模拟电子线路(模电)运放运算电路
模电实验模拟运算放大电路(一)

实验目的和要求:① 了解运放调零和相位补偿的基本概念。
② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。
实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。
直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。
(完整word版)模电实验 模拟运算电路

实 验 报 告一、 实验目的1.研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二、实验仪器1、THM-3A 模拟电路实验箱2、SS-7802A 双踪示波器3、MVT-172D 交流数字毫伏表4、数字万用电表5、集成运算放大器μA741×16、电阻10K ×4;100K ×3;1M Ω×17、电容器10μ×1三、原理摘要本实验采用的集成运放型号为μA741(或F007),引脚排列如图8-1所示,它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正、负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十千欧的电位器并将滑动触头接到负电源端。
⑧脚为空脚。
图8-1 μA741管脚图1.集成运放在使用时应考虑的一些问题(1)输入信号选用交、直流量均可, 但在选取信号的频率和幅度时,应考虑运放的频响特性和输出幅度的限制。
做线性运算电路实验时,要注意输入电压的取值应保证运放工作在线性区。
运放工作在线性区与输入电压有关;运放只有工作在深度负反馈时才工作在线性区;当运放工作在非线性区时,输出电压保持不变,其值取决于电源电压,且略小于电源电压。
μA741的输出最大值约在12-13V 左右。
(2)调零。
调零时,将输入端接地,调零端接入电位器R W ,用直流电压表测量输出电压U 0,细心调节R W ,使U 0为零(即失调电压为零)。
(3)消振。
一个集成运放自激时,表现为即使输入信号为零, 亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。
在实验中,可用示波器监视输出波形。
2.理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞、 输入阻抗 r i =∞、 输出阻抗 r o =0、 带宽 f BW =∞ 失调与漂移均为零等。
模拟电子技术(模电)第7章 集成运放组成的运算电路ppt课件

模 拟电子技术
7.3 对数和指数运算电路
7.3.1 对数电路 7.3.2 指数电路
模 拟电子技术
7. 3.1 对数电路
利 用 PN 结 的 指 数 特 性 实 现对数运算
iD ISeuD/UT
uD
UTln
iD IS
iD
iR
ui R
uO uD UTlniID S UTlnRuISI
模 拟电子技术
也可利用半导体三极管实现
对数运算
BJT的发射结有
uBE
iC iE IES(e uT 1)
uBE
IESe uT
模 拟电子技术 利用虚短和虚断,电路有
uO uBE
iC
i
ui R
uBE
iCiEIESe uT
uOuTlnuRi uTlnIES
其中,IES 是发射结反向饱和电流,uO是ui的对数运算。 注意:ui必须大于零,电路的输出电压小于0.7伏
U O 43 2 .5 0 3 3//0 0 3 3 // (1 0 0 33 /0 2 /0 ) 05 .2V 5
U O 1 3 2 .5 1 .3 2 .3V 5 5
模 拟电子技术
(1R2/R1)uI1
uo(1R R 1 2)uI1R R 1 2(1R R 1 2)uI2 (1R R12)(uI2uI1)
模 拟电子技术
2.理想运算放大器:
开环电压放大倍数 AV0=∞ 输入电阻 Rid=∞ 输出电阻 R0=0
运放工作在线性区的分析方法:
虚短(U+=U-) 虚断(ii+=ii-=0)
模 拟电子技术
4. 非线性应用
运放工作在非线性区的特点:
正、负饱和输出状态 电路中开环工作
模电运算放大器课件

CHAPTER 04
运算放大器的应用电路
加法电路和减法电路
加法电路
描述:加法电路利用运算放大器实现多个输入信号的加法运算。
输入阻抗和输出阻抗
定义
输入阻抗是指运算放大器输入端呈现的阻抗,输出阻抗是指运算放大器输出端呈现的阻抗 。
影响因素
输入阻抗和输出阻抗受到运算放大器内部电路结构、晶体管参数、电源电压等多种因素的 影响。
性能要求
运算放大器的输入阻抗应该足够高,以减少对信号源的负载效应;输出阻抗应该足够低, 以保证输出信号能够传输到后续电路中,不受信号损失和失真影响。
噪声抑制技术
降低运算放大器的噪声可以提高其稳定性。通过采用低噪声器件、优化布局布线、降低电源电压等方法 ,可以有效降低运算放大器的噪声水平,从而提高其稳定性。
CHAPTER 06
运算放大器的选择与使用注意事项
不同类型运算放大器的选择
低噪声运算放大器
在需要极低噪声的应用场景下, 如音频信号处理,应选择低噪声
电源滤波
在电源设计中,应采用适当的滤波措施,减小电 源噪声对放大器性能的影响。
电源电压选择
根据运算放大器的规格书,选择合适的电源电压 ,避免过高或过低的电压导致放大器工作异常。
使用运算放大器的布线与PCB设计注意事项
01
02
03
04
布线对称
为了减小差分输入电压的误差 ,运算放大器的输入布线应尽
可能对称。
以上内容可以为模电运算放大器课件 的学习者提供全面且深入的知识,帮 助了解运算放大器的基本原理、分类 及应用。
电子行业-模拟电子技术基础第八讲 运算放大电路 精品

