人教版九年级上 第二十四章 24.1 圆的有关性质 课时练-word文档
人教版 九年级数学上册 24.1 圆的有关性质(含答案)

人教版 九年级数学 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图所示的圆规,点A 是铁尖的端点,点B 是铅笔芯尖的端点,已知点A 与点B 的距离是2 cm ,若铁尖的端点A 固定,将铅笔芯尖的端点B 绕点A 旋转一周,则作出的圆的直径是( )A .1 cmB .2 cmC .4 cmD .π cm2. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵ C .△BOC 是等边三角形D .四边形ODBC 是菱形3. 如图,AB是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A .51°B .56°C .68°D .78°4. 如图,OA是⊙O 的半径,B 为OA 上一点(不与点O ,A 重合),过点B 作OA的垂线交⊙O 于点C .以OB ,BC 为边作矩形OBCD ,连接BD .若BD =10,BC =8,则AB 的长为( )A .8B .6C .4D .25. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大小关系是( ) A.AB ︵=3CD ︵B.AB ︵>3CD ︵C.AB ︵<3CD ︵D .3AB ︵<CD ︵6. 如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A. 5 B .2 5 C .3 D .2 37. 如图,AB 是⊙O的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是( )A.7 B .27 C .6 D .88. 如图,直线l1∥l2,以直线l1上的点A 为圆心、适当长为半径画弧,分别交直线l1,l2于点B ,C ,连接AC ,BC.若∠ABC =54°,则∠1等于( )A .36°B .54°C .72°D .73°9. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°10. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5 B.5 32C .5 2D .5 3二、填空题(本大题共8道小题) 11. 2018·孝感 已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 2018·毕节如图,AB 是⊙O 的直径,C ,D 为半圆的三等分点,CE ⊥AB 于点E ,则∠ACE 的度数为________.13. 如图,平面直角坐标系xOy 中,点M 的坐标为(3,0),⊙M 的半径为2,过点M 的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为________,此时A ,B 两点所在直线与x 轴的夹角等于________°.14. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A=55°,∠E =30°,则∠F =________°.18. 如图所示,在半圆O 中,AB为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.三、解答题(本大题共4道小题)19. 如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以BD 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF. (1)求证:∠1=∠F ;(2)若AC =4,EF =2 5,求CD 的长.20.如图,△ABC 和△ABD 都是直角三角形,且∠C =∠D =90°.求证:A ,B ,C ,D 四点在同一个圆上.21. (2019•包头)如图,在⊙O 中,B 是⊙O 上的一点,120ABC ∠=︒,弦AC =弦BM 平分ABC ∠交AC 于点D ,连接MA MC ,. (1)求⊙O 半径的长; (2)求证:AB BC BM +=.22. 如图,已知AB 为⊙O 的直径,C 为半圆ACB ︵上的动点(不与点A ,B 重合),过点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,则点P 的位置有何规律?请证明你的结论.人教版 九年级数学 24.1 圆的有关性质-答案一、选择题(本大题共10道小题) 1. 【答案】C2. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的. 故选B.3. 【答案】A[解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°,∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE ,∴∠AEO =12×(180°-78°)=51°.4. 【答案】C5. 【答案】A[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵,因此有AB ︵=3CD ︵.6. 【答案】D[解析] 如图,过点O 作OD ⊥AB 于点D ,连接OA .根据题意,得OD =12OA =1.再根据勾股定理,得AD = 3.根据垂径定理,得AB =2 3.7. 【答案】B[解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.8. 【答案】C9. 【答案】B10. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题(本大题共8道小题)11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°.∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°, ∴∠ACE =90°-60°=30°.13. 【答案】6 90 [解析] ∵AB 为⊙M 的直径,∴AB =4.当点O 到AB 的距离最大时,△AOB 的面积最大,此时AB ⊥x 轴于点M , ∴△AOB 的面积的最大值为12×4×3=6,∠AMO =90°. 即此时A ,B 两点所在直线与x 轴的夹角等于90°.14. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.15. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.16. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.17. 【答案】40[解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.18. 【答案】(902n -1)[解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45……所以∠A n OB n =(902n -1)°.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接DE. ∵BD 是⊙O 的直径, ∴∠DEB =90°,即DE ⊥AB. 又∵E 是AB 的中点, ∴AD =BD ,∴∠1=∠B. 又∵∠B =∠F ,∴∠1=∠F.(2)∵∠1=∠F ,∴AE =EF =2 5, ∴AB =2AE =4 5.在Rt △ABC 中,∵AC =4,∠C =90°, ∴BC =AB2-AC2=8. 设CD =x ,则AD =BD =8-x. 在Rt △ACD 中,∵∠C =90°,∴AC2+CD2=AD2,即42+x2=(8-x)2, 解得x =3,即CD =3.20. 