2016一轮复习1:四个基本公式三个推论两个比例
物理推理公式总结归纳图

物理推理公式总结归纳图在物理学中,公式是一种重要的工具,用于描述和解决各种物理现象和问题。
这些公式凭借其简洁明了、可靠性高的特点,成为了物理推理和计算的基础。
为了更好地理解和应用这些公式,我们可以通过制作物理推理公式总结归纳图来系统地梳理和归纳这些公式。
一、总结归纳图的概述总结归纳图是一种以图示形式展示信息、观念等的图形组织方式。
通过使用总结归纳图,我们可以将众多的物理推理公式按照不同的类别进行分类,并展示它们之间的关系和联系。
这样的归纳图形象直观,能够帮助我们更好地理解和记忆物理推理公式。
二、尺寸和比例的公式1. 长度的公式:- 长度(L)= 速度(v) ×时间(t)- 弹性物体的长度变化(ΔL)= 弹性系数(E)×体积能(W)/表面能(γ)2. 面积和体积的公式:- 面积(A)= 长(l) ×宽(w)- 体积(V)= 面积(A) ×高(h)3. 比例和比率的公式:- 比例(P)= 实际值(a)/ 标准值(b)- 比率(R)= A/B三、动力学的公式1. 动力学基本公式:- 动量(p)= 质量(m)×速度(v)- 作用力(F)= 质量(m)×加速度(a)2. 牛顿定律:- 第一定律(惯性定律):一物体若无外力作用,则保持静止或匀速直线运动- 第二定律(运动定律):f = ma- 第三定律(作用与反作用定律):任何两个物体之间都存在着大小相等、方向相反的作用力四、能量和功的公式1. 物体内能的公式:- 内能(U)= 热能(Q)+ 动能(K)+ 势能(E)2. 功的公式:- 功(W)= 力(F)×距离(d)× cosθ3. 动能和势能的公式:- 动能(K)= 1/2 ×质量(m)×速度的平方(v^2) - 势能(E)= 重力加速度(g)×高度(h)五、波动和振动的公式1. 波速和频率的公式:- 波速(v)= 波长(λ) ×频率(f)- 周期(T)= 1/频率(f)2. 频率和角速度的公式:- 角速度(ω)= 2π × 频率(f)3. 谐振频率的公式:- 谐振频率(f)= 1/2π × √(弹簧劲度系数/质量)六、电学的公式1. 电流和电荷的公式:- 电流(I)= 电荷(Q)/ 时间(t)- 电荷(Q)= 电流(I)×时间(t)2. 电压和电阻的公式:- 电压(V)= 电流(I)×电阻(R)- 电阻(R)= 电压(V)/ 电流(I)3. 电功和功率的公式:- 电功(W)= 电压(V)×电流(I)× cosθ- 功率(P)= 电流(I)×电压(V)七、总结通过总结归纳图,我们可以将众多的物理推理公式进行有机的分类和整理,对于我们理解和应用这些公式具有重要的帮助。
高三一轮复习秘籍-第一章第2讲匀变速直线运动的规律

第一章运动的描述匀变速直线运动第2讲匀变速直线运动的规律过好双基关————回扣基础知识训练基础题目一、匀变速直线运动的规律1.速度公式:v=v0+at.2.位移公式:x=v0t+12at2.3.位移速度关系式:v2-v20=2ax.二、匀变速直线运动的推论1.三个推论(1)连续相等的相邻时间间隔T内的位移差相等,即x2-x1=x3-x2=…=x n-x n-1=aT2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v=v0+v2=v t 2 .(3)位移中点速度2220 2vv vx +=2.初速度为零的匀加速直线运动的四个重要推论(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.(2)前T内、前2T内、前3T内、…、前nT内的位移之比为x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2.(3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1).三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)基本规律①速度公式:v =gt .②位移公式:x =12gt 2.③速度位移关系式:③v 2=2gx .(3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理→猜想与假设→实验验证→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来.2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动.(2)运动性质:匀变速直线运动.(3)基本规律①速度公式:v =v 0-gt ;②位移公式:x =v 0t -12gt 2.研透命题点————细研考纲和真题分析突破命题点1.三个概念的进一步理解(1)质点不同于几何“点”,它无大小但有质量,能否看成质点是由研究问题的性质决定,而不是依据物体自身大小和形状来判断.(2)参考系一般选取地面或相对地面静止的物体.(3)位移是由初位置指向末位置的有向线段,线段的长度表示位移的大小.2.三点注意(1)对于质点要从建立理想化模型的角度来理解.(2)在研究两个物体间的相对运动时,选择其中一个物体为参考系,可以使分析和计算更简单.(3)位移的矢量性是研究问题时应切记的性质.【例1】在“金星凌日”的精彩天象中,观察到太阳表面上有颗小黑点缓慢走过,持续时间达六个半小时,那便是金星,如图所示.下面说法正确的是()A.地球在金星与太阳之间B.观测“金星凌日”时可将太阳看成质点C.以太阳为参考系,金星绕太阳一周位移不为零D.以太阳为参考系,可以认为金星是运动的答案D解析金星通过太阳和地球之间时,我们才看到金星没有被太阳照亮的一面呈黑色,选项A错误;因为观测“金星凌日”时太阳的大小对所研究问题起着至关重要的作用,所以不能将太阳看成质点,选项B错误;金星绕太阳一周,起点与终点重合,位移为零,选项C错误;金星相对于太阳的空间位置发生了变化,所以以太阳为参考系,金星是运动的,选项D正确.【变式1】(多选)湖中O处有一观察站,一小船从O处出发一直向东直线行驶4km,又向北直线行驶3km,已知sin37°=0.6,则下列说法中正确的是()A.相对于O处的观察员,小船运动的路程为7kmB.相对于小船,O处的观察员始终处于静止状态C.相对于O处的观察员,小船最终位于东偏北37°方向5km处D.研究小船在湖中行驶时间时,小船可以看做质点答案ACD解析在O处的观察员看来,小船最终离自己的距离为32+42km=5km,方向为东偏北θ,满足sinθ=0.6,即θ=37°,运动的路程为7km,选项A,C正确;以小船为参考系,O处的观察员是运动的,B错误;若研究小船在湖中行驶时间时,小船的大小相对于行驶的距离可以忽略不计,故小船可以看做质点,选项D正确.1.