(完整版)污水处理厂工艺设计说明计算书:城市生活污水,2.0万吨每天,AO活性污泥法
污水处理厂设计计算书

第二篇设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。
1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。
最高日水量为生活污水最高日设计水量和工业废水的总和。
Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。
在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。
3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max sin Q n bhv α=式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°);b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。
污水处理厂设计说明书及计算书

说明书第一章概述1.1设计目的与任务1.1.1目的本次课设设计的目的在于加深理解所学知识,培养学生运用所学理论和有关工程知识综合分析和解决实际工程设计问题的初步能力,使学生在设计,运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。
1.1.2任务根据所给资料,设计一座污水处理厂,要求确定污水处理的流程,处理构筑物的工艺尺寸的计算,确定污水处理厂平面布置和高程布置,最后绘出处理厂平面布置图、工艺流程图,并简要写出一份设计说明书和工艺计算书。
1.2基础资料1.2.1城市概况右所镇位于玉溪市澂江县中部,抚仙湖畔,地处东经102°47′09″~102°57′20″,北纬24°30′30″~24°46′18″之间, 东与九村镇、海口镇接壤,西与龙街镇、凤麓镇为邻,北靠阳宗镇,南临抚仙湖。
为Ⅰ类水质,不仅是我国第二大深水湖泊,也是云南省蓄水量最大的湖泊。
1.2.2自然特征右所镇地处澂江坝子东部,为多平坝、少山区的坝区。
辖区海拔在1733米至2380米之间。
右所镇境内属北亚热带季风气候,东暖夏凉,四季如春,冬季少雨,夏秋多雨,雨热同季,日照充足,冬夏温差11℃,年平均气温15.5℃,年极端最高温度33.7℃,最低温度-3.9℃,年平均日照2102小时,年平均降雨量594毫米,无霜期274天。
自然灾害主要有冬春连旱、局部性洪灾、低温霜冻及病虫害等。
右所镇处于抚仙湖北岸,河岸线长14.6公里,主要河流有东大河等,灌溉沟渠便利丰富。
1.2.3基础资料设计人口数量为25000人;排入水体水文资料为最高水位1849m 、98%保证枯水位1847m 、水量为12m 3;厂区平坦且标高为1852m 、入厂污水管道埋深为2.5m 。
污水处理厂出水水质指标达到GB18918-2002一级B 标准排放,污水厂进出水水质指标如下表1所示。
表1 污水处理厂进出水水质设计值单位:mg/LCODcr BOD 5 SS NH 3-N TN TP pH 进 水320 220 220 30 42 3.0 6~8 出 水 60 20 20 8 20 1 6~9第二章 污水处理厂说明2.1污水处理厂处理规模由于澄江县龙街镇(右所)为旅游城镇,周边无及镇内无工厂企业,故水厂设计规模不考虑工业企业用水,仅考虑生活用水即可。
污水处理厂设计计算书 (2)

第二篇设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。
1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。
最高日水量为生活污水最高日设计水量和工业废水的总和。
Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。
在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。
3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。
AO法污水处理工艺计算书