【答案】证明:如图,取AB 的中点O ,连接OC ,OD.∵△ABC 和△ABD 都是直角三角形,且∠ACB =∠ADB =90°,∴OC ,OD 分别为Rt △ABC 和Rt △ABD 斜边上的中线, ∴OC =OA =OB ,OD =OA =OB ,∴OA =OB =OC =OD ,∴A ,B ,C ,D 四点在同一个圆上.21. 【答案】(1)连接OA OC 、,过O 作OH AC ⊥于点H ,如图1,∵120ABC ∠=︒,∴18060AMC ABC ∠=-∠=︒︒,∴2120AOC AMC ∠=∠=︒, ∴1602AOH AOC ∠=∠=︒, ∵132AH AC ==, ∴2sin60AH OA ==︒, 故⊙O 的半径为2.(2)在BM 上截取BE BC =,连接CE ,如图2,∵120ABC ∠=︒,BM 平分ABC ∠,∴60ABM CBM ∠=∠=︒,∵60MBC BE BC ︒∠==,,∴EBC △是等边三角形,∴60CE CB BE BCE ==∠=︒,, ∴60BCD DCE ∠+∠=︒,∵60ACM ∠=︒,∴60ECM DCE ∠+∠=︒,∴ECM BCD ∠=∠,∴6060CAM CBM ACM ABM ∠︒=∠︒=∠=∠=,, ∴ACM △是等边三角形,∴AC CM =,∴ACB MCE △≌△,∴AB ME =,∵ME EB BM +=,∴AB BC BM +=.22. 【答案】⎝ ⎛⎭⎪⎫360n m 解:P 为半圆ADB ︵的中点. 证明:如图,连接OP .∵∠OCD 的平分线交⊙O 于点P ,∴∠PCD =∠PCO . ∵OC =OP ,∴∠PCO =∠OPC ,∴∠PCD =∠OPC ,∴OP ∥CD .∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵,即P 为半圆ADB ︵的中点.。
人教版九年级数学上册第二十四章 圆 24.1 圆的有关性质 练习题【带答案】

人教版九年级数学上册第二十四章 圆圆的有关性质练习题【答案】一、选择题(30分)1.如图,MN 为⊙O 的直径,A 、B 是⊙O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD ⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA+PB 的最小值是( ).A .20B .C .14D .2.一副学生三角板放在一个圈里恰好如图所示,顶点D 在圆圈外,其他几个顶点都在圆圈上,圆圈和AD 交于点E ,已知8AC cm =,则这个圆圈上的弦CE 长是( )A .B .C .)41cmD .(1cm + 3.如图,AB 为⊙O 的直径,AC=2,BC=4,CD=BD=DE ,则CE=( )A .3﹣B .32102-C .3102-D .3210-4.如图,点A ,B ,C ,D 在⊙O 上,弦AD 的延长线与弦BC 的延长线相交于点E .用①AB 是⊙O 的直径,②CB =CE ,③AB =AE 中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为( )A .0B .1C .2D .35.如图,已知正方形ABCD 的边长为,点O 为正方形的中心,点G 为AB 边上一动点,直线GO 交CD 于点H ,过点D 作DE GO ⊥,垂足为点E ,连接CE ,则CE 的最小值为( )A .2B .4CD 16.如图,四边形ABCD 内接于半径为6的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A.B .C . D .7.如图,点D 在半圆O 上,半径OB =,10AD =,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,90DHC ∠=︒,连接BH ,点C 在移动的过程中,BH 的最小值是( )A .5B .6C .7D .88.如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )A .B .CD .9.如图,多边形ABDEC 是由边长为2的正△ABC 和正方形BDEC 组成,则过A ,D ,E 三点的圆的半径为( )A B .2 C D 10.如图,AB 是半圆O 的直径,点D 在半圆O 上,AB =13,AD =5,C 是弧BD 上的一个动点,连接AC ,过D 点作DH ⊥AC 于H .连接BH ,在点C 移动的过程中,BH 的最小值是( )A .52B .52C .52D .52二、填空题(15分)11.如图,等边△ABC 中,D 在BC 上,E 在AC 上,BD =CE ,连BE 、AD 交于F ,T 在EF 上,且DT =CE ,AF =50,TE =16,则FT =_____.12.如图,在⊙O 中,AB 是⊙O 的直径,10,AB AC CD DB ===,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①60BOE ︒∠=;②12CED DOB ∠=∠;③DM CE ⊥;④CM DM +的最小值是10.上述结论中正确的个数是_________.13.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF 沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为_______________________.14.如图,点I 为△ABC 的内心,连AI 交△ABC 的外接圆于点D ,若2AI CD =,点E 为弦AC 的中点,连接EI ,IC ,若6IC =,5ID =,则IE 的长为__.15.如图,平面直角坐标系中有正方形OABC ,B (4,4),动点D 从B 出发向C 运动,动点E 从A 出发向B 运动,且动点D 、E 运动的速度相同.当它们到达各自终点时停止运动,运动过程中线段OE 、AD 相交于点H ,F 是线段OC 上任意一点,当BF+FH 最小时,点F 的坐标为_____.三、解答题(75分)16.已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,CAB ∠的平分线交⊙O 于点D .(1)如图①,若BC 为⊙O 的直径,6AB =,求AC ,BD ,CD 的长.(2)如图②,若60CAB ∠=︒,求BD 的长.17.如图,在⊙O 中,AB 是直径,P 为AB 上一点,过点P 作弦MN ,∠NPB =45°.(1)若AP =2,BP =6,求MN 的长;(2)若MP =3,NP =5,求AB 的长;(3)当P 在AB 上运动时(∠NPB =45°不变),222PM +PN AB的值是否发生变化?若不变,请求出其值;若变化,请求出其范围.18.如图1,抛物线213y x bx c =++过点()4,1-A ,110,3B ⎛⎫- ⎪⎝⎭,点C 为直线AB 下方抛物线上一动点,M 为抛物线顶点,抛物线对称轴与直线AB 交于点N .(1)求抛物线的表达式与顶点M 的坐标;(2)在直线AB 上是否存在点D ,使得C ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请求出D 点坐标; (3)在y 轴上是否存在点Q ,使45AQM ∠=︒?若存在,求点Q 的坐标;若不存在,请说明理由.19.(问题提出)对于给定三角形,如何求它的外接圆直径呢?(初步思考)对于任意三角形,可以分三类进行研究:直角三角形、锐角三角形和钝角三角形.由于直角三角形的斜边就是其外接圆的直径,故我们将研究的重点放在锐角三角形和钝角三角形上.下列研究以钝角三角形作为对象(可用类似方法研究锐角三角形).(深入研究)规定△ABC是钝角三角形,∠A是钝角,⊙O是△ABC的外接圆,下面分4种情况求⊙O的直径(结果需用含有各情况中表示线段或角的字母的式子表示).(1)如图①,AB=m,∠ABC=α,∠ACB=β.思路:连接AO并延长,交⊙O于点D,连接BD.易得△ABD是直角三角形,AB=m,∠D=∠C=β,此时可求出⊙O 的直径AD的长.根据上述思路,直接写出⊙O直径的长.(2)如图②,BC=m,∠ABC=α,∠ACB=β.类比(1)的思路,连接CO并延长,交⊙O于点D,连接BD,则⊙O的直径为.(3)如图③,BC=m,AB=n,∠ABC=α.根据上述思路,直接写出⊙O直径的长.(4)如图④,BC=a,AC=b,AB=c.根据上述思路,直接写出⊙O直径的长.20.已知:如图1,在平面直角坐标系中,A(2,-1),以M(-1,0)为圆心,以AM为半径的圆交y轴于点B,连结BM并延长交⊙M于点C,动点P在线段BC上运动,长为53的线段PQ∥x轴(点Q在点P右侧),连结AQ.(1)求⊙M的半径长和点B的坐标;(2)如图2,连结AC,交线段PQ于点N,①求AC所在直线的解析式;②当PN=QN时,求点Q的坐标;(3)点P在线段BC上运动的过程中,请直接写出AQ的最小值和最大值.21.阅读下面材料:。