区别与联系(1)区别:平均速度是过程量,表示物体在某段位移或某段时间内的平均运动快慢程度;瞬时速度是状态量,表示物体在某一位置或某一时刻的运动快慢程度.(2)联系:瞬时速度是运动时间Δt→0时的平均速度.2.方法和技巧(1)判断是否为瞬时速度,关键是看该速度是否对应“位置”或“时刻”.(2)求平均速度要找准“位移”和发生这段位移所需的“时间”.【例2】在某GPS定位器上,显示了以下数据:航向267°,航速36km/h,航程60km,累计100min,时间10∶29∶57,则此时瞬时速度和开机后平均速度为()A.3.6m/s、10m/s B.10m/s、10m/sC.3.6m/s、6m/s D.10m/s、6m/s答案B解析GPS定位器上显示的航速为瞬时速度36km/h=10m/s,航程60km,累计100min ,平均速度为v =Δx Δt =60×103100×60m/s =10m/s ,故B 正确.【变式2】(多选)如图所示,物体沿曲线轨迹的箭头方向运动,沿AB ,ABC ,ABCD ,ABCDE 四段曲线轨迹运动所用的时间分别是1s,2s,3s,4s .下列说法正确的是()A .物体沿曲线A →E 的平均速率为1m/sB .物体在ABC 段的平均速度大小为52m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度D .物体在B 点时的速度等于AC 段的平均速度答案BC 解析平均速率是路程与时间的比值,图中信息不能求出ABCDE 段轨迹的长度,故不能求出平均速率,选项A 错误;由v =s t 可得v =52m/s ,选项B 正确;所选取的过程离A 点越近,其过程的平均速度越接近A 点的瞬时速度,选项C 正确;物体在B 点的速度不一定等于AC 段的平均速度,选项D 错误.【变式3】一质点沿直线Ox方向做变速运动,它离开O点的距离x随时间t变化的关系为x=(5+2t3)m,它的速度v随时间t变化的关系为v=6t2 (m/s),该质点在t=2s时的速度和t=2s到t=3s时间内的平均速度的大小分别为()A.12m/s39m/s B.24m/s38m/sC.12m/s19.5m/s D.24m/s13m/s答案B解析由v=6t2(m/s)得,当t=2s时,v=24m/s;根据质点离开O点的距离随时间变化的关系为x=(5+2t3)m得:当t=2s时,x2=21m,t=3s时,x3=59m;则质点在t=2s到t=3s时间内的位移Δx=x3-x2=38m,平均速度v=ΔxΔt =381m/s=38m/s,故选B.◆拓展点用平均速度法求解瞬时速度——极限思想的应用1.用极限法求瞬时速度和瞬时加速度(1)公式v=ΔxΔt中,当Δt→0时v是瞬时速度.(2)公式a=ΔvΔt中,当Δt→0时a是瞬时加速度.2.注意(1)用v=ΔxΔt求瞬时速度时,求出的是粗略值,Δt(Δx)越小,求出的结果越接近真实值.(2)对于匀变速直线运动,一段时间内的平均速度可以精确地表示物体在这一段时间中间时刻的瞬时速度.【例3】为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为d =3.0cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30s ,通过第二个光电门的时间为Δt 2=0.10s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0s ,则滑块的加速度约为()A .0.067m/s 2B .0.67m/s 2C .6.7m/s 2D .不能计算出答案A 解析遮光板通过第一个光电门时的速度v 1=d Δt 1=0.030.30m/s =0.10m/s ,遮光板通过第二个光电门时的速度v 2=d Δt 2=0.030.10m/s =0.30m/s ,故滑块的加速度a =v 2-v 1Δt ≈0.067m/s 2,选项A 正确.1.三个概念的比较比较项目速度速度变化量加速度物理意义描述物体运动快慢和方向的物理量描述物体速度改变的物理量,是过程量描述物体速度变化快慢和方向的物理量定义式v=ΔxΔtΔv=v-v0a=ΔvΔt=v-v0t决定因素v的大小由v0、a、Δt决定Δv由v与v0进行矢量运算,由Δv=aΔt知Δv由a与Δt决定a不是由v、t、Δv来决定的,而是由Fm来决定方向平均速度与位移同向由v-v0或a的方向决定与Δv的方向一致,由F的方向决定,而与v0、v的方向无关2.判断直线运动中的“加速”或“减速”方法物体做加速运动还是减速运动,关键是看物体的加速度与速度的方向关系.(1)a和v同向(加速直线运动)→a不变,v随时间均匀增加a增大,v增加得越来越快a减小,v增加得越来越慢(2)a和v反向(减速直线运动)→a不变,v随时间均匀减小或反向增加a增大,v减小或反向增加得越来越快a减小,v减小或反向增加得越来越慢【例4】(多选)一物体做匀变速直线运动,某时刻速度大小为4m/s,1s后速度的大小变为10m/s,在这1s内该物体的可能运动情况为()A.加速度的大小为6m/s2,方向与初速度的方向相同B.加速度的大小为6m/s2,方向与初速度的方向相反C.加速度的大小为14m/s2,方向与初速度的方向相同D.加速度的大小为14m/s2,方向与初速度的方向相反答案AD解析以初速度的方向为正方向,若初、末速度方向相同,加速度a=v-v0 t=10-41m/s2=6m/s2,方向与初速度的方向相同,A正确,B错误;若初、末速度方向相反,加速度a=v-v0t=-10-41m/s2=-14m/s2,负号表示方向与初速度的方向相反,C错误,D正确.【变式4】一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小先保持不变,再逐渐减小直至零,则在此过程中() A.速度先逐渐增大,然后逐渐减小,当加速度减小到零时,速度达到最小值B.速度先均匀增大,然后增大得越来越慢,当加速度减小到零时,速度达到最大值C.位移逐渐增大,当加速度减小到零时,位移将不再增大D.位移先逐渐增大,后逐渐减小,当加速度减小到零时,位移达到最小值答案B解析加速度与速度同向,速度应增大,当加速度不变时,速度均匀增大;当加速度减小时,速度仍增大,但增大得越来越慢;当加速度为零时,速度达到最大值,保持不变,选项A错误,B正确;因质点速度方向不变化,始终向前运动,最终做匀速运动,所以位移一直在增大,选项C、D均错误.【变式5】一物体做加速度为-1m/s2的直线运动,t=0时速度为-5m/s,下列说法正确的是()A.初速度为-5m/s说明物体在做减速运动B.加速度为-1m/s2说明物体在做减速运动C.t=1s时物体的速度为-4m/sD.初速度和加速度方向相同,物体在做加速运动答案D解析当速度方向与加速度方向相同时,物体做加速运动,根据速度公式v =v0+at,当t=1s时物体速度为v1=-5m/s+(-1)×1m/s=-6m/s,故A、B、C错误,D正确.。
