桥式整流电路原理;电感滤波原理;电容滤波原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥式整流电路原理;电感滤波原理;电容滤波原理

桥式整流电路原理

桥式整流电路如图1所示,图中B为电源变压器,它的作用是将交流电网电压e1变成整流电路要求的交流电压,RL是要求直流供电的负载电阻,四只整流二极管D1~D4接成电桥的形式,故有桥式整流电路之称。

图1

桥式整流电路的工作原理可分析如下。为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。

在e2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。在负载上产生一个极性为上正下负的输出电压。其电流通路可用图1(a)中虚线箭头表示。

在e2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极

管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。电流流过RL时产生的电压极性仍是上正下负,与正半周时相同。其电流通路如图1(b)

中虚线箭头所示。

综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根

据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

图2

根据上述分析,可得桥式整流电路的工作波形如图2。由图可见,通过负载RL的电流iL

以及电压uL的波形都是单方向的全波脉动波形。

桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同

时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率

较高。因此,这种电路在半导体整流电路中得到了颇为广泛的应用。

桥式整流电路电感滤波原理

电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到

使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)

时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,所以电感L有平波作用。

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。

桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。

例1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压V2的有效值,选择整流二极管及滤波电容。

桥式整流电容滤波原理

电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管

截止,电流一路流经负载电阻RL,另一路对电容C充电。当uC>u2,导致D1和D3管反

向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再

次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响

电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效

果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大。

桥式整流电路原理电感滤波原理

电容滤波原理

相关文档
最新文档