1已知:(1) 处理水量:Q=1.3X4.0X 104m3/d =2166.7m3/h(2) 处理水质:污水处理厂二期工程进出水水质一览表1.设计参数拟用改良A/O法,去除BOD5与COD之外,还具备硝化和一定的脱氮除磷作用,使出水NH3-N低丁排放标准。
按最大日平■均时流量设计,每座设计流量为Q=1.3X 4.0X 104m3/d =2166.7m3/h总污泥龄:5.92d污泥产率系数=MLSS=3600mg/L, MLVSS/MLSS=0.75则混合液悬浮物固体污泥浓度MLVSS=2700曝气池:DO = 2.0mg/LNOD=4.6mgO2/mgNH3-N 氧化,可利用氧2.6mgO2/NO3— N 还原a= 0.9 6= 0.98其他参数:a=0.6kgVSS/kgBOD5 b=0.07d-1脱氮速率:q dn=0.0312kgNO3-N/kgMLVSS dK1=0.23d-1 Ko2=1.3mg/L剩余碱度100mg/L(保持PH习.2):所需碱度7.1mg 碱度/mgNH 3-N 氧化;产生碱度3.0mg 碱度/mgNO 3-N 还原 硝化安全系数:2.5 脱硝温度修正系数:1.08 2.设计计算(1)碱度平■衡计算: 1)设计的出水BOD 5为20 mg/L,则出水中溶解性 BOD 5 = 20-0.7X20X 1.42 X (1 — e -0.23x5) =6.4 mg/L2)采用污泥龄20d,则日产泥量为:aQ$ 0.6 10000 (190-6.4)------------- = -------------------------- =5 5.(8 kg/d 1 bt m 1000 (1 0.05 20)设其中有12.4%为氮,近似等丁 TKN 中用丁合成部分为: 0.124 550.8=68.30 kg/d即:TKN 中有 68.30'1000 =6.83 mg/L 用丁合成。
一级ao接触氧化法工艺设计计算书

一级ao接触氧化法工艺设计计算书一级ao接触氧化法是一种常见的工业废水处理工艺,用于去除有机污染物和氨氮等污染物。
本文将针对一级ao接触氧化法的工艺设计进行详细介绍和计算。
一、工艺介绍一级ao接触氧化法是将废水通过曝气设备进行氧化反应,利用微生物降解有机物和氨氮等污染物。
在一级ao接触氧化池中,通过曝气装置供给足够的氧气,使废水中的有机物被微生物降解,从而达到净化水质的目的。
该工艺具有处理效果好、操作简单、投资和运行成本低等优点。
二、工艺设计计算1. 污水处理量计算根据废水的水质和排放标准要求,确定一级ao接触氧化池的处理量。
通常根据每小时处理的废水量来进行计算,单位为m3/h。
2. 污水进水浓度计算根据废水的水质分析结果,确定废水进入一级ao接触氧化池的水质浓度。
可以通过采样分析或根据相关标准推算得出。
3. 曝气量计算曝气量是指一级ao接触氧化池中所需的氧气量。
曝气量的计算可以根据废水的有机负荷来进行。
有机负荷是指废水中有机物的质量或浓度。
4. 氧气需求量计算氧气需求量是指废水中有机物和氨氮等污染物所需的氧气量。
根据废水的化学需氧量(COD)和氨氮浓度,可以计算出氧气的需求量。
5. 曝气设备选择根据曝气量和氧气需求量,选择合适的曝气设备。
一般常用的曝气设备有机械曝气和生物膜曝气等。
6. 一级ao接触氧化池尺寸计算根据污水处理量和水力停留时间,计算一级ao接触氧化池的尺寸。
水力停留时间是指废水在一级ao接触氧化池内停留的时间,通常根据废水的有机负荷和处理效果要求来确定。
7. 水力负荷计算水力负荷是指单位面积上承受的水流量。
根据一级ao接触氧化池的尺寸和污水处理量,计算出水力负荷。
8. 污泥产量计算一级ao接触氧化法中会产生污泥,根据处理量和污泥产率,计算出污泥的产量。
三、工艺设计计算书编写工艺设计计算书应包括以下内容:工艺概述、设计依据、工艺流程图、设计计算参数、设备选型、工程量计算、设备布置图等。
污水处理厂计算说明书(毕业设计)

污水处理厂计算说明书(毕业设计)摘要本设计是关于A市污水处理厂的设计。
根据毕业设计的原始资料及设计要求对出水水质的要求:即要求脱氮除磷,出水达到一级排放标准,确定A2/O和三沟式氧化沟两大污水处理工艺进行工艺设计和经济技术比较。
一级处理中,进厂原水首先进入中格栅,用以去除大块污染物,以免其对后续处理单元或工艺管线造成损害。
