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.(这两个判断能使学生清楚地理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b 和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数)【例2】指出下列多项式的项和次数,各是几次几项式:(1)3x-1+3x2;(2)4x3+2x-2y2.(让学生口答,老师在黑板上规范书写格式.应特别提醒学生注意多项式的项包括前面的符号,多项式的次数应为最高次项的次数.)【例3】(1)一条河的水流速度是2.5km/h,船在静水中的速度是vkm/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z 元,用式子表示买3个篮球,5个排球,2个足球共需要的钱数;(3)如图1(图中长度单位:cm),用式子表示三角尺的面积;(4)图2是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.分析(1)船在河流中行驶时,船的速度需要分两种情况讨论: 顺水行驶时,船的速度=船在静水中的速度+水流速度;逆水行驶时,船的速度=船在静水中的速度-水流速度.解:(1)船在这条河中顺水行驶的速度是(v+2.5)km/h,逆水行驶的速度是(v-2.5)km/h.(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元.(3)三角尺的面积等于三角形的面积减去圆的面积.根据图中的数据,得三角形的面积是abcm2,圆的面积是πr2cm2.因此三角尺的面积(单位:cm2)是`ab-πr2.(4)住宅的建筑面积等于四个长方形面积的和,根据图中标出的尺寸,可得这所住宅的建筑面积(单位:m2)是x2+2x+18.从上面的例子可以看出,用字母表示数,字母和数一样可以参与运算,可用式子把数量关系简明地表示出来.学生完成,教师点评.四、课堂练习(1)填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项.(2)已知代数式3x n-(m-1)x+1是关于字母x的三次二项式,求m、n 的值.【答案】(1)三三- -ab 1-a2b、-ab、1 (2)m=1 n=3五、课堂小结1.理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.2.这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充)第5课时求代数式的值教学目标【知识与技能】1.会求代数式的值,感受代数式求值可以理解成一个转换过程或某种算法.2.能解释代数式值的实际意义.3.根据代数式求值推断代数式所反映的规律.【过程与方法】学会从数学的角度提出问题、理解问题,能综合运用所学的知识和技能解决问题.【情感、态度与价值观】初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.教学重难点【重点】会求代数式的值.【难点】利用代数式求值推断代数式所反映的规律.教学过程一、创设情境,引入新课据报载,一位医生研究得出由父母身高预测子女身高的公式:若父亲的身高为a米,母亲的身高为b米,则儿子成年的身高为×1.08米,女儿的身高为米.七年级男生张小华父亲的身高为1.76米,母亲身高为1.60米,请你预测张小华成年后的身高是多少.你能通过你父母的身高预测自己成年后的身高吗?学生计算预测.师:本节课我们来学习求代数式的值.活动一代数式的值问题展示:请同学们回答下列问题:1.下图是一组数值转换机,请写出输出结果.2.你能写出下图的转换步骤吗?学生举手回答.师:我们知道,表示数的字母具有任意性和确定性,如6x-3中的x 可取任意有理数,当给出未知数(字母)的值时,如x=5,则6x-3就是一个确定的数.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.二、讲授新课1.按图(1)输入-2,0,0.26,输出的结果分别为多少?按图(2)输入-2,0,0.26,输出的结果又分别为多少?2. 根据所给的x的值,求-5x+1的值.(1)x=4; (2)x=-2.生解答:(1)当x=4时,原式=-5×4+1=-19;(2)当x=-2时,原式=-5×(-2)+1=11.师评:当代入负值时,要用括号把负数括起来.3.一项调查研究显示:一个10岁~50岁的人,每天所需的睡眠时间th与他的年龄n岁之间的关系为t=h,如30岁的人每天所需的睡眠时间为t==8(h).算一算,你每天需要多少睡眠时间.学生计算回答.4.若x+2y2+5的值为7,求代数式3x+6y2+4的值.活动二巩固新知例:堤坝的横截面是梯形,测得梯形上底a=18m,下底b=36m,高h=20m,求这个截面的面积.解:梯形面积公式S=(a+b)h.将a=18,b=36,h=20代入上面的公式,得S=×(18+36)×20=540(m2).