2016届新课标数学(理)一轮复习讲义第二章第15讲定积分与微积分基本定理

第15讲 定积分与微积分基本定理1.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式. 其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). [做一做]1.(2014·高考陕西卷)定积分∫10(2x +e x)d x 的值为( ) A .e +2 B .e +1 C .e D .e -1解析:选C.∫10(2x +e x )d x =(x 2+e x )|10=e ,故选C.2.若⎠⎛0T x 2d x =9,则常数T 的值为________.解析:∵⎠⎛0T x 2d x =13T 3=9,T >0.∴T =3.答案:31.辨明三个易误点(1)若积分式子中有几个不同的参数,则必须先分清谁是积分变量.(2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.2.能正确应用求定积分的两种基本方法求简单的定积分 (1)利用微积分基本定理求定积分,其步骤如下: ①求被积函数f(x)的一个原函数F(x); ②计算F(b)-F(a).(2)利用定积分的几何意义求定积分:当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.如:定积分⎠⎛011-x 2d x 的几何意义是求单位圆面积的14,所以⎠⎛011-x 2d x =π4.,[学生用书P 49~P 50])考点一__定积分的计算________________________利用微积分基本定理求下列定积分: (1)⎠⎛12(x 2+2x +1)d x ;(2)⎠⎛0π(sin x -cos x )d x ; (3)⎠⎛02|1-x |d x .[解] (1)⎠⎛12(x 2+2x +1)d x=⎠⎛12x 2d x +⎠⎛122x d x +⎠⎛121d x=x 33⎪⎪⎪21+x 2⎪⎪⎪21+x ⎪⎪⎪21=193. (2)⎠⎛0π(sin x -cos x )d x=⎠⎛0πsin x d x -⎠⎛0πcos x d x=(-cos x )⎪⎪⎪π0-sin x ⎪⎪⎪π=2.(3)⎠⎛02|1-x |d x =⎠⎛01(1-x )d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫x -12x 2|10+⎝⎛⎭⎫12x 2-x |21=⎝⎛⎭⎫1-12-0+⎝⎛⎭⎫12×22-2-⎝⎛⎭⎫12×12-1=1. [规律方法] 计算一些简单定积分的解题步骤:①把被积函数变形为常数与幂函数、正弦函数、余弦函数、指数函数等函数之积的和或差;②把定积分用定积分的性质变形为求被积函数为上述函数的定积分; ③分别用求导公式(逆向思维)找到一个相应的原函数; ④利用牛顿-莱布尼茨公式求出各个定积分的值;⑤计算原始定积分的值.分段函数的定积分要分段积分,特别注意定积分的计算不是定积分的几何意义,其所求的值可正可负.1.计算下列定积分:(1)⎠⎛-13(3x 2-2x +1)d x ;(2)⎠⎛12⎝⎛⎭⎫x -1x d x ; (3)⎠⎛02e x2d x .解:(1)⎠⎛-13(3x 2-2x +1)d x=(x 3-x 2+x )⎪⎪⎪3-1=24.(2)⎠⎛12⎝⎛⎭⎫x -1x d x =⎝⎛⎭⎫12x 2-ln x |21=32-ln 2. (3)⎠⎛02e x2d x =2e x2|20=2e -2.考点二__利用定积分计算平面图形的面积(高频考点)____利用定积分计算平面图形的面积是近几年高考考查定积分的一个重要考向;主要以选择题、填空题的形式出现,一般难度较小.高考对定积分求平面图形的面积的考查有以下两个命题角度: (1)根据条件求平面图形面积; (2)利用平面图形的面积求参数. (1)(2014·高考山东卷)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .22B .4 2C .2D .4(2)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. [解析] (1)令4x =x 3,解得x =0或x =±2,∴S =⎠⎛02(4x -x 3)=⎝⎛⎭⎫2x 2-x 44|20=8-4=4.故选D. (2)由题意知⎠⎛0a x d x =a 2.又⎝⎛⎭⎫23x 32′=x ,则23x 32⎪⎪⎪a0=a 2.即23a 32=a 2,所以a =49. [答案] (1)D (2)49[规律方法] 用定积分求平面图形面积的四个步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)把曲边梯形的面积表示成若干个定积分的和; (4)计算定积分,写出答案.2.(1)⎠⎛011-(x -1)2d x =________.(2)由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________.解析:(1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.(2)如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0). 所以S =⎠⎛02|x 2-1|d x=⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎣⎡⎦⎤83-2-⎝⎛⎭⎫13-1=2.答案:(1)π4(2)2考点三__定积分在物理中的应用____________(2013·高考湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2[解析] 由v (t )=7-3t +251+t=0,可得t =4⎝⎛⎭⎫t =-83舍去,因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =⎣⎡⎦⎤7t -32t 2+25ln (t +1)⎪⎪⎪40=4+25ln 5.[答案] C[规律方法] 定积分在物理中的两个应用:(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛abv (t )d t . (2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .3.