本设计设置中格栅,中格栅后有污水提升泵提升污水进入细格栅。
然后进入平流式沉砂池,用以去除密度较大的无机砂粒,提高污泥有机组分的含率。
以上的污水处理为物理处理阶段,对A2/O和三沟式氧化沟两大工艺是相同的。
下面分别对这两大工艺的生物处理部分进行简要介绍。
三沟式氧化沟设计为厌氧池与氧化沟分建。
氧化沟三沟交替进水,且兼具二沉池的作用。
厌氧池释放磷。
随着曝气器距离的增加,氧化沟内溶解氧浓度不断降低,呈现缺氧区好氧区的交替变化,即相继出现硝化和反硝化的过程,达到脱氮的效果。
同时好氧区吸收磷,达到除磷的效果。
A2/O工艺的生物处理部分由厌氧池、缺氧池和好氧池组成。
厌氧池主要功能是释放磷,同时部分有机物进行氨化。
缺氧池的主要功能是脱氮。
好氧池是多功能的,能够去除BOD、硝化和吸收磷。
通过投资概算,运行费用的计算,经济比较及技术比较等最终确定氧化沟工艺为最佳方案。
剩余污泥则经污泥提升泵提升至重力浓缩池。
以降低污泥的含水率,减小污泥体积。
泥经浓缩后,含水率尚还大,体积仍很大。
为了综合利用和最终处置,需对污泥进行干化和脱水处理。
在完成污水和污泥处理构筑物的设计计算后,根据平面布置的原则,综合考虑各方面因素进行了污水厂的平面布置。
据污水的流量对连接各构筑物的管渠进行了选径、确定流速以及水力坡降,然后进行了水力损失计算。
据水力损失计算对污水和污泥高程进行了计算和布置。
在最后阶段完成了对平面图、高程图及各种主要的构筑物的绘制。
为了使工作人员能在清新美丽的环境中工作,我们布置了占总厂面积30%的绿化,还设有喷泉花坛和人工湖。
(完整版)污水处理厂设计计算书

式中一一格栅槽宽度(m);
S――每跟格栅条的宽度(m)。
设计中取S=0.01m。
3.进水渠道渐宽部分的长度
式中——进水渠道渐宽部分的长度(m);
进水明渠宽度(m;
渐宽处角度(°),一般采用10°〜30
设计中=1.27m,=20°,此时进水渠道内的流速为0.67m/s,介于0.4〜0.9m/s之间。
1.格栅间隙数
式中一一格栅栅条间隙数(个);
3
Q――最大设计流量(m /s);
――格栅倾角(°);
b――栅条净间距(m);
h——栅前水深(m);
v――过栅流速(m/s),宜采用0.6〜1.0m/s。
栅前水深:根据水力最优断面公式计算得,0.57=X0.7/2,=1.28m ,/2=0.64m
设计中取=0.64m,0.9m/s,0.02m,60°。
4.出水渠道渐窄部分的长度
式中一一出水渠道渐窄部分的长度(m;
——渐窄处角度(°),。
设计中=1.27m,=20°。
5.通过格栅的水头损失
式中——水头损失(m;
――格栅条的阻力系数;
――格栅受污染物堵塞时的水头损失增大系数,一般采用=3。
因栅条为矩形截面,取=2.41o
6.栅后明渠总高度
式中 一一栅后明渠总高度(m);
(三)平面布置67
十七、污水处理厂高程布置68
(一)主要任务68
(二)高程布置的原则68
(三)污水处理构筑物的高程布置68
参考文献72
第一部分污水处理
一、
格栅按照远期规划进行设计。
3
Q=8.16万m/d=944.4L/s
总变化系数=1.2,Qmax=944.4X1.2=1133.28 L/s
生活污水处理装置工艺设计计算书

[公司名称]工艺设计计算书生活污水处理装置xbany[日期]目录第一章、设计任务书 (1)第.1节评分标准 (1)第.2节设计时间 (1)第.3节设计内容 (1)第.4节设计原始资料 (1)第.5节设计题目 (3)第.6节成果和要求 (3)1.6.1要求 (3)1.6.2成果 (3)第2章设计指导书 (4)第.1节设计步骤 (4)第.2节设计准备 (6)第3章设计内容计算说明书 (6)第.1节污水厂设计的一般原则 (6)第.2节污水厂的设计规模 (6)1.2.1水质的确定 (6)1.2.2水量的确定 (7)第.3节污水处理厂工艺流程 (8)1.3.1交替工作式氧化沟 (8)1.3.2配水井 (14)1.3.3污水提升泵房 (15)1.3.4工艺流程的确定 (16)1.3.5工艺类型的介绍 (16)1.3.6工艺方案分析 (18)1.3.7污水计•量设备 (19)1.3.8 格栅 (22)1.3.9旋流沉砂池 (28)1.3.10 消毒设施计算 (30)第.4节3.5污泥处理构筑物的计算及说明 (33)剩余污泥量计算 (33)1.4.1 