膜材料简介
塑料膜是什么材料

塑料膜是什么材料
塑料膜是一种由塑料制成的薄膜材料,广泛应用于包装、农业、建筑等领域。
它具有轻便、耐用、防水、防潮等特点,因此受到了人们的广泛青睐。
那么,塑料膜究竟是什么材料呢?接下来,我们将从塑料膜的材料特性、生产工艺和应用领域等方面进行探讨。
首先,塑料膜主要由聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等塑料树脂制成。
这些塑料树脂具有柔韧性好、耐热性强、化学稳定性高等特点,因此非常适合用于生产塑料膜。
在生产工艺上,塑料膜通常通过挤出、吹膜或注塑等方法制成,然后经过拉伸、冷却、切割等工艺加工而成。
这些工艺保证了塑料膜的均匀性、透明度和机械性能,使其能够满足不同领域的需求。
其次,塑料膜在包装领域应用广泛。
它可以用于食品包装、医药包装、工业品
包装等多个领域。
由于塑料膜具有良好的防潮、防水性能,可以有效保护包装物品不受潮、受潮,延长货物的保质期。
在农业领域,塑料膜也被广泛应用于大棚覆盖、地膜覆盖等方面。
它可以调节土壤温度、保持土壤湿度,提高农作物的产量和质量。
此外,在建筑领域,塑料膜还可以用于防水、隔热、隔音等方面,起到了非常重要的作用。
总的来说,塑料膜是一种非常常见且实用的材料,它具有良好的物理性能和化
学性能,被广泛应用于包装、农业、建筑等领域。
随着科技的不断进步,相信塑料膜的性能和应用领域还会不断拓展,为人们的生活带来更多的便利和舒适。
希望本文能够对大家对塑料膜有更深入的了解,也希望塑料膜能够在未来的发展中发挥更大的作用。
薄膜材料概述ppt课件

编辑课件
Leading Physical Property Analysis of Thin-Film Materials
专注 激情 严谨 勤勉13
薄膜制备分类 1、物理气相沉积(PVD)
采用物理方法使物质的原子或分子逸出,然后沉积 在基片上形成薄膜的工艺
根据使物质的逸出方法不同,可分为蒸镀、溅射和 离子镀 (1)真空蒸镀
编辑课件
21
化学气相沉积CVD
编辑课件
22
薄膜制备分类
金属有机化学气相沉积(MOCVD)
原料主要是金属(非金属)烷基化合物。 优点是可以精确控制很薄的薄膜生长,适于制 备多层膜,并可进行外延生长。
编辑课件
23
薄膜的形成机理
薄膜的生长过程 (1) 核生长型(Volmer Veber型) 特点:到达衬底上的沉积原子首先凝聚成核 ,后续飞来的沉积原子不断聚集在核附近,使核 在三维方向上不断长大而最终形成薄膜。 这种类型的生长一般在衬底晶格和沉积膜晶 格不相匹配(非共格)时出现,大部分的薄膜的 形成过程属于这种类型。
金属膜是在电子学领域中应用最为广泛的 一种薄膜。例如,半导体器件的电极、各种集 成电路中的导线和电极、电阻器、电容器、超 导器件、敏感元件和光纤通信用元器件等。虽 然各种元器件及集成电路对金属膜性能有不同 要求,但是作为共性的要求则需集中研究,例 如:电阻率、电阻率温度系数和非欧姆特性等 与膜厚、环境温度和电场的关系等。
①小岛阶段—②结合阶段—③沟道阶段—④连续薄膜
编辑课件
29
薄膜基底种类
基底又称:基片,衬底
陶瓷基底 金属基底 各种工具刀具件 玻璃基底 树脂基底 高分子基底 柔性基底
单晶硅
编辑课件
玻璃
薄膜材料

4.其它薄膜
无机陶瓷过滤膜:膜分离是利用一张特殊制造的、具 有选择透过性能的薄膜(厚度从几微米、几十微米至 几百微米之间),在外力推动下对混合物进行分离、 提纯、浓缩的一种分离新方法。这种膜必须具有使某 些物质通过、某些物质不能通过的特性。根据膜皮层 空隙大小膜可分为微滤膜、超滤膜、纳滤膜和反渗透 等。
阵列氧化锌纳米膜
2. 磁性薄膜:随着磁记录存储密度的不断提高, 由纳米尺度的铁磁金属颗粒如Fe、Co、Ni及其 合金等构成的磁性颗粒膜引起了人们极大的注 意,成为当前研究的热点。 Fe—Co合金薄膜,该合金薄膜中Fe的质量分数 为52%~86%,薄膜具有高度密集的细粒结构, 表面平滑光亮。特别适宜作薄膜磁头的磁极。