R4 R3 时, R1 R2
vo
R4 R1
(vi2 vi1)
从放大器角度看
增益为
Avd
vo vi2 vi1
R4 R1
(该电路也称为差分电路或减法电路)
电子技术基础精品课程——模拟电子技术基础
3 求差电路
21 / 85
例2.4.1:一种高输入电阻的差分电路
解: 第一级同相放大:
vo1
(1
R21 R1
1 / 85
基本要求: 1 . 利用“虚短”和“虚断”的概念,分析基本线性运算电
路 重点: 1. 基本运算电路 2. 有源滤波器 3. 电压比较器
电子技术基础精品课程——模拟电子技术基础
8.1 概述
2 / 85
1. 集成电路运算放大器的内部组成单元
图2.1.1 集成运算放大器的内部结构框图 电子技术基础精品课程——模拟电子技术基础
uO 1
(1
R2 R1 /
2
)uI1
,
uO 2
(1
R2 R1 /
2
)uI
2
,
uO
R4 R3
(uo2 uo1)
R4 R3
(1
2R2 R1
)(uI1
uI2 )
Av
v O
v1 v2
R4 R3
(1
2R2 ) R1
电子技术基础精品课程——模拟电子技术基础
22 / 85
5 加法器
23 / 85
vi=vp,ii = ip≈0
所以
Ri
vi ii
3)输出电阻Ro
Ro→0
电子技术基础精品课程——模拟电子技术基础
13 / 85
模拟电路中运放的应用

模拟电路中运放的应用
运算放大器(Operational Amplifier,简称运放)是模拟电路中常见的一种器件,它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、信号调理等模拟电路中。
在信号放大方面,运放可以将输入信号放大到所需的幅度。
例如,在音频放大器中,运放可以将微弱的音频信号放大到足以驱动扬声器的幅度。
在滤波方面,运放可以构成各种滤波器,如低通滤波器、高通滤波器、带通滤波器等。
这些滤波器可以用于去除信号中的噪声或提取特定频率分量。
在信号调理方面,运放可以对输入信号进行加减、比例缩放、积分、微分等运算。
例如,在模数转换器(ADC)前级,运放可以对输入信号进行调理,使其满足 ADC 的输入范围。
除了以上应用,运放还可以用于比较器、振荡器、稳压器等模拟电路中。
在实际应用中,运放的性能参数如增益带宽积、输入失调电压、输入阻抗等对电路的性能有着重要影响,因此需要根据具体应用需求选择合适的运放型号。
总的来说,运放在模拟电路中具有广泛的应用,它是模拟电路设计中不可或缺的一种器件。
模拟电子线路(模电)运放运算电路

当vs为阶跃电压,由于信号
vs
源总有内阻,t=0时,电容上
Vs
压降vo= 0。充电电流很大,
t
–vo亦很大,
–vo Vs
由于充电时间常数 =rc很小,
t
充 电 电 流 很 快 降 为 0 , –vo 亦
很快为0。
此电路对高频噪声敏感
噪声为高频谐波,设为vs=sint
voRd C d vts R C co t, s
uOUTlniID SUTlnR uISI
对数运算放大器
iC T
i = iC
R
vRS ISeVVBTE
vO
ISe VT
vS
–
iN
P
+
vo
vO
vT
ln vS RIS
IS:三极管发射结反向饱和电流 缺点: 幅值不能超过0.7V;
温漂严重。
2. 指数运算电路
uO iR R iD R
RI
e uI /U T
解:电路模式为Uo=2Ui1+5Ui2+Ui3,是三个输入信号的加 法运算。各个系数由反馈电阻Rf与各输入信号的输入电阻 的比例关系所决定。由于式中各系数都是正值,而反相加 法器的系数都是负值,因此需加一级变号运算电路。
R1 Ui1
R2 Ui2
R3 Ui3
Rf1
Rf2
- ∞+
-∞
Uo1 R4
+
Uo
+
u
R3 R2 R3
ui
ui
+ R3
Rf
Δ
R1
∞
-
又根据虚短,有: u u
ui
R2
+ +
电路模电实验之运算放大器实验报告

