运算放大器的8种应用电路

合集下载

运算放大器详细的应用电路(很详细)

运算放大器详细的应用电路(很详细)

§8.1 比例运算电路8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。

如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络(T型反馈网络的优点是什么?)虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路8.2.1 求和电路1.反相求和电路2.虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系3.同相求和电路4.虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3 积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变为三角波(Vi:方波,频率500Hz,幅度1V)将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变为三角波移相在模数转换中将电压量变为时间量§8.3 积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变为方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4 对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差不多大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性差别较大,所以运算只在较小的电流范围内误差较小。

运放基本应用电路

运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。

若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。

当反馈网络为线性电路时可实现乘、除等模拟运算等功能。

运算放大器可进行直流放大,也可进行交流放大。

R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。

U O 1.反相比例放大器 电路如图1所示。

当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。

若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。

放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。

其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。

R 1的值应远大于信号源的 O 内阻。

2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。

电路原理图如图2所示。

当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。

同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。

若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。

此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。

运放典型应用电路

运放典型应用电路

运放典型应用电路一、什么是运放运放,即运算放大器,是一种集成电路芯片,主要用于放大、滤波、求导等信号处理方面。

它的特点是输入阻抗高、输出阻抗低,增益高、带宽宽广,可以通过外接电路改变其工作方式。

二、基本运放电路1. 非反馈式基本运放电路非反馈式基本运放电路由一个差动输入级和一个单端输出级组成。

其中差动输入级由两个晶体管组成,用于将输入信号转换为差模信号;单端输出级由一个共射极晶体管组成,用于将差模信号转换为单端输出信号。

2. 反馈式基本运放电路反馈式基本运放电路在非反馈式基本运放电路的基础上加入了反馈网络。

反馈网络可以改变增益、频率响应等特性,使得运放可以适应不同的应用场合。

三、典型应用电路1. 反相比例放大器反相比例放大器是一种常见的运放应用电路。

它的原理是将输入信号经过一个负反馈网络后再输入到非反相输入端口上。

这样可以实现对输入信号进行负反馈放大,从而达到比例放大的效果。

2. 非反相比例放大器非反相比例放大器与反相比例放大器类似,只是将输入信号输入到非反相输入端口上。

这样可以实现对输入信号进行正反馈放大,从而达到比例放大的效果。

3. 仪表放大器仪表放大器是一种高精度、高稳定性的运放应用电路。

它通过差分输入、高增益、低噪声等设计特点,实现对小信号的高精度测量和处理。

4. 滤波器滤波器是一种常见的运放应用电路。