3.光学薄膜:差不多所有光学薄膜的特性都是基 于薄膜内的干涉效应。利用光学干涉薄膜可得 到各仲各样的光学特性。它可以减少表面的反 射率,增加元件的透射率。或者增加表面反射 率,减少透射率,或者在一个波段内给出高的 反射率、低的透射率,而在其余的波段则有低 的反射率、高的透射率,也可以使不同的偏振 平面有不同的特性等等。
薄膜材料
薄膜材料 本课程的主要内容 薄膜材料的应用
第一章 概 述
一、薄膜的定义
薄膜是一种二维材料,它在厚度方向上的尺寸很小,往往为 纳米至微米量级。薄膜是一种人造材料,其结构和性质与制备方 法和工艺条件密切相关。 从宏观上讲,薄膜是位于两个平面之间的一层物质,其厚度 与另外两维的尺寸相比要小得多。从微观角度来讲,薄膜是由原 子或原子团凝聚而成的二维材料。但是究竟“薄”至何等尺度才 可以认为是薄膜,并没有严格的界限。
热蒸发气相沉积法又叫真空蒸镀方法,它是在真至下 热蒸发气相沉积法 加热蒸发材料(蒸镀材料).使其蒸发粒子沉积在基板表 面形成薄膜的一种方法.按照加热方式,热蒸发气相 沉积方法分为电阻加热、闪电加热、激光加热和电子 束加热等真空蒸镀方法,其中电阻加热方法是最常用 的方法,它是用钨、铂等灯丝直接加热蒸发材料,或 者把蒸发材料放在坩埚里间接加热,高熔点材料一般 用电子束加热方法,石墨等物质用电弧沉积方法.
薄膜材料的特点及其制备技术

薄膜材料的特点及其制备技术薄膜材料的特点及其制备技术厚度小于1微米的膜材料,称为薄膜材料。
下面是店铺给大家整理的薄膜材料的特点及其制备技术,希望能帮到大家!薄膜材料的特点与制备技术工业上有两大类塑料薄膜(厚度在0.005mm~0.250mm)生产方法——压延法和挤出法,其中挤出法中又分为挤出吹塑、挤出拉伸和挤出流延。
目前最广泛使用的生产工艺有挤出吹塑、挤出拉伸和挤出流延,尤其是聚烯烃薄膜,而压延法主要用于一些聚氯乙烯薄膜的生产。
在挤出吹塑、挤出拉伸和挤出流延中,由于挤出吹塑设备的整体制造技术的不断提高以及相对于拉伸和流延设备而言低得多的,本应用在不断增多。
不过在生产高质量的各种双向拉伸薄膜中仍然广泛使用挤出拉伸设备。
随着食品、蔬菜、水果等对塑料薄膜包装的要求越来越高以及农地膜、棚膜的高性能要求和工业薄膜的应用不断增加、计算机和自动化技术的应用,塑料薄膜设备生产商一直在不断创新,提高薄膜的生产质量。
薄膜材料的简介当固体或液体的一维线性尺度远远小于其他二维时,我们将这样的固体或液体称为膜。
通常,膜可分为两类,一类是厚度大于1微米的膜,称为厚膜;另一类则是厚度小于1微米的膜,称为薄膜。
半导体功能器件和光学镀膜是薄膜技术的主要应用。
一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。
当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。
相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结构。
在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。
薄膜技术有很广泛的应用。
长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。
陶瓷薄膜也有很广泛的应用。
由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。
13种薄膜材料概述

13种薄膜材料介绍薄膜具有良好的韧性、防潮性和热封性能,应用非常广泛;PVDC薄膜适合包装食品,并能长时间保鲜;而水溶性PVA薄膜不必开封直接投入水中即可使用;PC薄膜无味、无毒,有类似玻璃纸的透明度和光泽,可在高温高压下蒸煮杀菌。
本文将主要介绍几种塑料薄膜的性能及其使用。
从商品生产到销售,再到使用,包装件要经过储存、装卸、运输、货架陈列以及在消费者手中存放,这个过程中即可能遇到严寒、酷暑、干燥、潮湿等恶劣的自然气候条件,也要遭受振动、冲击和挤压等各种机械破坏,甚至还有微生物和虫类的侵害。
要保证商品的质量,主要依靠包装材料来保护,所以包装材料非常重要。
塑料薄膜是最主要的软包装材料之一,塑料薄膜的种类繁多,特性各异,根据薄膜的不同特性,其用处也不同,下面介绍几种常见的塑料薄膜:聚乙烯薄膜PE薄膜使用大量最大的塑料包装薄膜,约占塑料薄膜总耗用量的40%以上。