(2015·浙江杭州模拟)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x=10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位:N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x=⎝⎛⎭⎫13x 3+x |101=342(J). 答案:342,[学生用书P 50])交汇创新——定积分与概率的交汇(2014·高考福建卷)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.[解析] 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2⎠⎛01(e -e x )d x=2(e x -e x )|10=2[e -e -(0-1)]=2.又该正方形面积为e 2,故由几何概型的概率公式可得所求概率为2e 2.[答案]2e 2[名师点评] (1)本题利用求函数的定积分,转化为求几何概型的概率问题,是新增考点定积分与常规考点交汇命题的一种趋势.(2)利用定积分的几何意义,考查几何概型也是近几年很多省份的考查热点. 1.(2015·衡水中学第二学期调研)在平面直角坐标系中,记抛物线y =x -x 2与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为( )A.13B.23C.12D.34解析:选A.∵M 的面积为⎠⎛01(x -x 2)d x =(12x 2-13x 3)⎪⎪⎪10=16,A 的面积为⎠⎛01-k (x -x 2-kx )d x =(12x 2-13x 3-k 2x 2)⎪⎪⎪1-k0=16(1-k )3,∴16(1-k )316=827,∴k =13,故选A. 2.若m >1,则f (m )=⎠⎛1m ⎝⎛⎭⎫1-4x 2d x 的最小值为________. 解析:f (m )=⎠⎛1m ⎝⎛⎭⎫1-4x 2d x =⎝⎛⎭⎫x +4x ⎪⎪⎪m1=m +4m -5≥4-5=-1,当且仅当m =2时等号成立.答案:-11.设f(x)是一条连续的曲线,且为偶函数,在对称区间[-a ,a]上的定积分为⎠⎛-aa f(x)d x ,由定积分的几何意义和性质,得⎠⎛-aa f(x)d x 可表示为( )A .-⎠⎛-aa f (x )d xB .2⎠⎛-a0f (x )d xC.12⎠⎛0a f (x )d x D.⎠⎛-a0f (x )d x解析:选B.偶函数的图象关于y 轴对称,故⎠⎛-aa f (x )d x 对应的几何区域关于y 轴对称,因而其可表示为2⎠⎛-a0f (x )d x ,应选B.2.(2014·高考江西卷)若f (x )=x 2+2∫10f (x )d x ,则 ∫10f (x )d x =( ) A .-1B .-13C.13D .1解析:选B.∵f (x )=x 2+2∫10f (x )d x ,∴∫10f (x )d x =⎝⎛⎭⎫13x 3+2x ∫10f (x )d x |10=13+2∫10f (x )d x , ∴∫10f (x )d x =-13. 3.(2015·安徽合肥模拟)由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8解析:选A.S =∫m 20(m -x )d x =⎝⎛⎭⎫mx -23x 32⎪⎪⎪m 20=m 3-23m 3=83,解得m =2.4.(2015·大庆市高三年级第二次教学质量检测)一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度v (t )=5-t +551+t(t 的单位:s ,v 的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是( )A .(55 ln 10) mB .(55 ln 11) mC .(12+55ln 7)mD .(12+55ln 6)m解析:选B.令5-t +551+t=0,注意到t >0,得t =10,即经过的时间为10 s ;行驶的距离s =⎠⎛010(5-t +551+t )d t =[5t -12t 2+55ln(t +1)]⎪⎪⎪100=55ln 11,即紧急刹车后火车运行的路程为(55ln11) m.5.(2015·山西省第二次四校联考)定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8解析:选 D.|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (-2≤x <0)-x 2+2x (0≤x ≤2),⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫13x 3-x 2⎪⎪⎪0-2+⎝⎛⎭⎫-13x 3+x 2⎪⎪⎪2=8. 6.(2015·辽宁省五校协作体高三上学期联考) ∫π22sin ⎝⎛⎭⎫x +π4d x =________.解析:依题意得∫π22sin ⎝⎛⎭⎫x +π4d x =∫π20(sin x +cos x )d x =(sin x -cos x )⎪⎪⎪π20=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2.答案:27.(2015·吉林模拟)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , ∴x 20=13,x 0=±33.又∵0≤x 0≤1,∴x 0=33.答案:338.(2015·石家庄市高中毕业班第一次模拟)⎠⎛01(1-x 2+12x )d x =________.解析:⎠⎛01(1-x 2+12x )d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+149.求下列定积分.(1)⎠⎛12(x -x 2+1x )d x ;(2)⎠⎛-π0(cos x +e x )d x .解:(1)⎠⎛12(x -x 2+1x )d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x=x22|21-x 33|21+ln x |21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x=sin x |0-π+e x |0-π=1-1eπ.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0, ⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解:(1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0, ∴f (x )=ax 2+2-a .又⎠⎛01f (x )d x =⎠⎛01(ax 2+2-a )d x=⎣⎡⎦⎤13ax 3+(2-a )x |10 =2-23a =-2.∴a =6,从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1]. ∴当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.。