目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。
•掌握比例运算等电路、训练设计运放电路的能力。
2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。
图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u
R1
R1 RF
uo
u u uI
uo
(1
RF R1
)uI
或 : uo 1 RF
uI
R1
“虚短”与“虚断”
当: RF 0或R1 uo uI
电压跟随器
例 在图示电路中,已知R1=100kΩ, Rf=200kΩ ,ui=1V,求输 出电压uo,并说明输入级的作用。
Rf
Δ Δ
∞
-
R1
∞
ui
0.7 50 104
V
1.4uV
上式说明, 折算到运放输入端,仅1.4μV就可使二极管VD1 导通。同理,使VD2 导通的电压也降到这个数量级。显然, 这样的精密整流电路可对微弱输入信号电压进行整流。
Ui2
Uo
Rf 2 Rf 2
Uo1
Rf 2 R3
Ui3
Rf 2 R4
Ui4
Rf1 R1
U
i1
Rf1 R2
U
i
2
Rf 2 R3
Ui3
Rf 2 R4
Ui4
如果取Rf1=Rf2=10kΩ,则R1=10kΩ,R2=5kΩ , R3 = 2kΩ , R4 = 10kΩ , R′1=R1∥R2∥Rf1 、 R′2
C
10μF
R2
Rf
ui
R 1M Ω
∞
- +
Δ Δ
10kΩ R3
10kΩ
∞
-
+ R1
uo1 10kΩ
A1 +
uo
+
R4
解 (1)运放 A1 构成积分电路,A2 构成加法电路,输入电 压 ui 经积分电路积分后再与 ui 通过加法电路进行加法运算。由图 可得:
uo1
1 RC
ui dt
uo
Rf R2
RL vo
-A +
vo
-
传输特性 vO
输入正弦波 vI vO
t
-R2 / R1
vI
输出半波
-
R2 R1
vI
t
精密整流电路,一个周期内输出电压半周为0,半周与输 入电压成比例。
设集成运放开环增益Ad为50万倍,二极管导通电压为0.7 V,则VD1
ud = u- - u+ =
u uo1 Ad
uo1 Ad
ui2 )
uo
( Rf R1
ui1
Rf R2
(ui2 ))
Rf R2
ui2
Rf R1
ui1
(二)减法器
2、差动减法器 叠加定理
ui1作用
uo1
Rf R1
ui1
ui2作用
uo2
(1
Rf R1
)
R' R' R2
ui2
综合:
uo
Rf R1
ui1
(1
Rf R1
)
R' R' R2
ui2
uo
Rf R1
(ui1
•
• (1) •
V01
Rf R1
Vi
(2分)
V0
1 R5C
V01dt
(4分)
Rf R5 R1C
t
Vi dt
0
(1分)
• (2)i2 =0
• 例: 写出输出电压uo1、uo与输入电压的函数关系。 (电容的初始电压为0)。
R2
ui2
R4
C
ui1
R1
- A1+ +
uo1
R3
-+A2 +
uo
R2
R5
uo1
+
+ uo1
R2
- +
uo
+
解 输入级为电压跟随器,由于是电压串联负反馈,因
而具有极高的输入电阻,起到减轻信号源负担的作用。且
u o1 ui 1 V ,作为第二级的输入。
第二级为反相输入比例运算电路,因而其输出电压为:
uo
Rf R1
u o1
200 1 2 (V) 100
例 在图示电路中,已知R1=100kΩ, Rf=200kΩ , R2=100kΩ, R3=200kΩ , ui=1V,求输出电压uo。
ui2)
Rf R1
(ui2
ui1)
若 Rf R' R1 R2
例 设计运算电路。要求实现y=2X1+5X2+X3的运算。
解:电路模式为Uo=2Ui1+5Ui2+Ui3,是三个输入信号的加 法运算。各个系数由反馈电阻Rf与各输入信号的输入电阻 的比例关系所决定。由于式中各系数都是正值,而反相加