PE薄膜虽然在外观、强度等方面并不十分理想,但它具有良好的韧性、防潮性和热封性能,且加工成型方便,价格便宜,所以应用非常广泛。
1、低密度聚乙烯薄膜。
LDPE薄膜主要采用挤出吹塑法和T模法生产的LDPE 薄膜是一种柔韧而透明的薄膜,无毒、无嗅,厚度一般在0.02~0.1㎜之间。
具有良好的耐水性、防潮性、耐旱性和化学稳定性。
大量用于食品、药品、日用品及金属制品的一般防潮包装和冷冻食品的包装。
但对于吸湿性大,防潮性要求较高的物品,则需要采用防潮性更好的薄膜和复合薄膜包装。
LDPE薄膜的透气率大、无保香性且耐油性差,不能用于易氧化食品、风味食品和含油食品的包装。
但透气性好使它能用于水果、蔬菜等新鲜物品的保鲜包装。
LDPE薄膜的热粘合性和低温热封性好,因此常用作复合薄膜的粘合层和热封层等,但由于其耐热性差,故不能用作蒸煮袋的热封层。
2、高密度聚乙烯薄膜。
HDPE薄膜是一种韧性的半透明薄膜,其外观为乳白色,表面光泽度较差。
HDPE薄膜的抗张强度、防潮性、耐热性、耐油性和化学稳定性均优于LDPE薄膜,也可以热封合,但透明性不如LDPE。
pvc膜是什么材料

pvc膜是什么材料
PVC膜是一种常见的塑料膜材料,它由聚氯乙烯树脂制成,具有良好的耐候性、耐化学腐蚀性和机械强度,被广泛应用于包装、建筑、医疗、印刷等领域。
PVC
膜的主要特性和用途如下:
1. 耐候性,PVC膜具有良好的耐候性,能够在室外环境下长期使用而不受到影响。
这使得它成为户外广告牌、标识牌、遮阳篷等产品的理想材料。
2. 耐化学腐蚀性,PVC膜具有良好的耐化学腐蚀性,能够抵抗酸、碱、盐等化学物质的侵蚀,因此被广泛用于化工设备的防腐涂料、化工管道的包覆材料等。
3. 机械强度,PVC膜具有较高的机械强度,能够承受一定的拉伸、撕裂和冲击负荷,因此被广泛应用于制作帐篷、车辆罩、充气玩具等产品。
4. 隔热性,PVC膜具有较好的隔热性能,能够有效阻隔热量的传递,因此被用于制作遮阳篷、隔热窗帘等产品。
5. 印刷性,PVC膜表面平整光滑,能够进行丝网印刷、平版印刷、热转印等多种印刷工艺,因此被广泛用于制作广告牌、标识牌、包装盒等产品。
总的来说,PVC膜是一种多功能的塑料膜材料,具有耐候性、耐化学腐蚀性、机械强度、隔热性和印刷性等优良特性,被广泛应用于包装、建筑、医疗、印刷等领域。
随着科技的不断进步和人们对产品质量要求的提高,PVC膜的应用领域将
会更加广泛,产品性能也将得到进一步提升。
聚乙烯膜是什么材料

聚乙烯膜是什么材料聚乙烯膜是一种常见的塑料薄膜材料,它由乙烯单体聚合而成,具有良好的透明度、柔韧性和耐候性,广泛应用于包装、农业覆盖、建筑防水等领域。
作为一种常见的塑料制品,聚乙烯膜在我们的日常生活中随处可见,但对于它的材料特性和应用领域,很多人可能还不是很了解。
本文将从聚乙烯膜的材料特性、生产工艺和应用领域等方面进行介绍,希望能够帮助大家更加全面地了解这种常见的塑料材料。
首先,聚乙烯膜的材料特性是什么呢?聚乙烯膜主要由聚乙烯树脂经过挤出、拉伸等工艺制成,具有良好的透明度、柔韧性和耐候性。
它具有较高的拉伸强度和抗撕裂性能,同时还具有较好的耐化学腐蚀性能,能够在一定程度上抵御酸碱溶液的侵蚀。
此外,聚乙烯膜还具有一定的隔热性能和电绝缘性能,能够在一定程度上隔离外界热量和电流,保护包装物品或农作物的质量和安全。
其次,聚乙烯膜的生产工艺是怎样的呢?聚乙烯膜的生产通常采用挤出法,即将聚乙烯树脂加热熔融后,通过挤出机的模头挤出成型,然后经过冷却、拉伸等工艺制成薄膜。
在生产过程中,可以根据需求添加一定的添加剂,如抗氧化剂、紫外吸收剂等,以提高聚乙烯膜的耐候性和使用寿命。
此外,生产过程中还需要控制挤出温度、拉伸速度等工艺参数,以确保聚乙烯膜的质量和性能。
最后,聚乙烯膜的应用领域有哪些呢?聚乙烯膜作为一种常见的塑料薄膜材料,具有广泛的应用领域。
在包装行业,聚乙烯膜常用于食品、日用品等产品的包装,能够有效保护产品的质量和卫生。
在农业覆盖领域,聚乙烯膜常用于大棚覆盖、地膜覆盖等,能够提高作物的产量和质量。
在建筑防水领域,聚乙烯膜常用于屋面防水、地下室防潮等,能够有效防止水的渗透。
此外,聚乙烯膜还可以用于制作农业大棚、温室大棚、塑料袋等,具有广泛的应用前景。