中考数学总复习知识点总结手册[精品]
![中考数学总复习知识点总结手册[精品]](https://uimg.taocdn.com/1465f64e1eb91a37f1115c4f.webp)
初中数学总复习知识点总结2016年中考数学复习计划 (8)一、第一轮复习(3-4周) (8)1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅 (8)(1)目的:过三关 (8)(2)宗旨:知识系统化 (8)2、第一轮复习应注意的问题 (9)(1)必须扎扎实实夯实基础 (9)(2)必须深钻教材,不能脱离课本 (9)(3)掌握基础知识,一定要从理解角度出发 (9)二、第二轮复习(3周) (9)1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化 (9)(1)目的:融会贯通考纲上的所有知识点 (9)(2)宗旨:建立数学思想,培养数学能力 (9)2、第二轮复习应注意的问题 (10)(1)专题的划分要合理 (10)(2)保证一定的习题量 (10)(3)注重多思考,并及时总结规律 (10)三、第三轮复习(2-3周) (10)1、第三轮复习的形式:“模拟训练,查缺补漏” (10)目的:突破中考分数的非知识角度的障碍 (10)2、第三轮复习应注意的问题 (11)(1)通过做模拟题进行查缺补漏 (11)(2)克服不良的考试习惯 (11)(3)总结适当的应试技巧 (11)第一章实数 (12)考点一、实数的概念及分类(3分) (12)考点二、实数的倒数、相反数和绝对值(3分) (12)考点三、平方根、算数平方根和立方根(3—10分) (13)考点四、科学记数法和近似数(3—6分) (13)考点五、实数大小的比较(3分) (14)考点六、实数的运算(做题的基础,分值相当大) (14)第二章代数式 (16)考点一、整式的有关概念(3分) (16)考点二、多项式(11分) (16)考点三、因式分解(11分) (17)考点四、分式(8~10分) (18)考点五、二次根式(初中数学基础,分值很大) (19)第三章方程(组) (21)考点一、一元一次方程的概念(6分) (21)考点二、一元二次方程(6分) (21)考点三、一元二次方程的解法(10分) (21)考点四、一元二次方程根的判别式(3分) (22)考点五、一元二次方程根与系数的关系(3分) (22)考点七、二元一次方程组(8~10分) (23)第四章不等式(组) (25)考点一、不等式的概念(3分) (25)考点二、不等式基本性质(3~5分) (25)考点三、一元一次不等式(6~8分) (25)考点四、一元一次不等式组(8分) (26)第五章统计初步与概率初步 (27)考点一、平均数(3分) (27)考点二、统计学中的几个基本概念(4分) (27)考点三、众数、中位数(3~5分) (28)考点四、方差(3分) (28)考点五、频率分布(6分) (29)考点六、确定事件和随机事件(3分) (30)考点七、随机事件发生的可能性(3分) (30)考点八、概率的意义与表示方法(5~6分) (31)考点九、确定事件和随机事件的概率之间的关系(3分) (31)考点十、古典概型(3分) (31)考点十一、列表法求概率(10分) (32)考点十二、树状图法求概率(10分) (32)考点十三、利用频率估计概率(8分) (32)第六章一次函数与反比例函数 (33)考点二、不同位置的点的坐标的特征(3分) (33)考点三、函数及其相关概念(3~8分) (34)考点四、正比例函数和一次函数(3~10分) (35)考点五、反比例函数(3~10分) (38)第七章二次函数 (40)考点一、二次函数的概念和图像(3~8分) (40)考点二、二次函数的解析式(10~16分) (40)考点三、二次函数的最值(10分) (41)考点四、二次函数的性质(6~14分) (41)补充:43第八章图形的初步认识 (46)考点一、直线、射线和线段(3分) (46)考点二、角(3分) (48)考点三、相交线(3分) (49)考点四、平行线(3~8分) (50)考点五、命题、定理、证明(3~8分) (52)考点六、投影与视图(3分) (53)第九章三角形 (54)考点一、三角形(3~8分) (54)考点二、全等三角形(3~8分) (56)考点三、等腰三角形(8~10分) (57)第十章四边形 (60)考点一、四边形的相关概念(3分) (60)考点二、平行四边形(3~10分) (60)考点三、矩形(3~10分) (61)考点四、菱形(3~10分) (62)考点五、正方形(3~10分) (63)考点六、梯形(3~10分) (64)第十一章解直角三角形 (66)考点一、直角三角形的性质(3~5分) (66)考点二、直角三角形的判定(3~5分) (67)考点三、锐角三角函数的概念(3~8分) (67)考点四、解直角三角形(3~5) (68)第十二章圆 (70)考点一、圆的相关概念(3分) (70)考点二、弦、弧等与圆有关的定义(3分) (70)考点三、垂径定理及其推论(3分) (70)考点四、圆的对称性(3分) (71)考点五、弧、弦、弦心距、圆心角之间的关系定理(3分) (71)考点六、圆周角定理及其推论(3~8分) (72)考点七、点和圆的位置关系(3分) (72)考点八、过三点的圆(3分) (72)考点九、反证法(3分) (73)考点十、直线与圆的位置关系(3~5分) (73)考点十一、切线的判定和性质(3~8分) (73)考点十二、切线长定理(3分) (73)考点十三、三角形的内切圆(3~8分) (74)考点十四、圆和圆的位置关系(3分) (74)考点十五、正多边形和圆(3分) (75)考点十六、与正多边形有关的概念(3分) (75)考点十七、正多边形的对称性(3分) (75)考点十八、弧长和扇形面积(3~8分) (76)第十三章图形的变换 (78)考点一、平移(3~5分) (78)考点二、轴对称(3~5分) (78)考点三、旋转(3~8分) (79)考点四、中心对称(3分) (79)第十四章图形的相似 (81)考点一、比例线段(3分) (81)考点二、平行线分线段成比例定理(3~5分) (82)考点三、相似三角形(3~8分) (82)初中数学总复习知识点 ................................................................................................................... 错误!未定义书签。