它通过选择不同的电容和电感组合,可以实现不同类型的滤波功能,如低通滤波、高通滤波、带通滤波等。

5. 稳压电源稳压电源是一种常见的运放应用电路。

它通过反馈网络控制输出电压,使得输出电压保持稳定不变。

稳压电源广泛应用于各种电子设备中。

6. 正弦波振荡器正弦波振荡器是一种常见的运放应用电路。

它通过选择合适的RC组合和反馈网络,可以实现正弦波振荡输出。

正弦波振荡器广泛应用于各种信号发生器中。

四、总结运放是一种功能强大的集成电路芯片,可以应用于放大、滤波、求导等信号处理方面。

不同的运放应用电路具有不同的特点和功能,可以满足各种不同的应用需求。

常见的8种运放电路

常见的8种运放电路

常见的8种运放电路嘿,朋友们!今天咱就一起来唠唠常见的8种运放电路。

运放电路这玩意儿啊,在电子领域那可是相当重要的角色,就像一个幕后英雄,默默地发挥着巨大的作用呢。

一、反相比例放大电路这可是运放电路里的“常客”啦。

1、原理方面呢,它是通过输入信号加在反相输入端,输出信号和输入信号是反相的关系。

就好比两个人对着干,一个往前,另一个就往后。

2、它的放大倍数可以通过外接电阻来灵活调整哦,这就像是给它配备了不同大小的“武器”,根据实际需求来改变放大的能力。

3、在实际应用中,比如音频放大器里,它就可以把微弱的音频信号放大到合适的幅度,让咱们能清晰地听到声音。

二、同相比例放大电路这个电路和反相比例放大电路有点像一对“兄弟”,但性格又不太一样。

1、它的输入信号是加在同相输入端的,输出信号和输入信号是同相的哦,就像是两个人手拉手一起向前走。

2、它的放大倍数同样可以通过电阻来调整,而且它还有一个特点,就是输入电阻很大,这就好比它有一层厚厚的“保护罩”,对输入信号的影响很小。

3、在一些传感器信号放大的场合,同相比例放大电路就大显身手啦,能很好地把传感器传来的微弱信号放大处理。

三、加法运算电路这个电路就像是一个“加法小能手”。

1、它可以把多个输入信号进行相加运算,然后输出相加后的结果。

想象一下,它就像一个超级计算器,把各种数字信号都加在一起。

2、通过调整外接电阻的大小,还能改变每个输入信号的加权系数呢,这就像是给每个信号都分配了不同的“权重”。

3、在音频混合器中,加法运算电路就可以把不同声道的音频信号混合在一起,让我们听到丰富的声音效果。

四、减法运算电路和加法运算电路相对应的,就是减法运算电路啦,它是一个“减法高手”。

1、它能对两个输入信号进行减法运算,得到它们的差值作为输出。

就像在算两个人的身高差一样。

2、它的电路结构相对复杂一些,但是原理并不难理解哦。

3、在测量电路中,减法运算电路可以用来消除一些干扰信号,只得到我们想要的有用信号。

电路中的运算放大器有哪些特点和应用

电路中的运算放大器有哪些特点和应用

电路中的运算放大器有哪些特点和应用运算放大器是电路中应用广泛的一种电子器件,它具有许多特点和应用。

本文将介绍运算放大器的特点,并探讨其在电路中的各种应用。

一、特点1. 高增益:运算放大器的主要特点之一是具有较高的电压增益。

它能够将输入信号增加到一个较高的水平,以便于后续的处理和分析。

2. 宽频带宽:运算放大器的频带宽度较宽,能够处理较高频率的信号。

这使得它在许多应用中都能够提供精确和有效的放大功能。

3. 低噪声:运算放大器通常具有较低的噪声水平,这使得它在信号处理中非常有用。

低噪声的特性使得运算放大器能够提供更清晰和准确的信号放大。

4. 高输入阻抗和低输出阻抗:运算放大器的输入阻抗很高,可以减小对输入信号源的负载,保持传输信号的完整性。

同时,输出阻抗较低,能够驱动负载电路。

5. 可调节增益和偏置:运算放大器通常具有可调节的增益和偏置特性,这使得它在不同应用场景下能够灵活应对和满足需求。

二、应用1. 信号放大和滤波:运算放大器广泛应用于信号放大和滤波电路中。

通过调节放大器的增益和频率响应,可以实现对信号的放大和滤波功能,使得信号的频率范围和振幅得到控制和优化。

2. 模拟计算:运算放大器也常用于模拟计算电路中。

其高增益和精确性能使其成为模拟电路中一种重要的元器件,例如用于模拟加法、乘法、积分和微分等运算。

3. 电压比较和开关:运算放大器的高增益和灵敏度使其非常适合于电压比较和开关电路的应用。

通过将运算放大器配置为比较器或开关,可以实现对电压信号的比较和控制。

4. 反馈控制系统:运算放大器在反馈控制系统中起着至关重要的作用。

通过引入适当的反馈电路,可以实现对电路稳定性、增益和响应速度的控制。

5. 传感器信号处理:运算放大器还广泛应用于传感器信号处理中。

传感器常常输出微弱的信号,而运算放大器能够对这些信号进行放大和处理,以提高信号的灵敏度和稳定性。

6. 精密测量仪器:运算放大器也被广泛应用于精密测量仪器中。

详解运放七大应用电路设计

详解运放七大应用电路设计

详解运放七大应用电路设计运放的基本分析方法:虚断,虚短。

对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈(网络),可用作精密的交流和直流放大器、有源(滤波器)、(振荡器)及电压(比较器)。