综上所述,聚乙烯膜作为一种常见的塑料薄膜材料,具有良好的透明度、柔韧性和耐候性,广泛应用于包装、农业覆盖、建筑防水等领域。
通过对聚乙烯膜的材料特性、生产工艺和应用领域的介绍,希望能够帮助大家更加全面地了解这种常见的塑料材料,为其在实际应用中提供参考和指导。
薄膜材料的结构和性质

薄膜材料的结构和性质薄膜材料是一种在现代工程和科技领域广泛应用的材料。
薄膜材料的结构和性质是决定其应用领域和性能的关键因素。
本文将介绍薄膜材料的结构和性质,并且阐述其在现代应用中的作用。
一、薄膜材料的结构薄膜材料是用溶液、气相、物理气相沉积或其他特殊方法制备的具有厚度在纳米到微米级之间的材料。
薄膜材料的结构可以分为单层膜和复合膜两种。
单层膜材料的结构简单,是由一个单一的材料组成的。
而复合膜材料由两种或两种以上的材料组成。
单层膜材料中,有机薄膜和无机薄膜是两种主要的类型。
有机薄膜可以是单一的高分子化合物,如聚合物和蛋白质,也可以是多种有机化合物的混合物。
然而,无机薄膜主要是由金属化合物和非金属化合物组成的,如氮化硅、氧化锌和氧化铝。
复合膜材料的结构复杂多样,包括两种材料的层状复合膜、不同材料的交替堆层膜和多元复合膜等。
其中,层状复合膜又可以分为层流复合、分子间作用层间复合以及互分布层间复合。
二、薄膜材料的性质薄膜材料的性质是其应用的关键,因为它们直接影响着材料的功能和性能。
薄膜材料的性质包括物理性质、化学性质和光学性质。
物理性质:薄膜材料的物理性质如密度、熔点、固化温度、硬度、弹性模量等往往与相应材料的体积相比有所变化。
例如,聚合物在形成薄膜后通常比原来的体积密度更低。
在这些性质方面,薄膜材料的行为往往是不同于体积材料的。
化学性质:薄膜材料的化学性质通常是由材料本身和加工方法共同决定的。
由于其表面积大、颗粒小,在化学反应和承受环境变化时,它们的响应也不同于体积材料。
面向化学特性的研究是用来检测这些特性并表征所使用薄膜材料的作用和性能的关键。
光学性质:薄膜材料的光学性质是其应用于光学晶体管等领域的原理依据。
光电材料必须具有较强的吸收、发射、调制和切换光学信号的能力。
因此,它们的光学性质应符合基本的光学特性,如透明度、折射率、色散、发射率和吸收率等。
三、薄膜材料在现代应用中的作用薄膜材料的结构和性质是使其在现代应用中具有广泛适用性的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要 膜材料是两相间的不连续区间。膜技术的核心是膜。高分子膜的制备方法及其工艺条件的控制是获得稳定膜结构和优异膜性能的关键技术,众所周知,高分子膜材料具有易加工、结构难控制的特点。目前高分子分离膜材料制膜方法有浸没沉淀相转化法、应力场下熔融挤出-拉伸制备聚烯烃微孔膜、热诱导相分离法制备聚合物微孔膜、聚合物与无机支撑复合膜的制备技术等膜技术。膜技术现已应用在我们生活的各个方面,如废水处理环境净化、医疗、医学和食品加工生物工程方面等等。我们主要谈了膜技术在水处理和医学方面的显著作用。水处理方面的应用有一般的废水处理、处理采出水和油田注水、果汁饮料的澄清等。在医疗、医学方面膜技术可用于制人工肺、在药物生产过程中去除菌及固悬物、药物检验与疫病诊断、血浆分离等。 关键字:膜材料、制备、应用、水处理、医学工程 Abstract Membrane material is discrete interval of two phases.Membrane technology is the core of the membrane.The preparation method of polymer film and its control of process conditions is to obtain the key technology of membrane stability of membrane structure and excellent properties, it is well known that the polymer film material has the characteristics of easy processing, structure, difficult