人教版数学九年级上学期课时练习-圆及有关概念(知识讲解)(人教版)

专题24.1 圆及有关概念(知识讲解)【学习目标】1.理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;【要点梳理】要点一、圆的定义第一定义:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.特别说明:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.第二定义:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 特别说明:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.特别说明:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.特别说明:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.特别说明:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.类型一、圆的定义1.如图,已知O 的圆心原点()0,0O ,半径长为(10,8),A a 是O 上的在第一象限的点,求a 的值.【答案】6【分析】根据圆的基本性质,可得OA =10,再由(),8A a ,可得AB =8,然后由勾股定理,求出OB =6,即可求解.解:如图,过点B 作AB ⊥x 轴于点B ,连接OA ,⊥O 的半径长为10,⊥OA =10,⊥(),8A a ,⊥AB =8,在Rt AOB 中,由勾股定理得:6OB = ,⊥(),8A a 在第一象限内,⊥0a > ,⊥6a =.【点拨】本题主要考查了圆的基本性质,勾股定理,点的坐标,熟练掌握圆的基本性质,勾股定理是解题的关键.举一反三:【变式1】 ABC 中,90C ∠=︒.求证:A B C ,,三点在同一个圆上.【分析】取AB 的中点O ,根据直角三角形的性质得到CO =AO =BO ,故可求解. 解:如图所示,取AB 的中点O ,连接CO在Rt ⊥ABC 中,⊥AO = BO ,⊥ACB = 90°,⊥CO =12AB ,即CO =AO =BO .⊥A ,B ,C 三点在同一个圆上,圆心为点O .【点拨】此题主要考查证明三点共圆,解题的关键是熟知圆的基本性质及直角三角形的特点.【变式2】如图,已知MN 为O 的直径,四边形ABCD ,EFGD 都是正方形,小正方形EFGD 的面积为16,求圆的半径.【答案】r =【分析】连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==,在Rt ⊥COD 和Rt ⊥FOG 中,分别根据勾股定理可得222(2)832x x x x +=++,解方程即可求解.解:如图,连接OC ,OF ,设O 的半径为r ,2AD x =,则12DO AD x ==, ⊥222DO CD CO +=,⊥222(2)x x r +=,⊥正方形EFGD 的面积为16,⊥4DG FG ==,⊥4OG x =+,又⊥222OF OG FG =+,⊥2222(4)4832r x x x =++=++,⊥222(2)832x x x x +=++, 解得14x =,22x =-(不合题意,舍去),⊥2224880r =+=,r =【点拨】本题考查勾股定理的应用圆的认识和性质,解题的关键是熟练掌握在一个直角三角形中两条直角边的平方和等于斜边的平方.类型二、与圆有关的概念3.如图,在O 中,半径有________,直径有________,弦有________,劣弧有________,优弧有________.【答案】OA,OB,OC,OD AB AB,BC AC,BC,BD,CD,AD ADC,BAC,BAD,ACD,DAC【分析】根据圆的基本概念,即可求解.解:在O中,半径有OA,OB,OC,OD;直径有AB;弦有AB,BC;劣弧有AC,BC,BD,CD,AD;优弧有ADC,BAC,BAD,ACD,DAC;故答案为:OA,OB,OC,OD;AB;AB,BC;AC,BC,BD,CD,AD;ADC,BAC,BAD,ACD,DAC.【点拨】本题主要考查了圆的基本概念,熟练掌握圆的半径、直径、弦、弧的概念是解题的关键.举一反三:【变式1】小于半圆的弧(如图中的________)叫做______;大于半圆的弧(用三个字母表示,如图中的_______)叫做______ .【注意】1)弧分为是优弧、劣弧、半圆.2)已知弧的两个起点,不能判断它是优弧还是劣弧,需分情况讨论.【答案】AC劣弧ABC优弧【变式2】如图,以点A为端点的优弧是____________,以点A为端点的劣弧是_____________.【答案】AEC,ADE AE,AC【分析】根据劣弧和优弧的定义求解.解:在⊥O中,以A为端点的优弧有AEC,ADE;以A为端点的劣弧有AE,AC;故答案为:AEC,ADE;AE,AC.【点拨】本题考查了圆的认识:掌握与圆有关的概念,注意:大于半圆的弧是优弧,小于半圆的弧是劣弧,半圆既不是优弧,也不是劣弧.类型三、点和圆的位置关系3.已知⊥O的半径r=5cm,圆心O到直线l的距离d=OD=3cm,在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点与⊥O位置关系各是怎样的【答案】PD=4cm,点P在⊥O上.QD>4cm,点Q在⊥O外.RD<4cm,点R在⊥O 内.【分析】依题意画出图形(如图所示),计算出P、Q、R三点到圆心的距离与圆的半径比较大小.解:连接PO,QO,RO.⊥PD=4cm,OD=3cm,⊥PO5r==.⊥ 点P 在⊥O 上.5QO r ===,⊥ 点Q 在⊥O 外.5RO r ==,⊥ 点R 在⊥O 内.【点拨】本题主要考查点与圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.举一反三:【变式1】已知:如图,△ABC 中,90,2cm,4cm AC C C B ∠==︒=,CM 是中线,以C长为半径画圆,则点A 、B 、M 与⊥C 的关系如何?【答案】点A 在⊥O 内;点B 在⊥C 外;M 点在⊥C 上【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d ,则当d =r 时,点在圆上;当d >r 时,点在圆外;当d <r 时,点在圆内.解:根据勾股定理,有AB =cm );⊥CA =2cm ,⊥点A 在⊥O 内,⊥BC =4cm ,⊥点B 在⊥C 外;由直角三角形的性质得:CM⊥M 点在⊥C 上.【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【变式2】画图说明:端点分别在两条互相垂直的直线上,且长度为5 cm的所有线段的中点所组成的图形.