1、运放在有源滤波中的应用上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。

有源滤波的好处是可以让大于截止频率的(信号)更快速的衰减,而且滤波特性对(电容)、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。

其中电阻R280是防止输入悬空,会导致运放输出异常。

滤波最常用的3种二阶有源低通滤波电路为巴特沃兹,单调下降,曲线平坦最平滑;巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即(仿真)的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为1+(Rf)/R1 ,与一阶低通滤波电路相同;截止频率为注明,m的单位为欧姆,N 的单位为u 所以计算得出截止频率为切比雪夫,迅速衰减,但通带中有纹波;贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

2、运放在电压比较器中的应用上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

运算放大电路应用

运算放大电路应用

放大你的电路:运算放大器的应用运算放大器是一种关键的电路元件,它能够对电压、电流、信号幅度等进行放大,从而被广泛应用在各种电路中,包括电源电路、放大电路、信号处理电路等。

在本文中,我们将详细介绍运算放大器的原理和应用,以及如何正确使用和设计这一重要的电路元件。

首先,让我们来了解一下运算放大器的基本原理。

运算放大器是一种高增益放大器,具有三个重要的特性:高增益、高输入阻抗、低输出阻抗。

它的增益可以通过外接电阻调节,其输入阻抗非常大,输出阻抗非常低,因此它可以将输入信号的小改变放大到足以驱动负载。

运算放大器通常由一个差分放大器和一个输出级组成,其中差分放大器负责对差模信号进行放大,输出级则将放大后的差模信号变成单端信号,以驱动负载。

接下来,我们将介绍一些运算放大器在实际电路中的应用。

第一个应用是放大电路,可以通过运算放大器将小信号放大成足以驱动负载的信号。

比如在放大声音信号的场合,我们可以将麦克风的输出信号通过运算放大器放大后再送到扬声器中。

第二个应用是滤波电路,可以通过运算放大器实现低通、高通、带通、带阻等不同类型的滤波效果,以对信号进行处理。

第三个应用是模拟运算电路,可以通过运算放大器实现加减乘除、积分微分等基本算术运算,以对信号进行处理和运算。

当实际使用运算放大器时,我们需要注意一些细节,以保证其正确工作。

首先,我们需要选择合适的运算放大器芯片,以满足具体应用的要求。

其次,我们需要合理设置运算放大器的供电电压,保证其工作在合适的工作区间,避免过度放大和饱和失真等现象。

此外,我们还需要合理设计反馈电路和环路增益,以保证系统的稳定性和可靠性。

在本文中,我们介绍了运算放大器的原理和应用,以及如何正确使用和设计这一重要的电路元件。

通过了解和掌握运算放大器的相关知识,我们可以更好地应用它来实现各种电路功能,同时也可以避免因为使用不当而引起的电路故障和失效等问题。

典型的运算放大器OP应用电路结构(精华版)

典型的运算放大器OP应用电路结构(精华版)

1.波形变换电路波形变换电路属非线性变换电路,其传输函数随输入信号的幅度、频率或相位而变,使输出信号波形不同于输入信号波形。

1.1 检波与绝对值电路1.1.1检波电路图1.1.1所示为线性检波电路及其传输特性。

电路中,把检波二极管D,接在反馈支路中,D2接在运放A输出端与电路输出端之间。

该电路能克服普通小信号二极管检波电路失真大,传输效率低及输入的检波信号需大于起始电压(约为0. 3 V的固有缺点,即使输入信号远小于0.3 V,也能进行线性检波,因而检波效率能大大地提高。