(物理一轮复习资料)匀变速运动的规律

高二物理第二讲《匀变速运动的规律及应用》学案【知识梳理】 一、匀变速直线运动及基本规律1.匀变速直线运动(1)定义:物体沿一条直线运动,且 不变的运动.(2)分类:2.匀变速直线运动的规律 (1)三个基本公式①速度公式:v = . ②位移公式:x = .③位移速度关系式:=-202v v .(2)平均速度公式:v = .【理解要点】对匀变速直线运动规律的两点说明(1)匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向。
(2)物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,对这种情况可以将全程看做匀变速直线运动,应用基本公式求解。
例1.一物体在与初速度相反的恒力作用下做匀减速直线运动,v 0=20 m/s ,加速度大小为5 m/s 2,求:(1)物体经多少秒后回到出发点? (2)由开始运动算起,求6 s 末物体的速度.二、 匀变速直线运动的重要推论1.任意相邻两个连续相等的时间里的位移之差是一个恒量,即x 2-x 1=x 3-x 2=…=at 2.还可以推广到x m -x n =(m -n )aT 2。
2.某段时间内的平均速度,等于该时间的中间时刻的瞬时速度,即202tt v v v v +==. 3.某段位移中点的瞬时速度等于初速度v 0和末速度v t 平方和一半的平方根,即22202t x v v v +=. 4.初速度为零的匀加速直线运动的规律(设T 为等分时间间隔) (1)1T 内、2T 内、3T 内……位移之比x 1∶x 2∶x 3…= . (2)1 T 末、2T 末、3T 末……速度之比v 1∶v 2∶v 3…= .(3)第一个T 内、第二个T 内、第三个T 内……的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ…= .(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3…=例2.一观察者站在第一节车厢前端,当列车从静止开始做匀加速运动时,下列说法正确的是( ) A .每节车厢末端经过观察者的速度之比是3:2:1… B .每节车厢末端经过观察者的时间之比是1∶3∶5… C .在相等时间里经过观察者的车厢数之比是1∶3∶5…D .在相等时间里经过观察者的车厢数之比是1∶2∶3…例3. 一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图1-2-1所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置之间的距离分别为AB =2.40 cm ,BC =7.30 cm ,CD =12.20 cm ,DE =17.10 cm.由此可知,物块经过D 点时的速度大小为________ m/s ;滑块运动的加速度为________ m/s 2.(保留三位有效数字) 巩固练习1.一物体做匀变速直线运动,某时刻速度大小为4 m/s,1 s 后速度的大小变为10 m/s ,在这1 s 内该物体的( )A .位移的大小可能小于3 mB .位移的大小可能大于10 mC .加速度的大小可能小于4 m/s 2D .加速度的大小可能大于10 m/s 22.飞机从停机坪沿直线滑出,在第1秒内、第2秒内、第3秒内的位移分别是2m、4 m、6 m,那么( )A.飞机做匀加速运动B.飞机做匀速运动C.3秒内的平均速度是2 m/sD. 3秒内的平均速度是4 m/s3.如图所示,以8 m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18 m,该车加速时最大加速度大小为2 m/s2,减速时最大加速度大小为5 m/s2.此路段允许行驶的最大速度为12.5 m/s,下列说法中正确的有( )A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线5 m处减速,汽车能停在停车线处4.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1 s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2 m;在第3次、第4次闪光的时间间隔内移动了8 m,由此不可求得()A.第1次闪光时质点的速度B.质点运动的加速度C.从第2次闪光到第3次闪光这段时间内质点的位移D.质点运动的初速度5、如图所示,传送皮带的水平部分AB是绷紧的.当皮带不动时,滑块从斜面顶端由静止开始下滑,通过AB所用的时间为t1,从B端飞出时速度为v1.若皮带顺时针方向转动时,滑块同样从斜面顶端由静止开始下滑,通过AB所用的时间为t2,从B端飞出时的速度为v2,则t1和t2、v1和v2相比较,可能的情况是( )A.t1=t2B.t2>t1C.v1=v2D.v1>v26、质点做匀减速直线运动,在第1 s内位移为6 m,停止运动前的最后1 s内位移为2 m,求:(1)在整个减速运动过程中质点的位移大小;(2)整个减速过程共用多少时间.7、物体以一定的初速度冲上固定的光滑斜面,到达斜面最高点C时速度恰为零,如图所示。
高中物理第一轮复习必修一

专题01--匀变速直线运动题型一 匀变速直线运动的基本规律及应用 题型二 匀变速直线运动的推论及应用 题型三 自由落体和竖直上抛运动 题型四 多运动过程问题 题型五 直线运动的x -t 图象 题型六 直线运动的v -t 图象 题型七 追及与相遇问题题型一 匀变速直线运动的基本规律及应用1.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 02=2ax . 2.方法与技巧题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量)没有涉及的物理量适宜选用公式 v 0、v 、a 、t x v =v 0+at v 0、a 、t 、x v x =v 0t +12at 2v 0、v 、a 、x t v 2-v 02=2ax v 0、v 、t 、xax =v +v 02t【例题1】(2019·河北省衡水市第一中学模拟)一个质点做直线运动,其位移随时间变化 的规律为263(m)x t t =-,其中时间t 的单位s ,则当质点的速度大小为9m/s 时,质点运 动的位移为 A .3.75 m B .–3.75 mC .2.25 mD .–2.25 m【例题2】(2019·河南省洛阳市调研)如图所示,在一平直公路上,一辆汽车从O 点由静止开始做匀加速直线运动,已知在3 s 内经过相距30 m 的A 、B 两点,汽车经过B 点时的速度为15 m/s ,则( )A .汽车经过A 点的速度大小为5 m/sB .A 点与O 点间的距离为20 mC .汽车从O 点到A 点需要的时间为5 sD .汽车从O 点到B 点的平均速度大小为7.5 m/s【例题3】(2019·甘肃省高三最后一次联考)C919大型客机是我国自主设计、研制的大型 客机,最大航程为5555千米,最多载客190人,多项性能优于波音737和波音747。