法器的系数都是负值,因此需加一级变号运算电路。
当vs为阶跃电压,由于信号
vs
源总有内阻,t=0时,电容上
Vs
压降vo= 0。充电电流很大,
t
–vo亦很大,
–vo Vs
由于充电时间常数 =rc很小,
t
充电电流很快降为 0,–vo亦
很快为0。
此电路对高频噪声敏感
噪声为高频谐波,设为vs=RC cost,
vo正比于,频率越高,噪声越大,
利用积分电路可以模拟微分方程。图中,由虚短、虚断,
有i1=if+iC,
ui ( uo ) (c duo )
R1
Rf
dt
或
R1C
duo dt
R1 Rf
uo
ui
ay′+by=f(x) 因此, 用图4.3.7可模拟 一阶微分方程。
2. 微分运算电路
uO iR R iCR RC duC dt RC duI dt
一、数据放大器 (仪表放大器、测量放大器)
特点:高共模抑制比 高输入阻抗 高放大倍数
解:R1的中点为交流零电位,则:
uo1
(1
R2 R1 /
2
)uS1
uo2
(1
R2 R1 /
2
)uS2
uo
R4 R3
(uo2
uo1)
R4 R3
(1
2R2 R1
)(uS2
uS1 )
R1作用:调节增益
产品:
如AD624等, R1有引线连出,同时有一组R1接 成分压器形式,可选择连线,接成多种R1阻值
u o1
Rf R3
ui
将 R2 R3 R f 10 k 代入以上两式,得:
1
uo uo1 ui RC ui dt ui
(2)因 uC (0) 0 V , ui 1 V ,当 uo 变为 0V 时,有:
uo
ui RC
t
ui
0
解得: t RC 1106 10106 10 s
故需经过 t 10s ,输出电压 uo 变为 0V
vs
(s)
1
R /(sC
)
vs
(s)
sRCvs (s)
C
vs+-
A
+
vo
拉氏反变换得
vo
RC
dvs dt
▪ 波形变换
vs
输入方波 0
t
积分输出三角波
vo
0
t
微分输出尖脉冲
vo
0
t
• 例:、在下图所示电路中,运算放大电路A1、A2为理想的。 • (1) 试求输出电压VO与输入电压Vi的关系式。 • (2) 说明流过电阻R2的电流i2=?
iF
R
VBE
ISe VT
vO R
iE
vS
–
T
+
vo
vS
ISeVT
vO R
vS
vO RISeVT
缺点: vS限定为正值; 存在温漂。
对数反对数型模拟乘法器
基本原理
v v e e x y
ln vxvy
(lnvx ln vy )
实现框图
五. 基本应用电路
一、数据放大器 二、电压和电流转换电路
集成运放运算电路
1 比例运算电路 2 加法与减法电路 3 积分与微分电路 4 对数与指数电路 5 基本应用电路
一. 比例运算电路
“虚短”与“虚
1. 反相比例运算电路 断”
uI u u uo
R1
RF
u u 0
uo
RF R1
uI
当RF R1时 uo uI
倒相器
2. 同相比例运算电路
i i 0
而简单的RC积分电路所能实现的则是电容两端电压随时间 按指数规律增长, 只在很小范围内可近似为线性关系。从这一 点来看, 集成运放构成的积分器实现了接近理想的积分运算。
例: 积分电路, R1=20 kΩ,C=1μF,ui为一正向阶跃电压, ui=0, t<0; =1 V, t≥0 。 运放的最大输出电压Uom=±15 V, 求t≥0 范围内uo与ui之间的运算关系,并画出波形。
R1 Ui1
R2 Ui2
R3 Ui3
Rf1
Rf2
- ∞+
-∞
Uo1 R4
+
Uo
+
+
R′1=R1∥R2∥R3∥Rf1
R′2=R4∥Rf2
输出电压和输入电压的关系如下:
Uoi
Rf1 R1
U
i1
Rf1 R2
Ui
2
Rf1 R3
Ui
3
Uo
Rf 2 R4
Uo1
(
Rf1 R1
Ui1
Rf1 R2
Ui
2
Rf1 R3
1. 积分运算电路
积分运算电路
根据虚地有i ui ,于是 R