答:堤坝的横截面面积是540m2.师评:求代数式的值的第一步是“代入”即用数值替代代数式里的字母,其他的运算符号及原来的数字都不能改变.第二步是“求值”,即按照代数式指明的运算计算出结果.三、例题讲解【例1】如图,某堤坝的横截面是梯形,测得梯形上底a=18m,下底b=36m,高h=20m,求这个截面的面积.【解】梯形面积公式是S=(a+b)h.将a=18,b=36,h=20代入上面公式,得S=(a+b)h=×(18+36)×20=540(m2)【例2】当x=-3,y=2时.求下列代数式的值:(1)x2-y2;(2)(x-y)2.【解】(1)x2-y2=(-3)2-22=9-4=5.(2)(x-y)2=(-3-2)2=(-5)2=25.四、变式训练一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L.1.用代数式表示行驶xh后,油箱中的剩余油量Q= .2.计算行驶2h,5h,8h后,油箱中的剩余油量.3.这里,能求x=12h时剩余油量Q的值吗?学生解答.师评:代数式的值是由所含字母的值确定的,是随代数式中字母的取值变化而变化的,字母取不同的值,代数式的值可能不同,也可能相同.代数式中字母的取值不能取使代数式和它表示的实际问题失去意义的值.活动(三) 合作探究填写下表,看谁做得又对又快.n 1 2 3 4 5 6 7 8 …5n+6 …n2…1.通过观察计算结果,随着n值逐渐变大,两个代数式的值如何变化?2.估计一下,哪个代数式的值先超过100?学生计算,回答.师评:求出代数式的值后,根据值的变化趋势还可以进行预测,推断代数式所反映的规律.五、随堂练习1.某市为鼓励市民节约用水,对自来水用户按如下标准收费,若每月用户用水不超过15m3,则每立方米水价按a元收费,若超过15m3,则超过部分每立方米按2a元收费.(1)某户居民在一个月内用水n(n≥15)立方米,那么他该月应缴水费多少元?(2)该户居民在10月份用水35立方米,11月份用水28m3,12月份用水40m3.他在这三个月中各缴水费多少元?2.已知m2+n-1=3,求m2+n-6的值.【答案】 1.15a+2a(n-15) 55a 41a 65a 2.-2六、课堂小结1.本节课学习了哪些内容?(1)“代数式的值”的定义;(2)求代数式的值.2.求代数式的值应分哪几步?应注意哪些问题?步骤:(1)代入;(2)计算.注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.。
沪科版七年级数学上册教学设计:2.1代数式教学设计
沪科版七年级数学上册教学设计:2.1代数式教学设计一. 教材分析本节课的内容是沪科版七年级数学上册的2.1代数式。
代数式是数学中的基本概念,它包括数字、字母和运算符号的组合,表示未知数的值或数量关系。
本节课的教学内容主要包括代数式的定义、分类和简单运算。
通过本节课的学习,学生能够理解代数式的概念,掌握代数式的分类和简单运算方法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数字、字母和运算符号有一定的了解。
但是,对于代数式的概念和分类,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握代数式的概念和分类。
同时,学生可能对于代数式的运算方法有一定的困惑,需要通过实例和练习,让学生逐步掌握代数式的运算方法。
三. 教学目标1.知识与技能:理解代数式的概念,掌握代数式的分类和简单运算方法。
2.过程与方法:通过观察、分析和操作,培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:代数式的定义、分类和简单运算。
2.难点:代数式的运算方法的理解和应用。
五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣和思考,引导学生理解和掌握代数式的概念和分类。
2.演示教学法:通过实物展示和动画演示,让学生直观地理解代数式的运算方法。
3.练习教学法:通过大量的练习和操作,让学生巩固和提高代数式的运算能力。
六. 教学准备1.教学PPT:制作代数式的定义、分类和运算方法的PPT,配以图片和动画,增加学生的兴趣和理解。
2.练习题:准备一些代数式的练习题,包括选择题、填空题和解答题,用于巩固和提高学生的代数式运算能力。
七. 教学过程1.导入(5分钟)利用生活实例或数学故事,引入代数式的概念,引发学生的兴趣和思考。
例如,可以用“小明买了x本书,每本书的价格是y元,请问他一共花了多少钱?”的问题,引导学生思考和理解代数式的概念。
沪科版七年级数学上册教学设计:2.1.2代数式
一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别并正确书写基本的代数式;
2.掌握代数式的性质,如交换律、结合律、分配律等,并能够灵活运用;
3.能够运用代数式解决简单的实际问题,提高学生的数学应用能力;
4.学会使用代数式进行推理和计算,培养学生的逻辑思维和运算能力。
-如何简化代数式?