污泥浓缩 (33)1.4.2污泥井 (37)1.4.3污泥脱水 (37)第.5节3.6污水处理厂平面布置 (40)1.5.1厂区平面布置形式说明 (40)1.5.2平面布置原则 (41)第.6节3.7污水处理厂高程布置 (42)1.6.1高程布置计算 (42)1.6.2高程布置原则 (42)第一章、设计任务书笫」节评分标准1)考勤:30%2)计算书:30% 3)图纸绘制:40%第.2节设计时间2周第.3节设计内容通过课程设讣实践,灵活应用污水处理基本原理、基本工艺方法,结合相关文献资料的查阅以及本项□实际情况,设计出一套可行的城市污水处理方案。
具体为:(1)通过查阅相关资料和文献熟悉城市污水水质水量特点。
(2)查阅相关资料和文献,了解国内外城市污水处理方法及工艺流程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5min 的出水量,即:V >0.347m 3/s ×5×60=104.1m 3,可将其设计为矩形,其尺寸为3m ×5m ,池高为7m ,则池容为105m 3。
同时为减少滞流和涡流可将集水池的四角设置成内圆角。
并应设置相应的冲洗或清泥设施。
三、细格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.01m,格栅倾角α=60°则:栅条间隙数7.899.04.001.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=90)设计两组格栅,每组格栅间隙数n=90条 3.栅槽宽度(B)设:栅条宽度s=0.01m则:B 2=s (n-1)+bn=0.01×(45-1)+0.01×45=0.89m 所以总槽宽为0.89×2+0.2=1.98m (考虑中间隔墙厚0.2m ) 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B L 48.120tan 290.098.1tan 2B 121=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 74.0248.1212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3m g v k kh h 26.060sin 81.929.0)01.001.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2. 42),将β值代入β与ε关系式即可得到阻力系数ε的值。
7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.26+0.3=0.96m8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=1.48+0.47+0.5+1.0+0.7/tan60°=3.85m 9.每日栅渣量(W)设:单位栅渣量W 1=0.10m 3栅渣/103m 3污水则:W=Q W 1=1.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =2.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图如下:图3 细格栅计算草图进水四、沉砂池采用平流式沉砂池 1.沉砂池长度(L) 设:流速v=0.25m/s水力停留时间:t=30s 则:L=vt=0.25×30=7.5m 2.水流断面积(A)设:最大流量Q max =0.347m 3/s (设计1组,分为2格) 则:A=Q max /v=0.347/0.25=1.388m 2 3.池总宽度(B)设:n=2格,每格宽取b=1m 则:池总宽B=nb=2×1=2m 4有效水深(h 2):h 2=A/B=1.388/2=0.69m (介于0.25~1.0m 之间,符合要求) 5.贮砂斗所需容积V 1 设:T=2d 则35511112.1105.186400230347.01086400m K TX Q V z =⨯⨯⨯⨯=⨯=其中X 1--城市污水沉砂量,一般采用30m 3/106m 3,K z --污水流量总变化系数,取1.56.