【答案】以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【分析】如图所示,当线段两个端点在O,F时,此时的的中点为B点,同理可知也可在A,G,H点,这些点在已知直线的交点为圆心,2.5 cm长为半径的一个圆上;当线段两个端点在C,D时,其中点为E,根据直角三角形斜边上的中点是斜边的一半知CE=DE=OE,则E点在以O为圆心2.5 cm长为半径的一个圆上;综上即可画出图形.解:如图所示,以两条已知直线的交点(垂足)为圆心,2.5 cm长为半径的一个圆.【点拨】此题主要考查点与圆的关系,解题的关键是正确理解题意,再画出图形.类型四、圆中弦的问题4、已知:线段AB = 4 cm,画图说明:和点A、B的距离都不大于3 cm的所有点组成的图形.【答案】所求图形为阴影部分(包括阴影的边界).【分析】以A,B点为圆心,半径为3作圆,重叠的部分即为所求.解:如图所示,以点A,B为圆心,3cm为半径画圆,两个圆相交的部分为阴影部分,图中阴影部分就是到点A和点B的距离都不大于3 cm的所有点组成的图形.【点拨】此题主要考查点与圆的位置关系,解题的关键是根据题意画出图形,根据所学的点与圆的位置关系的判断方法来解答.举一反三:【变式1】如图所示,AB 为O 的一条弦,点C 为O 上一动点,且30BCA ∠=︒,点E ,F 分别是AC ,BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径为7,求GE FH +的最大值.【答案】GE FH +的最大值为212. 【分析】由GE FH +和EF 组成O 的弦GH ,在O 中,弦GH 最长为直径14,而EF 可求,所以GE FH +的最大值可求.解:连结AO ,BO ,⊥30BCA ∠=︒ ⊥60BOA ∠=︒⊥AOB 为等边三角形,7AB =⊥点E ,F 分别是AC ,BC 的中点 ⊥1722EF AB ==,⊥ GH 为O 的一条弦 ⊥GH 最大值为直径14 ⊥GE FH +的最大值为7211422-=. 【点拨】利用直径是圆中最长的弦,可以解决圆中一些最值问题.【变式2】如图,已知等边⊥ABC 的边长为8,点 P 是 AB 边上的一个动点(与点 A 、B 不重合).直线 l 是经过点 P 的一条直线,把⊥ABC 沿直线 l 折叠,点 B 的对应点是点B '.当 PB =6 时,在直线 l 变化过程中,求⊥ACB'面积的最大值.【答案】【分析】如图,过点P 作PH AC ⊥,当B ',P ,H 共线时,ACB '△的面积最大,求出PH 的长即可解决问题.解:如图,过点P 作PH ⊥AC ,由题可得,B '在以P 为圆心,半径长为6的圆上运动,当HP 的延长线交圆P 于点B '时面积最大,在Rt APH 中,8AB =,6PB =,2PA ∴=, ABC 是等边三角形,60PAH ∴∠=︒,1AH ∴=,PH =6BH ∴=ACB S '∴的最大值为18(6242⨯⨯=. 【点拨】本题考查圆与三角形综合问题,根据题意构造出图形是解题的关键. 类型五、与圆周长和面积有关的问题5、如图所示,求如图正方形中阴影部分的周长.(结果可保留π)【答案】正方形中阴影部分的周长为()2060cm π+【分析】阴影部分的周长=半圆弧长+14圆弧长+正方形边长的3倍,依此计算即可求解. 解:根据题意得:1110(cm)2l d ππ==, 2210(cm 41)r l ππ=⋅=, ()1010602060cm C πππ=++=+.故正方形中阴影部分的周长为()2060cm π+.【点拨】本题主要考查列代数式,解题的关键是掌握圆的周长公式.举一反三:【变式1】如图,长方形的长为a ,宽为b ,在它的内部分别挖去以b 为半径的四分之一圆和以b 为直径的半圆.(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =8,b =4时,求阴影部分的面积(π取3).【答案】(1)阴影部分的面积=ab ﹣38πb 2;(2)14.【分析】 (1)根据阴影部分面积=矩形面积-14圆的面积-半圆的面积,结合图形14圆的半径、半圆的半径和矩形的宽的关系,并利用它们的面积公式即可求解.(2)将a ,b 的值代入(1)中所求的代数式进行计算.解:(1)14圆的半径即为矩形的宽=b ,半圆的半径为矩形宽的12=12b , 阴影部分面积=矩形面积-14圆的面积-半圆的面积即:阴影部分面积=2221113()4228ab b b ab b πππ--=- (2)因为π取3,将84a b ==,代入(1)所得的代数式得:原式=238434=148⨯-⨯⨯. 【点拨】本题考查求圆的面积的公式及根据题意列代数式,明确阴影部分面积=矩形面积-14圆的面积-半圆的面积是解题的关键. 【变式2】如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【答案】2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点拨】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.类型六、坐标系中圆的问题6、如图,点P 是反比例函数(0)k y x x=<图象上一点,PA x ⊥轴于点A ,点M 在y 轴上,M 过点A ,与y 轴交于B 、D ,已知A 、B 两点的坐标分别为()()6,00,2A B -,,PB 的延长线交M 于另一点C .(1)求M 的半径的长;(2)当45APB ∠=︒时,试求出k 的值;(3)在(2)的条件下,请求出线段PC 的长.【答案】(1) 10 (2) 48- (3) 【分析】(1)设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,求出满足要求的m ,求出MB 的长,进而可得半径;(2)由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,将P B ,代入得62a b n b -+=⎧⎨=⎩,可得过P B ,的直线的解析式为226n y x -=+,将0y =代入,求得12,02E n -⎛⎫ ⎪-⎝⎭,由45APB ∠=︒ ,90PAB ∠=︒,可知AP PE =,则()1262n n -=---,求出满足要求的n 值,得到P 点坐标,然后代入反比例函数解析式求k 即可;(3)由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+,设(),2C a a -+,由题意知,10MC =,则()2222810a a +-++=,求出符合要求的a 值,进而可得C 的坐标,然后利用勾股定理求PC 的值即可.(1)解:设()0,M m ,由题意知,22AM BM =,即()()()2226002m m --+-=-,解得:8m =-,⊥()0,8M -,⊥()2810--=,⊥M 的半径的长为10.(2)解:由题意,设()6,P n -,设过P B ,的直线的解析式为y ax b =+,交x 轴于E ,如图,将P B ,代入得62a b n b -+=⎧⎨=⎩, 解得262n a b -⎧=⎪⎨⎪=⎩, ⊥过P B ,的直线的解析式为226n y x -=+, 将0y =代入得122x n-=-, ⊥12,02E n -⎛⎫ ⎪-⎝⎭, ⊥45APB ∠=︒ ,90PAE ∠=︒,⊥45PEA ∠=︒,⊥AP AE =, ⊥()1262n n-=---, 整理得280n n -=,解得8n =,0n =(不合题意,舍去),⊥()6,8P -,将()6,8P -代入k y x =得,86k =-, 解得48k =-,⊥k 的值为48-.(3)解:由(2)可知,过P B ,的直线的解析式为28226y x x -=+=-+, 设(),2C a a -+,由题意知,10MC =,⊥()2222810a a +-++=,解得10a =, 0a =(不合题意,舍去),⊥()10,8C -,⊥PC =⊥PC 的长为【点拨】本题考查了圆的概念,反比例函数与一次函数的综合,等角对等边,勾股定理等知识.解题的关键在于对知识的熟练掌握与灵活运用.举一反三:【变式1】如图,在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,其中0a >,0b >.