to control.The high polymer separation membrane materials membrane method in immersion precipitation phase catalysis, melt extrusion - under tensile stress field of preparation of polyolefin microporous membrane preparation, thermal induced phase separation of polymer microporous membrane, polymer and inorganic composite membrane preparation technology of membrane technology, etc.Membrane technology has been applied in every aspect of our life, such as wastewater treatment environment purification, medical treatment, medicine and food processing and biological engineering, etc.We mainly talk about the membrane technology in water treatment and medical aspects of the significant role.The application of water treatment has the general wastewater treatment, treatment of produced water and oil field water injection, juice clarification etc.In the aspect of medical treatment, medical membrane technology can be used for making artificial lung, removing bacteria in the process of drug production and solid suspension, drug test and diagnosis of disease and plasma separation, etc. Key words: membrane materials, preparation, application, water treatment, medical engineering 0 引言 膜技术是当代高效分离新技术,与传统的分离技术相比,它具有分离效率高、能耗低、占地面积小、过程简单、操作方便、不污染环境、便于与其他技术集成等突出优点。它的研究和应用与节能、环境保护、水资源开发、利用和再生极为密切。在当今世界能源、水资源短缺,水和环境污染日益严重的情况下,膜分离科学与技术的研究得到了世界各国的高度重视。目前,膜分离技术在我国的石油化工、制药、生化、环境、能源、电子、冶金、轻工、食品、航天、海水淡化、医疗等领域已获得有效而广泛的应用。
1 膜材料简介 一般意义上,“膜”指两相之间的不连续区间。膜可为气相、液相和固相,或是它们的组合。即也可以说,“膜”是指分隔两相界面,并以特定的形式限制和传递各种化学物质的阻挡层。它可以是均相的或非均相的,对称的或非对称的,固体的或液体的,中性的或荷电的。其厚度范围一般可从几微米到几毫米。 膜分离过程基于化学物质通过膜相际的传递速度的不同而不同。迁移率主要由溶质的分子尺寸和相界面物质的结构决定,而溶质在相界面内的浓度决定于溶质和相界面物质的亲和力大小、溶质尺寸和膜的结构。 通过膜相际有以下三种基本的传质形式。一、被动传递。通过膜的组分均以化学势梯度为推动力。该化学势梯度,可以是膜两侧的压力差、温度差或电势差。二、促进传递。通过膜的组分仍以化学势梯度为推动力,各组分由特定的载体带入膜中。促进传递是一种高选择性的被动传递。三、主动传递。