正比例和反比例的概念和公式有哪些
正比例和反比例的概念和公式有哪些大部分同学们对正反比例的概念还停留在表面,那么正反比例的概念和公式有哪些呢。
以下是由编辑为大家整理的“正比例和反比例的概念和公式有哪些”,仅供参考,欢迎大家阅读。
正比例和反比例的概念和公式什么叫比例在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
两种相关联的量,一种量变化,另一种量也随着变化。
表示两个比相等的式子叫做比例,如3:6=9:18①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比如:教师和学生的~已经达到要求。
③比如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项,左边的分子和右边的分母是外项。
⑤比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
⑥正比例与反比例的相同点与不同点什么叫正比例两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y 什么叫反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y拓展阅读:正比例和反比例知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
物理一轮资料第一章直线运动§2匀变速直线运动
顺抚市成风阳光实验学校§2 匀变速直线运动教学目标:1.掌握匀变速直线运动的根本规律和一些重要推论;2.熟练用匀变速直线运动的根本规律和重要推论解决实际问题;3.掌握运动分析的根本方法和根本技能教学:匀变速直线运动的根本规律教学难点:匀变速直线运动规律的综合运用教学方法:讲练结合,计算机辅助教学教学过程:一、匀变速直线运动公式1.常用公式有以下四个点评:〔1〕以上四个公式中共有五个物理量:s、t、a、v0、v t,这五个物理量中只有三个是的,可以任意选。
只要其中三个物理量确之后,另外两个就唯一确了。
每个公式中只有其中的四个物理量,当某三个而要求另一个时,往往选一个公式就可以了。
如果两个匀变速直线运动有三个物理量对相,那么另外的两个物理量也一对相。
〔2〕以上五个物理量中,除时间t外,s、v0、v t、a均为矢量。
一般以v0的方向为正方向,以t=0时刻的位移为零,这时s、v t和a的正负就都有了确的物理意义。
2.匀变速直线运动中几个常用的结论①Δs=aT 2,即任意相邻相时间内的位移之差相。
可以推广到s m-s n=(m-n)aT 2②tsvvv tt=+=22/,某段时间的中间时刻的即时速度于该段时间内的平均速度。
2222/tsvvv+=,某段位移的中间位置的即时速度公式〔不于该段位移内的平均速度〕。
可以证明,无论匀加速还是匀减速,都有2/2/stvv<。
点评:运用匀变速直线运动的平均速度公式tsvvv tt=+=22/解题,往往会使求解过程变得非常简捷,因此,要对该公式给与高度的关注。
3.初速度为零〔或末速度为零〕的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:gtv=,221ats=,asv22=,t vs2=以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。
4.初速为零的匀变速直线运动①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶…… ③前1米、前2米、前3米……所用的时间之比为1∶2∶3∶……④第1米、第2米、第3米……所用的时间之比为1∶()12-∶23-∶……对末速为零的匀变速直线运动,可以相的运用这些规律。
高三物理第一轮复习计划2016
2016届高三物理复习计划孝昌一中高三物理组一、复习目标、宗旨通过物理总复习,梳理知识,建立完整的知识体系。
掌握物理概念及其相互关系,熟练掌握物理规律、公式及应用,渗透解题方法与技巧,从而提高分析问题和解决问题的能力。
物理组目标:从年级全局来看,要让物理这一科在入围人数上要明显优于其他学科。
1、通过复习帮助学生建立并完善高中物理学科知识体系,构建系统知识网络;2、深化概念、原理、定理定律的认识、理解和应用,促成学科科学思维,培养物理学科科学方法。
3、结合各知识点复习,加强习题训练,提高分析解决实际问题的能力,训练解题规范和答题速度;4、提高学科内知识综合运用的能力与技巧,能灵活运用所学知识解释、处理现实问题。
二、复习具体时间安排1、2015年5月至2016年1月底(至春节):第一轮复习,以章、节为单元进行单元复习训练,主要针对各单元知识点及相关知识点进行分析、归纳,复习的重点在基本概念及其相互关系、基本规律及其应用。
2、2016年2月中旬至4月中旬:第二轮专题复习,按知识块(力学、电磁学、原子物理、物理实验)进行小综合复习训练,主要针对物理学中的几个分支(力学、电磁学、原子物理)进行小综合复习,复习的重点是在本知识块内进行基本概念及其相互关系的分析与理解,基本规律在小综合内的运用(包括物理实验拔高)。
3、2016年4月中旬至5月底:模拟考试。
进行学科内大综合复习训练、模拟测试,主要针对物理学科各个知识点间进行大组合复习训练,复习的重点是进行重要概念及相互关系的辨析、重要规律的应用。
4、2016年5月底至6月初,学生回归课本,查缺补漏。
三、第一轮复习分层次、循序渐进训练,落实好复习的各个环节每周7节物理课加三节自习课,周六自习和周日的物理课作机动处理(理综选择题训练的讲解或8+4滚动训练)。
复习时间每周有6节物理课加两节自习,每节课或自习老师要布置具体任务并作具体要求。
复习过程中每一讲,按以下步骤进行:1、回归课本,夯实基础:引导学生在课前或利用晚自习复习课本和笔记,做好课本上的习题,翻看以前的练习。