2.教师指导:在学生讨论过程中,教师巡回指导,引导学生运用所学知识,解决讨论中的问题。
3.小组汇报:各小组汇报讨论成果,其他小组补充,教师点评并总结。
(四)课堂练习,500字
1.教学活动:教师设计不同难度的练习题,让学生当堂完成。
2.练习题类型:填空题、选择题、解答题等,涵盖本节课所学内容。
4.课后作业:布置与本节课相关的课后作业,巩固所学知识,培养学生独立解决问题的能力。
五、作业布置
为了巩固学生对代数式的理解和运用,特布置以下作业:
1.请同学们结合本节课所学内容,选取一个生活中的实际问题,用代数式表示出来,并解释其意义。
2.完成课本第25页的练习题2、3、4,其中第4题要求学生简化和计算代数式。
4.针对本节课所学内容,家长与孩子一起探讨以下问题:
-代数式在生活中的具体应用;
-举例说明代数式的性质及其在解决问题中的作用;
-家长与孩子共同完成一道代数式的简化与计算题目。
5.预习下一节课的内容:代数式的运算规则。
作业要求:
1.作业需独立完成,切勿抄袭;
2.书写工整,表述清晰,体现数学逻辑性;
3.家长签名,确认孩子完成作业的情况;
4.教师将根据作业完成情况进行评价,关注学生的进步与不足。
(三)情感态度与价值观
沪科版七年级上2.1.3代数式的值课件
=3 x 2 y +4
2
(逆用乘法分配律)
3 2 4 10
相同的代数式可以看作一个字母——整体代入
思考
一辆卡车在行驶时平均每小时耗油8L,行驶前油 箱中有油80L. ⑴用代数式表示行驶xh后,油箱中的剩余油量 80—8x ; Q=______ ⑵计算行驶2h,5h,8h后,油箱中的剩余油量。 ⑶这里,能求x=12h时剩余油量Q的值吗?
问题1:“运算关系”指的是什么?
先乘方,后乘除,再加减;如有括号,先进行括号内 运算。
问题2:代数式与代数式的值有什么区 别和联系?
代数式表示一般性,代数式的值表示特殊性。他们之 间的联系是:代数式的值是代数式解决问题中的一个 特例。
注意:
代数式中的字母在取值时
必须保证在取值后代数式有意义。如:在代 数式 中,字母a不能取–3。因为若 a= –3时,代数式 的分母零,代数式 无意义。
当x 3.5时, 4 x 5 4 (3.5) 5 9
求代数式的值的步骤: (1)写出条件:解:当……时, (2)抄写代数式 (3)代入数值 (4)计算出结果
1 1 当x 2 时, 4 x 5 4 (2 ) 5 15 2 2
例2.根据下列各组x、y 的值,分别求出代数 2 2 2 2 式 x 2xy y 与 x 2xy y 的值: (1)x=2,y=3;(2)x=-2,y=-4。
2 2
2 2
露一手:
2 1 判断题: 1 1 x 3x 2 3 3 ( )①当 2 时, 4 2
;
( )②当
x 2
时,
3x 2 3 22 1
如何改正呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力提升练 9.[宣城期末]某商店举办促销活动,促销的方法是将原价 x 元的
衣服以45x-15元出售,则下列说法中,能正确表达该商店 促销方法的是( B ) A.原价降价 15 元后再打 8 折 B.原价打 8 折后再降价 15 元 C.原价降价 15 元后再打 2 折 D.原价打 2 折后再降价 15 元
素养核心练 12.[滁州全椒期中]如图,一个 3×2 的长方形(即长为 3,宽为 2)
可以用两种不同方式分割成 3 个或 6 个边长是正整数的小正 方形,即小正方形的个数最多是 6 个,最少是 3 个.
(1)一个 5×2 的长方形用不同的方式分割后,小正方形的个数最 多是多少个?最少是多少个?
素养核心练
解:一个笔记本和一支钢笔的单价分别为 a 元和 b 元, 那么 3(a+b)表示买 3 个笔记本和 3 支钢笔需要的钱数.
基础巩固练
(2)1x5;
解:某糖果的价格为 x 元/千克,
那么15表示 x
15
元能买该糖果的质量.
(3)5p+3q.
已知苹果每千克 p 元,梨每千克 q 元,那么 5p+3q 表示买 5 千 克苹果和 3 千克梨一共需要的钱数.
展的促销活动中,该商品按 8 折销售可获利( C )
A.(8x-400)元
B.(400×8-x)元
C.(0.8x-400)元D.(400×0.8-x)元
基础巩固练
6.(1)“a 的平方的32倍与 b 的16的和”用代数式表示为___32_a_2+__16_b___; (2)“x 的 2 倍与 y 的平方的差”用代数式表示为___2__x_-__y2______.