与前两者不同,各组分可以逆化学势梯度而传递,其推动力由膜内某化学反应提供,这类现象主要存在于生命膜。而目前已工业化的主要膜分离过程均为被动传递过程。 膜技术的核心是膜。一般来说,膜的化学性质和结构对膜分离的性质起着决定性影响,故要求膜材料应具有良好的成膜性能,化学稳定性,耐酸、碱、氧化物和微生物侵蚀等。 分离膜按其凝聚状态可分为固膜、液膜、汽膜三类,目前大规模应用的多为固膜。固膜目前主要以高分子合成膜为主,它可以是致密或是多孔的,可以是对称或非对称的。另外,以无机物为膜材料的分离膜近年来也发展迅速。液膜分乳状液膜和带支撑的液膜两类,它们主要用于废水处理和某些气体分离等。气膜分离现在尚处于实验研究阶段。 膜有几种通用分类。按膜的材料分类,膜可分为天然膜和合成膜。天然膜指生物膜与天然物质改性或再生而制成的膜。合成膜指无机膜与高分子聚合物膜。按膜的结构性分类,膜可分为多孔膜和非多孔膜和液膜。多孔膜指微孔介质与大孔膜。非多孔膜指无机膜与聚合物膜。而多孔膜和非多孔膜也可按晶型区分为结晶型和无定型两种。液膜指无固相支撑型,又称乳化液膜,有固相支撑膜,又称固定膜或支撑液膜。当然,除此之外,还可按膜的用途、膜的作用机理等将它们分类。
2 膜材料的制备 高分子膜的制备方法及其工艺条件的控制是获得稳定膜结构和优异膜性能的关键技术,众所周知,高分子膜材料具有易加工、结构难控制的特点。目前高分子分离膜材料制膜方法有浸没沉淀相转化法、应力场下熔融挤出-拉伸制备聚烯烃微孔膜、热诱导相分离法制备聚合物微孔膜、聚合物与无机支撑复合膜的制备技术等。
2.1 浸没沉淀相转化法 相转化法制膜指配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终变成一个三维大分子网络式的凝胶结构。而相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为以下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转变法。 下面我们主要介绍浸没沉淀相转变法。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散浸入凝固浴,而非溶剂扩散到刮成的薄膜内,经过一段时间,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离,成为两相,我们称之为聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。浸入沉淀法至少涉及聚合物、溶剂、非溶剂三个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板框式和卷式膜器中,而卷式膜主要用于中空纤维、毛细管和管状膜器中。
2.1.1 平板膜 制备平板膜时,往往是先用刮刀把聚合物制膜液刮在无纺布、聚酯、玻璃、金属板等支撑物上形成溶液薄膜,再将支撑物与溶液薄膜一并浸入凝固浴中。聚合物溶液中的溶剂与凝固浴中非溶剂通过界面交换,首先在表面固化成膜,随后向膜内部扩展,使溶液中聚合物析出固化得到平板膜,沉淀后得到的膜可以直接使用,也可以经过后处理。制备条件包括:聚合物浓度、蒸发时间、湿度、温度、铸膜液组成、凝固浴组成等,这些条件大体决定了膜的形态结构和基本性能,也决定了膜的应用场合。
2.1.2 管状膜 管状膜根据规格的不同可以大致分为三种:中空纤维膜、毛细管膜和管状膜。中空纤维和毛细管膜有三种不同的制备方法:湿纺法,熔融纺丝法和干纺法。其中干-湿法纺丝是由聚合物、溶剂、添加剂组成的制膜溶液经过滤后用泵打入喷丝头,以围绕由喷丝头中心供给的线状芯液周围形成管状液膜的形式被挤出,经“空气间隙”被牵引、拉伸到一定的径向尺寸后浸入凝固浴固化成中空纤维,再经洗涤等处理后被收集在导丝轮。凝固是从内侧、外侧两个表面同时发生,形成双皮层结构。管状膜的制备工艺完全不同于中空纤维和毛细管膜。管状膜是加压于一个装有聚合物溶液的贮罐,使溶液沿一个中空管流下,在此刮管下部有一个带小孔的“刮膜棒”,在其内壁上被刮上一层聚合物薄膜,然后将此管浸入凝固浴中,此时所刮涂上的溶液沉淀,从而形成管状膜。
2.2 应力场下熔融挤出-拉伸制备聚烯烃微孔膜