专题02 匀变速直线运动基本运动规律公式(解析版)-2024年高考物理一轮综合复习导学练
2024年高考物理一轮大单元综合复习导学练专题02匀变速直线运动基本运动规律公式导练目标导练内容目标1匀变速直线运动的基本公式目标2匀变速直线运动三个推论目标3初速度为零的匀加速直线运动的比例关系目标4刹车类和双向可逆类问题【知识导学与典例导练】一、匀变速直线运动的基本公式1.四个基本公式及选取技巧题目涉及的物理量没有涉及的物理量适宜选用公式v 0,v ,a ,t x v =v 0+at v 0,a ,t ,x v x =v 0t +12at 2v 0,v ,a ,x t v 2-v 02=2ax v 0,v ,t ,xax =v +v 02t 2.运动学公式中正、负号的规定匀变速直线运动的基本公式和推论公式都是矢量式,使用时要规定正方向。
而直线运动中可以用正、负号表示矢量的方向,一般情况下规定初速度v 0的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值。
当v 0=0时,一般以加速度a 的方向为正方向。
【例1】(2023秋·河北沧州·高三统考期末)某新能源汽车的生产厂家为了适应社会的需求,在一平直的公路上对汽车进行测试,计时开始时新能源汽车a 、b 的速度分别满足10a v t =、105b v t =+,经时间1s t =两新能源汽车刚好并排行驶。
则下列说法正确的是()A .计时开始时,b 车在a 车后方5mB .从计时开始经2s 的时间两新能源汽车速度相同C .两新能源汽车速度相等时的距离为2mD .从第一次并排行驶到第二次并排行驶需要3s 的时间【答案】B【详解】A .根据题意可知,新能源汽车a 的初速度为零,加速度为210m/s ,新能源汽车b 的初速度为10m/s ,加速度为25m/s 。
0~1s ,根据212x at =可知21101m 5m 2a x =⨯⨯=;2110151m 12.5m 2b x =⨯+⨯⨯=已知在1s t =时两车并排行驶,故计时瞬间b 车在a 车后方7.5m b a x x -=故A 错误;B .由题中的关系式可知2s =t 时,两新能源汽车的速度均为20m/s ,即两新能源汽车的速度相等,故B 正确;C .1s ~2s 内,根据平均速度122v v x t +=⋅,可知10201m 15m 2a x +=⨯=;15201m 17.5m 2b x +=⨯=故两车相距2.5m ,故C 错误;D .设从第一次两车并排后再经时间t ,两车再次并排,根据平均速度可知()101012a t x t +⨯+=⋅;()5115102b x t t ⨯+++=⋅又由a b x x =解得t =2s 所以两新能源汽车两次并排行驶的时间间隔为2s ,故D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的瞬时速度等于该段时间内的平均速度.
v0 v x 2.vt/2= 2 t ,某段时间的中间时刻
2 v0 v2 3.vx/2= ,某段位移的中间位置 2 的瞬时速度公式 可以证明,无论匀加速还是匀减速,都有 vt/2 < vx/2.
例4 (2011秋•密云县校级月考)两木块自左向右
运动,现用高速摄影机在同一底片上多次曝光,记 录下木块每次曝光时的位置,如图所示,连续两次 曝光的时间间隔相等为T,图中刻度的最小分度为 d,由图可知( ) 2d 3d 4d 4d 4d 4d 5d 4d 6d 4d 4d 7d
A
v0
t/s
• Ⅰ.适用于匀变速直线运动(包括类竖直上抛); • Ⅱ.注意正、负号的选择; • Ⅲ.知三求一;
共有五个物理:vo、v、a、t、x
每个公式4个物理量,知三求一
(1)已知vo、v、a,求t。解: v v0 at 1 2 x v0t at (2)已知vo、t、a,求x。解: 2 (3)已知vo、v、x,求t。解:x v0 v t 2 (4)已知vo、v、a,求x。解:v 2 v 2 2ax
第一章
直线运动
1
四个基本公式、三 个推论、两个比例
一、四个基本公式
速度公式: v v0 at . v/m· s-1
1 2 x v0t at 2 . 位移公式:
C at
v v 2ax 速度位移公式: . O v0 v x t 平均速度位移公式: . 2
2 2 0
B
L
L
例 •5
(2014秋•杨浦区期末)一位观察者站在一列 火车的第一节车厢的前端的站台上进行观察, 火车从静止开始作匀加速直线运动,第一节 车厢全部通过需时4秒,整个列车通过此人用 12秒.问: v/m· s-1 (1)这列车共有几节车厢? (2)最后4秒通过几节车厢? (3)最后一节车厢通过 • 需要多少时间? O 4s 4s 4s t/s
0
特殊:初速度(或末速度)为零时: v=at; x=½at2 v2=2ax x=½vt
例1 •
一物体在水平面上做匀变速直线运动,其 位移与时间的关系是s=24t-6t2,则它的位
移为零和速度为零的时刻分别是(
A.16s和4s B.2s和4s
)
C.4s和6s
D.4s和2s s=24t-6t2=0可得:t s求导可得:v=24-12t 【答案】D
v0 v x t =(4+10)×1/2m=7m; 2 =(4-10)×1/2m=-3m;
a=(v-v0)/t;
【答案】AD
=(10-4)/1m/s2=6m/s2; =(-10-4)/1m/s2=-14T2,意义: 相邻、相等时间 . T内的 位移之差相等 可以推广到xm-xn= (m-n)aT2 .
【答案】(1)9节(2)5节(3)0.68s
例2
一辆汽车关闭油门后,沿一斜坡由顶端以 3m/s的初速度下滑,滑至底端速度恰好为零, 如果汽车关闭油门后由顶端以大小为5m/s的 初速度下滑,滑至底端速度大小将为( ) A.1m/s B.2m/s C.3m/s D.4m/s 0-32=2ax; v2-52=2ax 【答案】D
例3 •
(多选)一个物体做匀变速直线运动,某时刻 速度大小为4m/s,1s后速度大小变为 10m/s,在这1s内该物体的( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s2 D.加速度的大小可能大于10m/s2
A.甲物体做匀加速运动,加速度为d/T2 B.在时刻t1甲的速度为零 C.在t2时刻甲的速度为5d/T D.在时刻t4和时刻t5之间某瞬时甲、乙两木块的速 度相等 【答案】A
三、初速度为零(或末速度为零)的比例式
v/m· s-1 v/m· s-1 L
3O O T T T t/s A t/s 连续相等时间 (1)第1T、第2T、第3T…内的位移之比为1:3:5. 连续相等位移 (2)第1L、第2L、第3L…所用的时间之比 为 1 : ( 2 1) : ( 3 2 ) .