(1)请写出方程22(3)(4)25x y ++-=表示的圆的半径和圆心的坐标;(2)判断原点()0,0和第(1)问中圆的位置关系.【答案】(1)半径为5,圆心()3,4- (2)在圆上【分析】(1)根据题目所给的“在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆”即可直接得出答案;(2)将原点()0,0的坐标代入22(3)(4)25x y ++-=,即可判断出点与圆的位置关系.(1)解:在平面直角坐标系中,方程222()()x a y b r -+-=表示圆心是(),a b ,半径是r 的圆,∴将22(3)(4)25x y ++-=化成()2223(4)5x y --+-=⎡⎤⎣⎦, ∴22(3)(4)25x y ++-=表示的圆的半径为5,圆心的坐标为()3,4-;(2)解:将原点()0,0代入22(3)(4)25x y ++-=,左边2222(03)(04)3491625=++-=+=+==右边,∴原点()0,0在22(3)(4)25x y ++-=表示的圆上.【点拨】此题主要考查对未学知识以新定义形式出现的题型,读懂题意,根据新定义解决问题是本题的关键.【变式2】阅读下列材料:平面上两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离表示为12PP =,称为平面内两点间的距离公式,根据该公式,如图,设P (x ,y )是圆心坐标为C (a ,b )、半径为r 的圆上任意一点,则点P r =,变形可得:(x ﹣a )2+(y ﹣b )2=r 2,我们称其为圆心为C (a ,b ),半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C (3,4),半径为2的圆的标准方程为: ;(2)若已知⊥C 的标准方程为:(x ﹣2)2+y 2=22,圆心为C ,请判断点A (3,﹣1)与⊥C 的位置关系.【答案】(1)()()223425x y -+-=;(2)点A 在⊥C 的内部.【分析】(1)先设圆上任意一点的坐标(x ,y ),根据圆的标准方程公式求解即可;(2)先根据圆的标准方程求出圆心坐标,利用两点距离公式求出点A 到圆心的距离d ,然后与半径r 相比较,d >r ,点在圆外,d =r ,点在圆上,d <r ,点在圆内,即可判断点A与圆的位置关系.解:(1)设圆上任意一点的坐标为(x ,y ),⊥()()223425x y -+-=,故答案为()()223425x y -+-=;(2)⊥⊥C 的标准方程为:(x ﹣2)2+y 2=22,⊥圆心坐标为C (2,0),⊥点A (3,﹣1),AC 2 ⊥点A 在⊥C 的内部.【点拨】本题考查两点距离公式的拓展内容,圆的标准方程,正确理解题意、熟练掌握基本知识是解题关键.。
九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆习题

24.1.1 圆01 基础题知识点1 圆的有关概念1.下列条件中,能确定唯一一个圆的是(C)A .以点O 为圆心B .以2 cm 长为半径C .以点O 为圆心,5 cm 长为半径D .经过点A2.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A .1个B .2个C .3个D .4个 3.过圆上一点可以作出圆的最长弦的条数为(A)A .1条B .2条C .3条D .无数条4.如图,在⊙O 中,弦有AC ,AB ,直径是AB ,优弧有ABC ︵,CAB ︵,劣弧有AC ︵,BC ︵.5.如图,在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为5.知识点2 圆中的半径相等6.如图,MN 为⊙O 的弦,∠N =52°,则∠MON 的度数为(C)A .38°B .52°C .76°D .104°7.(朔州月考)如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=(A)A.10° B.15°C.20° D.25°8.如图,AB为⊙O的直径,点C,D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD=40°.9.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.证明:∵OB,OC是⊙O的半径,∴OB=OC.又∵∠B=∠C,∠BOE=∠COF,∴△EOB≌△FOC(ASA).∴OE=OF.∴OE+OC=OF+OB,即CE=BF.10.如图,CE是⊙O的直径,AD的延长线与CE的延长线交于点B,若BD=OD,∠AOC=114°,求∠AOD的度数.解:设∠B=x.∵BD=OD,∴∠DOB=∠B=x.∴∠ADO=∠DOB+∠B=2x.∵OA=OD,∴∠A=∠ADO=2x.∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°.∴∠AOD=180°-∠A-∠ADO=180°-4x=180°-4×38°=28°.02中档题11.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为(C) A.50° B.60° C.70° D.80°12.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有(B)A.1个 B.2个C.3个 D.4个13.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为(B)A.0个 B.1个C.2个 D.3个14.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为(B)A.2rB.3r C.r D.2r15.已知A,B是半径为6 cm的圆上的两个不同的点,则弦长AB的取值范围是0<AB≤12cm. 16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你写出线段OE与OF 的数量关系,并给予证明.解:OE =OF. 证明:连接OA ,OB. ∵OA ,OB 是⊙O 的半径, ∴OA =OB. ∴∠OAB =∠OBA. 又∵AE =BF ,∴△OAE ≌△OBF(SAS). ∴OE =OF.17.(教材P81练习T3变式)如图,在△ABC 中,BD ,CE 是两条高,点O 为BC 的中点,连接OD ,OE.求证:B ,C ,D ,E 四个点在以点O 为圆心的同一个圆上.证明:∵BD ,CE 是两条高, ∴∠BDC =∠BEC =90°. ∵点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B ,C ,D ,E 四个点在以点O 为圆心的同一个圆上. 03 综合题18.如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.解:连接EC,ED.∵AE=CE,∴∠ACE=∠A=63°.∴∠AEC=180°-63°×2=54°. ∵DE=DB,∴∠DEB=∠B.∴∠CDE=∠DEB+∠B=2∠B.∵CE=DE,∴∠ECD=∠CDE=2∠B.∴∠AEC=∠ECD+∠B=3∠B.∴3∠B=54°.∴∠B=18°.。
九年级数学上学期 24.1 圆的有关性质 同步练习卷 含解析

24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.4圆周角同步检测含解析新版新人教版