每个污泥沉砂斗容积(V 0) 设:每一分格有2个沉砂斗 则: V 0= V 1/(2*2)=1.2/4=0.3 m 37.沉砂斗各部分尺寸及容积(V)设:沉砂斗底宽b 1=0.5m ,斗高h d =0.45m ,斗壁与水平面的倾角为55° 则:沉砂斗上口宽:m b h b d 13.15.055tan 45.0260tan 212=+︒⨯=+︒=沉砂斗容积:32221122231.0)5.025.013.1213.12(645.0)222(6m b b b b h V d =⨯+⨯⨯+⨯=++=(略大于V 1=0.3m 3,符合要求)8.沉砂池高度(H) 采用重力排砂 设:池底坡度为.06 则:坡向沉砂斗长度为:m b L L 26.2213.125.72222=⨯-=-=则:沉泥区高度为h 3=h d +0.06L 2 =0.45+0.06×2.26=0.59m则:池总高度H设:超高h 1=0.3m则:H=h 1+h 2+h 3=0.3+0.45+0.59=1.34m 9.验算最小流量时的流速:在最小流量时只用一格工作,即n=1,最小流量即平均流量Q=20000m 3/d=0.232m 3/s则:v min =Q/A=0.232/1.388=0.17m/s沉砂池要求的设计流量在0.15 m/s —0.30 m/s 之间, 符合要求 10.计算草图如下:进水图4 平流式沉砂池计算草图出水五、A/O 池1.有效容积(V)设:日平均时流量为Q=20000m3/d=232L/sBOD 污泥负荷Ns=0.15KgBOD5/(kgMLSS·d) 污泥指数:SVI=150回流污泥浓度:X r =10^6/SVI*r(r=1)=6667mg/L 污泥回流比为:R=100%曝气池内混合污泥浓度:Xr=R/(1+R)×X r =111+×6667=3333.5mg/L 则:V=X N QL s 0=197995.333315.05.1)20350(20000=⨯⨯-⨯ 2.缺氧池与好氧池的体积设:缺氧池与好氧池的体积比为1:3,分两组 则:缺氧池的体积为2475M 3好氧池的体积为7425m 3设:有效水深为6m 则:缺氧池面积413m 2 好氧池面积1238m 2缺氧池的宽为10m ,每格为5m ,长为42m 好氧池的宽为20m ,每格为10m ,长为62m 好氧池长宽比为62/10=6.2,在5-10之间,符合要求 宽深比为10/6=1.7在1-2之间,符合要求3污水停留时间t=QV=19799×24/20000/1.5=15.8 A 段停留时间是3.95h ,O 段停留时间是11.85h ,符合要求。
4.剩余污泥量W=aQ 平L r -bVXr+0.5Q 平S r (1)降解BOD 5生成的污泥量W 1=aQ 平L r =0.6×20000(0.35-0.02)=3960kg/d(2)内源呼吸分解泥量Xr=0.75×3333.5=2500mg/L ,(f x =0.75) W 2=bVXr=0.05×19799×2.5=2475kg/d (3)不可生物降解和悬浮物的量W 3=0.5Q 平Sr=0.5×20000×(0.35-0.02)=3300kg/d (4)剩余污泥量为W=W 1-W 2+W 3=3960-2475+3300=4785kg/d5.湿污泥的体积污泥含水率为P=99.2%Q S =)1(1000P W -=)992.01(10004785-=600m 3/d6.污泥龄为θc=Xw VXr =14855.219799⨯=33.3>10d(符合要求) 7.计算需氧量查得:每去除1kgBOD 5需氧1.0-1.3kg,取1.2kg,去除1kgN 需氧4.6kg 则:碳氧化硝化需氧量1.2×20000×(0.35-0.02)+4.6×0.04×20000=11600kg 反硝化1gN 需2.9克BOD 5由于利用污水BOD 作为碳源反硝化会消耗掉一部分的BOD,这一部分需氧为2.9×(0.04-0.01)×20000=1740kg则:实际需氧量为11600-1740=9860kg/d考虑到安全系数为1.5,利用率为0.09,空气密度为1.201kg/m 3,空气含氧量为23.2%,则理论需氧量为:602409.0232.0201.15.19860⨯⨯⨯⨯⨯=409m 3/min曝气方式采用机械曝气六、二沉池该沉淀池采用中心进水,周边出水的辐流式沉淀池,采用刮泥机进行刮泥。