图1.1.1 线性检波电路及其传输特性线性检波电路的死区电压大小不决定于二极管的导通电压值,而是取决于D2正向压降VD的影响程度。

1.1.2绝对值电路绝对值电路又称为整流电路,其输出电压等于输入信号电压的绝对值,而与输入信号电压的极性无关。

采用绝对值电路能把双极性输入信号变成单极性信号。

在线性检波器的基础上,加一级加法器,让输入信号vi的另一极性电压不经检波,而直接送到加法器,与来自检波器的输出电压相加,便构成绝对值电路。

其原理电路如图1.1.2所示。

图1.1.2 绝对值电路输出电压值等于输入电压的绝对值,而且输出总是负电压。

若要输出正的绝对值电压,只需把图 1.1.2所示电路中的二极管D1、D2的正负极性对调。

1.2限幅电路限幅电路的功能是:当输入信号电压进入某一范围(限幅区)后,其输出信号电压不再跟随输入信号电压变化,或是改变了传输特性。

1.2.1串联限幅电路图 1.2.1所示为简单串联限幅电路及其传输特性。

起限幅控制作用的二极管D 与运放A输入端串联,参考电压(-VR)作D的反偏电压,以控制限幅器的限幅门限电压Vth。

图1.2.1 串联限幅电路及其传输特性改变士VR的数值和改变R1与R2的比值,均可以改变门限电压。

1.2.2并联限幅电路图1.2.2所示为并联限幅电路及其传输特性。

二极管D与运放A输入端呈并联关系。

图1.2.2 并联限幅电路及其传输特性1.2.2稳压管双向限幅电路图1.2.3所示为稳压管构成的双向限幅电路和电路传输特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器8种应用电路
1.电压跟随器
电压跟随器(也称为缓冲器)不会放大或反相输入信号,而是在两个电路之间提供隔离。

输入阻抗很高,而输出阻抗很低,避免了电路内的任何负载效应。

当输出直接连接回输入之一时,缓冲器的总增益为+1且Vout = Vin。

2.放大器反相器
反相器,也称为反相缓冲器,与先前的电压跟随器相反。

如果两个电阻相等,则反相器不会放大,但会反相输入信号。

输入阻抗等于R,增益为-1,给出Vout = -Vin。

同相放大器不会对输入信号进行反相或产生反相信号,而是以(RA+ RB)/RB或通常为1+(RA/RB)的比率进行放大。

输入信号连接到同相(+)输入。

4.反相放大器
反相放大器同时以-RA/RB的比率对输入信号进行反相和放大。

放大器的增益由使用反馈电阻RA的负反馈控制,输入信号被馈送到反相(-)输入。

上面的反相和同相放大器电路可以连接在一起以形成桥式放大器配置。

输入信号是两个运放共用的,输出电压信号跨接在负载电阻R L两端,该电阻在两个输出之间浮动。

如果两个运放增益A1和A2的大小彼此相等,则输出信号将加倍,因为它实际上是两个单独的放大器增益的组合。

6.电压加法器
加法器,也称为求和放大器,产生与输入电压V1和v2之和成比例的反相输出电压。

可以汇总更多输入。

如果输入电阻的值相等(R1=R2=R),则总输出电压为给定值,增益为+1。

如果输入电阻不相等,则输出电压为加权和,并变为:Vout =-(V1(RA / R1)+ V2(RA / R2)+等)
7.电压减法器
减法器也称为差分放大器,它使用反相和同相输入来产生输出信号,该信号是两个输入电压V1和V2之差,从而允许一个信号与另一个信号相减。

如果需要,可以添加更多的输入以将其减去。

如果电阻相等(R=R3和RA=R4),则输出电压为给定值,电压增益为+1。

如果输入电阻是不相等的电路变得放大器时产生负输出的差分V1高于V2和正输出时V1低于V2。

8.电压比较器
比较器有许多用途,但最常见的是将输入电压与参考电压进行比较,如果输入电压高于参考电压,则切换输出。

如果输入的电压比分压器设置的参考电压正电压Vin>Vref更高,则输出将更改状态。

当输入电压降至预设参考电压以下且Vin<Vref时,输出切换回去。

通过使用正反馈,基本比较器电路可以轻松转换为施密特触发器,以减少开关点附近的振荡。

相关文档
最新文档