24.1.4 圆周角测试时间:30分钟一、选择题1.(2017黑龙江哈尔滨中考)如图,☉O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是( )A.43°B.35°C.34°D.44°2.(2017贵州黔东南州中考)如图,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为( )A.2B.-1 D.43.(2017山东潍坊中考)如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°4.如图,AB是☉O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B方向运动(到点B终止运动),设运动时间为t(s),连接EF,当△BEF 是直角三角形时,t=( )A.1 s C.1 s D.1 s二、填空题5.(2017浙江绍兴中考)如图,一块含45°角的直角三角板,它的一个锐角顶点A在☉O上,边AB,AC分别与☉O交于点D,E,则∠DOE的度数为.6.如图,A、B、C、D四点都在☉O上,AD是☉O的直径,且AD=6 cm,若∠ABC=∠CAD,则弦AC 的长为.三、解答题7.(2018湖北黄石大冶月考)已知:如图,△ABC内接于☉O,AF是☉O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF.(1)求证:AE是☉O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.8.如图,在△ABC中,AB=AC,以AC为直径的☉O交AB于点D,交BC于点E.(1)求证:BE=CE;(2);(3)若BD=2,BE=3,求AC的长.24.1.4 圆周角一、选择题1.答案 B ∵∠D=∠A=42°,∠APD=77°,∴∠B=∠APD-∠D=35°,故选B.2.答案 A ∵☉O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,A.3.答案 C 如图,∵A、B、D、C四点共圆,∠GBC=50°,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°-50°=40°,延长AE交☉O于点M,C.4.答案 C ∵AB是☉O的直径,∴∠ACB=90°,∵∠ABC=60°,BC=2 cm,∴AB=2BC=4 cm,∵F 是弦BC的中点,cm.当∠BFE=90°时,∠B=60°,则BE=2BF=2 cm,则AE=AB-BE=2 cm,此时当∠BEF=90°时,∠B=60°,则则此时综上所述,t=1 s故选C.二、填空题5.答案90°解析∵∠A=45°,∴∠DOE=2∠A=90°.6.答案解析如图,连接CD,∵∠ABC=∠CAD,∴AC=CD,∵AD是☉O的直径,∴∠ACD=90°.∵AD=6 cm,∴AC2+CD2三、解答题7.解析(1)证明:∵BE=CF,∴∠BAE=∠CAF.∵AF⊥BC,∴∠ADC=90°,∴∠FAC+∠ACD=90°.∵∠E=∠ACD,∴∠E+∠BAE=90°,∴∠ABE=90°,∴AE是☉O的直径.(2)如图,连接OC,∵∠AOC=2∠ABC,∠ABC=∠CAE,∴∠AOC=2∠CAE.又∵OA=OC,∴△AOC是等腰直角三角形.∵AE=8,∴AO=CO=4,8.解析(1)证明:如图,连接AE,∵AC为☉O的直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE.(2)如图,连接OD、OE,在Rt△ABE中,∠BAE=90°-∠B=90°-70°=20°,∴∠DOE=2∠DAE=40°,40°.(3)如图,连接CD,BC=2BE=6,设AC=x,∵AB=AC,BD=2,∴AD=x-2,∵AC为☉O的直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2-BD2=62-22=32,在Rt△ADC中,AD2+CD2=AC2,∴(x-2)2+32=x2,解得x=9,即AC的长为9.。
九年级数学上册第二十四章圆24.1圆的有关性质24.1.1圆同步检测含解析新人教版
24.1.1 圆测试时间:25分钟一、选择题1.(2018贵州黔东南州期中)如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2.如图所示,点M是☉O上的任意一点,下列结论:①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.其中,正确的有( )A.1个B.2个C.3个D.4个3.如图,矩形PAOB在扇形OMN内,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.变大B.变小C.不变D.不能确定二、填空题4.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.5.如图,在平面直角坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有个.三、解答题6.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.7.已知:如图,AB是☉O的直径,AC是☉O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠DAC的度数.24.1.1 圆一、选择题1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 B 以M为端点的弦有无数条,所以①错误;②正确;③正确;以M为端点的弧有无数条,所以④错误.故选B.3.答案 C 连接OP.在Rt△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.二、填空题4.答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.5.答案12解析设点P(x,y),由题意知x2+y2=100,则方程的整数解是x=6,y=8;x=8,y=6;x=10,y=0;x=6,y=-8;x=8,y=-6;x=0,y=-10;x=-6,y=-8;x=-8,y=-6;x=-10, y=0;x=-6,y=8;x=-8,y=6;x=0,y=10.所以整数点P的坐标可以是(6,8),(8,6),(10,0),(6,-8),(8,-6),(0,-10),(-6,-8),(-8,-6),(-10,0),(-6,8),(-8,6), (0,10).所以,这样的整数点有12个.三、解答题6.证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.7.解析以A为圆心,1为半径画弧,与☉O的交点即为点D,再连接AD.本题有两种情况,图中点D与点D'均符合题意.连接OD,OD'.∵AB是☉O的直径,AB=2,∴OA=OD=1.∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°.当AD与AC在直径AB的同侧时,∠DAC=60°-30°=30°;当AD与AC在直径AB的异侧时,∠D'AC=60°+30°=90°.综上所述:∠DAC的度数为30°或90°.。
九年级数学上册《第二十四章 圆的有关性质》同步练习及答案-人教版