基础巩固练
1.下列各式不是代数式的是( C )
A.x+y-z
B.75%x
C.a>2
D.0
基础巩固练
2.[安徽蒙城期中]下列式子符合代数式书写格式的是( B )
A.215xy
B.12a
C.2÷m
D.mn·7
基础巩固练
3.[易错题]在式子:3xy-2,3÷a,12(a+b),a·5,-314abc 中, 符合代数式书写要求的有( B ) A.1 个 B.2 个 C.3 个 D.4 个
核心必知 2.代数式的书写规则: (1)数字与字母相乘时,___数__字___写在__字__母____前,但数字与数字
相乘时,“×”号不能省; (2)字母与字母、数字或字母与括号相乘时,乘号通常省略不写,
相同的字母的积一般写成___幂_____的形式; (3)遇到除法时,一般写成分数形式; (4)带分数与字母相乘时,通常把带分数化成__假__分__数______.
沪科版 七年级上
第2章 整式加减
2.1 代数式 第2课时 代数式
习题链接
提示:点击 进入习题
核心必知 2 (1)数字;字母 (2)幂 (4)假分数
答案显示
1C
2B
3B
4B
5C
6 (1)32a2+16b (2)2x-y2
7C
8 见习题
9B
10 见习题 11 见习题 12 见习题
核心必知
1.用加、减、乘、除及乘方等运算符号把数或表示数的字母连 接而成的式子,叫做代数式.单个的数或字母也是代数式.
能力提升练 (3)若此人原来从甲地到乙地的速度为 20 km/h,依(2)中的速度变
化后,此人从甲地到乙地少用多长时间?
解:当速度为 20 km/h 时,所用时间为12000=5(h),当每小时多 行 5 km 时,所用时间为210+ 005=4(h).5-4=1(h),所以速度变化 后,此人从甲地到乙地少用 1 h.
基础巩固练
4.下面所列代数式正确的是( B ) A.a 减去 b 的平方的差:(a-b)2 B.m,n 的和乘 m,n 的差的积:(m+n)(m-n) C.x 的倒数与 y 的积:x1y D.与 a 的 2 倍的和等于 b 的数:b+2a
基础巩固练
5.[芜湖南陵期末]某商品标价为 x 元,进价为 400 元,在商场开
能力提升练 10.用代数式表示. (1)a 的平方与 b 的 2 倍的差; 解: a2-2b. (2)m 与 n 的和的平方与 m 与 n 的积的和; (m+n)2+mn. (3)x 的 2 倍的三分之一与 y 的一半的差; 23x-12y. (4)比 a 除以 b 的商的 2 倍小 4 的数.2ba-4.
解:一个 5×2 的长方形最多可分成 10 个小正方形,最少可分成 4 个小正方形.
素养核心练 (2)一个 7×2 的长方形用不同的方式分割后,小正方形的个数最
多是多少个?最少是多少个?
解:一个 7×2 的长方形最多可分成 14 个小正方形,最少可分成 5 个小正方形.
素养核心练
(3)一个(2n+1)×2 的长方形用不同的方式分割后,小正方形的个 数最多是多少个?最少是多少个(n 是正整数)?
素养核心练
解:一个 3×2 的长方形最多可分成(1×4+2)个小正方形,最少可 分成(1+2)个小正方形;一个 5×2 的长方形最多可分成(2×4+2) 个小正方形,最少可分成(2+2)个小正方形;一个 7×2 的长方形 最多 可分成 (3×4+ 2)个小 正方形,最 少可分成 (3+ 2)个正方 形……一个(2n+1)×2 的长方形,最多可分成(4n+2)个小正方形, 最少可分成(n+2)个小正方形.
能力提升练 11.甲、乙两地间的公路全长 100 km,某人从甲地到乙地的速
度为 m km/h,用代数式表示:
(1)此人从甲地到乙地需要用多长时间? 解:此人从甲地到乙地需要用1m00 h.
(2)如果每小时多行 5 km,那么此人从甲地到乙地需要用多长
时间? 如果每小时多行 5 km,那么此人从甲地到乙地需要用m1+005 h.
基础巩固练
7.[宿州期末]代数式 a2-1b的正确解释是( C ) A.a 与 b 的倒数的差的平方 B.a 的平方与 b 的差的倒数 C.a 的平方与 b 的倒数的差 D.a 与 b 的差的平方的倒数
基础巩固练 8.结合生活实际对下列代数式做出具体解释:
例如:7x 的意义可以表示为每支笔 x 元,那么 7x 为买 7 支 这样的笔需要的钱数. 答案不唯一. (1)3(a+b);