九年级数学上册《第二十四章圆的有关性质》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知AB是半径为2的圆的一条弦,则AB的长可能是()A.4 B.5 C.6 D.72.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.直径未必是弦3.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=25°,则∠BOC的度数是()A.40°B.50°C.55°D.60°4.如图,⊙O的弦长为8cm,⊙O的半径为5cm,则弦AB的弦心距为()A.6cm B.5cm C.3cm D.2cm5.如图,在⊙O中,AB是弦∠E=30°,半径为4,OE=6.则AB的长()A.√7B.√5C.2√7D.2√56.如图,AB为⊙O的直径,点C是弧BE的中点.过点C作CD⊥AB于点G,交⊙O于点D,若BE=8,BG=2则⊙O的半径长是()A.5 B.6.5 C.7.5 D.8⌢的三等分点∠COD=34°,则∠AOE的7.如图,AB是⊙O的直径,点E在⊙O上,点D,C是BE度数是()A.78°B.68°C.58°D.56°8.如图,在⊙O中AB=CD,若∠ABD=25°,则∠BED的度数为()A.100°B.120°C.130°D.150°二、填空题9.如图,点A、B、C在⊙O上,且AC∥OB,若∠BOC=42°,则∠AOC的度数为∘.10.如图,⊙O的半径OD垂直于弦AB于点C,连结AO并延长交⊙O于点E,连结BE.若AB=16,CD= 4,则BE的长为.11.石拱桥是中国传统桥梁四大基本形式之一,它的主桥拱是圆弧形.如图,已知某公园石拱桥的跨度AB=16米,拱高CD=4米,那么桥拱所在圆的半径OA=米.12.如图,在△ABC中∠ACB=90°,∠B=36°以C为圆心,CA为半径的圆交AB于点D,交BC于点E.求弧DE所对的圆心角的度数.13.如图,点A,B,C在⊙O上∠ACB=35°,则∠OBA等于°.三、解答题14.如图,已知四边形ABCD内接于⊙O.求证:∠A+∠C=180°.⌢=CD⌢.若∠A=50°,求∠B的度数.15.如图,四边形ABCD内接于⊙O,AB为直径BC16.如图,AB是⊙O的一条弦,点C是AB的中点,连接OC并延长交劣弧AB于点D,连接OB,DB,若AB=4,CD=1求△BOD的面积.17.如图OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD;(2)若CD=8,EF=2求⊙O的半径.⌢的中点,OD与AC交于点E. 18.如图,AB是半圆O的直径,C、D是半圆O上的两点,D为AC(1)证明:OD∥BC(2)若∠B=70°求∠CAD的度数;(3)若AB=4,AC=3求DE的长.参考答案1.A2.B3.B4.C5.C6.A7.A8.C9.9610.1211.1012.18°13.5514.证明:如图,连接OD ,OB∵BD⌢=BD ⌢,BCD ⌢=BCD ⌢ ∴∠C =12∠BOD ,∠A =12(360°−∠BOD) ∴∠A +∠C =180°.15.解:如图,连接AC .∵BC⌢=CD ⌢∴∠DAC=∠BAC.∵∠DAB=50°∴∠BAC=12∠DAB=25°.∵AB为直径∴∠ACB=90°.∴∠B=90°−∠BAC=65°.16.解:设OD=x,则OB=x.∵点C是AB的中点,OC过圆心O∴OC⊥AB.∵AB=4,CD=1∴BC=12AB=2OC=OD−CD=x−1.∵在Rt△BCO中OB2=OC2+BC2∴x2=(x−1)2+22.解得,x=52.∴OD=52.∴S△BOD=12⋅OD⋅BC=52.17.(1)证明:∵OA=OB,OE⊥AB,OE是半径∴AF=BF,CF=DF.∴AF−CF=BF−DF即AC=BD(2)解:如图,连结OC∵OE⊥AB,CD=8∴CF=DF=4,∠OFC=90°.∵EF=2∴42+(r−2)2=r2解得r=5.答:⊙O的半径为5.18.(1)证明:∵D为AC⌢的中点∴AD⌢=DC⌢∴OD⊥AC∵AB是直径∴∠ACB=90°,即BC⊥AC∴OD∥BC;(2)解:如图所示,连接OC∵D为AC⌢的中点∴OD⊥AC,AD⌢=DC⌢∴∠AOD=∠COD∵OD∥BC∵∠AOD=∠B=70°∴∠CAD=12∠COD=35°;(3)解:∵AB为直径∴∠ACB=90°∵AB=4,AC=3∴BC=√AB2−AC2=√42−32=√7,OA=OD=2 ∵D为AC⌢的中点∴AE=CE∵OA=OB∴OE=12BC=√72∴DE=OD−OE=2−√72.。
人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
人教版九年级数学上册 第24章 圆 24.1 圆的有关性质 第6课时 圆内接四边形【习题课件】
第二十四章 圆
24.1 圆的有关性质 第6课时 圆内接四边形
习题链接
提示:点击 进入习题
1B
2A
3C
4 70° 5C 6B
答案显示
7C 8B
9 105°
习题链接
提示:点击 进入习题
10 C
11 C
12 C
13 D
答案显示
16 证明略; π
14 (-3 3,0) 17 证明略
15 证明略
夯实基础·逐点练
1.下列说法正确的是( B ) A.在圆内部的多边形叫做圆内接多边形 B.过四边形的四个顶点的圆叫做这个四边形的外接圆 C.任意一个四边形都有外接圆 D.一个圆只有唯一一个内接四边形
夯实基础·逐点练
2.下列多边形中一定有外接圆的是( A ) A.三角形 B.四边形 C.五边形 D.六边形
夯实基础·逐点练
8.【2017·牡丹江】如图,四边形ABCD内接于⊙O,AB 经过圆心,∠B=3∠BAC,则∠ADC等于( B ) A.100° B.112.5° C.120° D.135°
夯实基础·逐点练
9.如图,四边形ABCD是圆内接四边形,E是BC的延长线 上一点,若∠BAD=105°,则∠DCE=___1_0_5_°__.
EO并延长交⊙O于点F,连接BF,CF,若∠EDC=
135°,CF=2 2,则AE2+BE2的值为( C )
A.8
B.12
C.16
D.20
夯实基础·逐点练
12.【2017·潍坊】如图,四边形ABCD为⊙O的内接四边 形,延长AB与DC相交于点G,AO⊥CD,垂足为E, 连接BD,∠GBC=50°,则∠DBC的度数为( C ) A.50° B.60° C.80° D.85°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 (人教版)九年级上 第二十四章 24.1 圆的有关性质 课时练 (锦州中学)
学校: 姓名: 班级: 考号: 评卷人 得分 一、选择题
1. 如图所示的圆中,下列各角是圆心角的是 ( )
A. ∠ABC B. ∠AOB C. ∠OAB D. ∠OBC 2. 下列命题中,不一定成立的是 ( ) A. 圆既是中心对称图形又是轴对称图形
B. 弦的垂线经过圆心且平分这条弦所对的弧
C. 弧的中点与圆心的连线垂直平分这条弧所对的弦
D. 垂直平分弦的直线必过圆心 3. 如图所示,在半径为2 cm的圆O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为
( )
A. 60° B. 90° C. 120° D. 150° 4. 如图所示,AB是☉O的直径,点C,D在☉O上,∠BOC=110°,AD∥OC,则∠AOD= ( )
A. 70° B. 60° C. 50° D. 40° 5. 如图,四边形ABCD是☉O的内接四边形,若∠BOD=88°,则∠BCD的度数是 ( )
A. 88° B. 92° C. 106° D. 136° 6. 已知☉O的直径CD=10cm,AB是☉O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为
( ). A. 2 cm B. 4 cm C. 2 cm或4 cm D. 2 cm或4 cm 7. 如图所示,☉O的半径OD⊥弦AB于点C,连接AO并延长交☉O于点E,连接EC.若
AB=8,CD=2,则EC的长为 ( )
A. 2 B. 8 C. 2 D. 2 8. 如图所示,
,AD为☉O的弦,∠BAD=50°,则∠AED等于 ( ) A. 50° B. 60° C. 70° D. 75° 9. 如图,△ ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,
则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤ =
,正确
结论的个数是( )
A. 2 B. 3 C. 4 D. 5 10. 如图,已知点C,D是半圆 上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.
则下列结论:①∠CBA=30°;②OD⊥BC;③OE= AC;④四边形AODC是菱形;正确的个数是 ( )
A. 1 B. 2 C. 3 D. 4 评卷人 得分 二、填空题
11. 如图所示,AB是☉O的直径,C,D,E都是☉O上的点,则∠1+∠2= .
12. 如图所示,☉O的直径AB⊥弦CD,且∠BAC=40°,则∠BOD= .
13. 一点到☉O的最近距离为4 cm,最远距离为9 cm,则该圆的半径是 . 14. 圆内接四边形ABCD的内角∠A∶∠B∶∠C=2∶3∶4,则∠D= 度. 15. 如图5,已知AB是⊙O的弦,半径OA=6 cm,∠AOB=120°,则AB=________cm.
16. 如图,已知AB是☉O的直径,D是圆上任意一点(不与点A,B重合),连接BD,并延长到点C,使
DC=BD,连接AC,则△ABC的形状是 三角形. 第 3 页
17. 如图,MN是⊙O的直径,矩形ABCD的顶点A,D在MN上,顶点B,C在⊙O上,若⊙O的半径
为5,AB=4,则AD边的长为 .
评卷人 得分 三、解答题
18. (新定义题)如图所示,A,B是☉O上的两个定点,P是☉O上的动点(点P不与点A,B重合),我
们称∠APB是☉O上关于点A,B的滑动角. 已知∠APB是☉O上关于点A,B的滑动角.
(1)若AB是☉O的直径,则∠APB= °; (2)连接AB,若☉O的半径是1,AB= ,求∠APB的度数. 19. 如图所示,AB是☉O的一条弦,OD⊥AB,垂足为C,交☉O于点D,点E在☉O上.
(1)若∠AOD=52°,求∠DEB的度数; (2)若OC=3,OA=5,求AB的长. 20. (探究题)如图所示,已知△ABC是等边三角形,以BC为直径的☉O分别交AB,AC于点
D,E. (1)求证:△DOE是等边三角形. (2)如图所示,若∠A=60°,AB≠AC,则第1问中结论是否成立?如果成立,请给出证明;如果不成立,
请说明理由.
参考答案 1. 【答案】B【解析】圆心角指顶点在圆心的角,满足此条件的只有B选项. 2. 【答案】B【解析】弦的垂直平分线经过圆心且平分这条弦所对的弧,而并非是弦的垂线经
过圆心且平分这条弦所对的弧.注意:弦的垂线不一定经过弦的中点,它和垂直平分线不同. 3. 【答案】C【解析】半弦长为 cm,则垂心距为1cm,垂线与半径夹角为60度,所以弦所对
的圆心角为120度.综合利用垂径定理及圆心角定理. 4. 【答案】D【解析】本题考查圆的有关性质,理解各个性质是解题的关键,
∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°.∵AD∥OC,OD=OA, ∴∠D=∠A=∠AOC=70°.∴∠AOD=180°-2∠A=40°,故选D. 5. 【答案】D【解析】本题考查圆内接四边形的性质、圆心角和圆周角的关系,难度中等,根
据圆内接四边形得出∠A+∠C=180°,再根据等弧所对的圆心角和圆周角的关系得出∠A=44°,进而得出∠BCD=136°,故选D. 6. 【答案】C【解析】连接AC,AO,如图①.∵☉O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM= AB= ×8=4(cm),OD=OC=5(cm), 当C点位置如图①所示时,∵OA=5(cm),AM=4(cm),CD⊥AB,
∴OM= - - =3(cm),∴CM=OC+OM=5+3=8(cm), ∴AC= =4 (cm); 当C点位置如答图②所示时,同理可得OM=3cm,∵OC=5cm, ∴MC=5-3=2(cm),在Rt△AMC中,AC= =2 cm.故选C.
本题运用了分类讨论思想,先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论,容易遗漏其中一种情况而出错. 7. 【答案】D【解析】由题意知AC=BC=4,设☉O的半径为r,则OC=r-2,在Rt△AOC中,
∵AO=r,AC=4,OC=r-2,∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5, ∴AE=2r=10,连接BE,如图, ∵AE是☉O的直径,∴∠ABE=90°,
在Rt△ABE中,∵AE=10,AB=8,∴BE= - - =6, 在Rt△BCE中,∵BE=6,BC=4,∴CE= =2 .故选D.
8. 【答案】D【解析】因为
,∠BAD=50°,所以劣弧BD对应50度的角,则劣弧
AB,BC,CD都对应着25度的角.为因此,∠AED等于75°,故选D. 9. 【答案】B【解析】由图可知,连接AO,BO,AO=BO,D为中点,
∴DE⊥AB,AE=BD, = , = ,故选B 10. 【答案】D【解析】连接OC,BD,因为C,D是半圆 上的三等分点,所以
△AOC,△COD,△BOD都是等边三角形,所以AC=CD=OD=AO,即四边形AODC是菱形,④正
确;∠CAO=∠DOB=60°,所以AC∥OD,所以∠OEB=∠ACB,△OBE∽△ABC,所以 = ,即OE= AC,③正确;又因为AB是直径,所以∠ACB=90°,所以∠OEB=90°,即OD⊥BC,②正确;因为三角形内角和等于180°,所以∠CBA=180°-∠ACB-∠CAB=30°,①正确;所以四个结论均是正确的.故选D. 11. 【答案】90° 12. 【答案】80°
13. 【答案】2.5cm或6.5cm
14. 【答案】90
15. 【答案】6 16. 【答案】等腰 第 5 页
17. 【答案】6
18.(1) 【答案】90
(2) 【答案】连接OA,OB.在△AOB中,∵OA=OB=1,AB= ,
∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧AB上时,∠APB= ∠AOB=45°.当点P在劣弧AB上时,∠APB= (360°-∠AOB)=135°. 综上可知,∠APB的度数为45°或135°. 19.(1) 【答案】∵OD⊥AB,∴AD=BD.又∵∠AOD=52°,
∴∠DEB= ∠AOD=26°.
(2) 【答案】∵OD⊥AB,∴AC=BC,在Rt△AOC中,AC= - - =4,
∴AB=2AC=8. 20.(1) 【答案】由题意知∠B=∠C=60°.
∵OB=OC=OE=OD, ∴△OBD和△OEC都为等边三角形. ∴∠BOD=∠EOC=60°.∴∠DOE=60°. ∴△DOE为等边三角形. (2) 【答案】当∠A=60°,AB≠AC时,第1问中的结论仍然成立.
证明如下:连接CD.∵BC为☉O的直径, ∴∠BDC=90°.∴∠ADC=90°. ∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°. 又∵OD=OE,∴△DOE为等边三角形.