【配套K12】山东省潍坊市2018届高三数学上学期期中试题 理(扫描版,无答案)
山东省潍坊市2023-2024学年高三上学期期中考试语文试题(解析版)

山东省潍坊市2023-2024学年高三上学期期中考试语文试题注意事项:1.答卷前,考生务必将自己的姓名、考生号和座号填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
毫无疑问,科学家们很早就懂得科学中蕴涵着奇妙的美。
哥白尼伟大著作《天体运行论》第一句话就是“在哺育人的天赋才智的多种多样的科学和艺术中,我认为首先应该用全副精力来研究那些与最美的事物有关的东西”。
我试图用一些词来定义科学中的美,显然,和谐、优雅、一致、简单、整齐等都与科学中的美,特别是与理论物理中的美有关。
但是,思索着怎样把这些词组合在一起去形成“美”的定义时,我开始意识到,事实上物理学中美的概念不是固定的。
我们对理论物理学中美的理解是变化的。
对于这种变化,影响最显著最重要的是理论物理学日益增长的数学化。
人们公认伽利略时代是现代物理诞生时期。
他教导科学界说,如果你明智地选择了你观察到的事物,你将会发现,从一些纯化的和理想化的关于自然界的实验中得出的物理定律,可以用精确的数学语言来描述。
伽利略的观念是一种深刻的美的观念。
后来是牛顿,我们都知道他给了我们一个完整的经典力学体系。
通过他的工作,物理学的数学化取得了进展,并被认为是非常严格的数学化。
在最近的物理学中,数学化正在加速进行。
量子力学概念的数学基础是称之为希尔伯特空间的漂亮而抽象的数学理论,非阿贝尔规范物理理论是令人惊奇地建立在纤维丛几何上的,而纤维丛几何与20世纪二三十年代的物理学没有任何关系,是由数学家们独立讨论的。
所有这些数学发展对20世纪的物理学是非常重要的,它们相当抽象又非常美丽。
也许现在我们可以开始去了解,物理学数学化的加速导致了理论物理学中美的概念发生了怎样的变化。
山东省潍坊市2023届高三上学期期中考试 数学试题(含解析)

试卷类型: A山东省潍坊市2023届高三上学期期中考试高三数学2022. 11本试卷共4页.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}240,{|lg(1)|M x x N x y x =-==-…∣,则M N ⋃= A.(,2]-∞ B.(,2]-∞- C.[2,1)- D.(,2][2,)-∞-⋃+∞ 2.若命题“2[1,2],30x x a ∃∈-<”为假命题,则实数a 的取值范围是 A.(,4]-∞ B.[2,)+∞ C.(,3]-∞ D.(,2)-∞3.设4,0,,sin ,cos()255παβααβ⎛⎫∈=+=- ⎪⎝⎭,则cos β=A. D. 4.为调查推广眼保健操对改善学生视力的效果,学校决定采用随机数表法从高三800名学生中随机抽取80名进行调查,将800名学生进行编号,编号分别为001,002,,799,800.下面提供的是随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从随机数表中第5行第6列开始向右依次读取3个数据作为抽取学生的编号,则抽到的第5名学生的编号是 A.007 B.253 C.328 D.7365.在学习《数学探究活动:得到不可达两点之间的距离》时,小明所在的小组决定测量本校人工湖两侧$C,D$两点间的距离,除了观测点,C D 外,他们又选了两个观测点12,P P ,测得121221,,PPm PP D P PD αβ=∠=∠=,则利用已知观测数据和下面三组新观测角中的一组,就可以求出,C D 间的距离是①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP ∠;③1PDC ∠和1DCP ∠. A.①和② B.①和③ C.②和③ D.①和②和③6.函数(1)y k x =-与ln y x =的图像有且只有一个公共点,则实数k 的取值范围为 A.1k = B.k e … C.1k =或0k … D.0k …或1k =或k e …7.对于函数()()f x x D ∈,若存在常数(0)T T >,使得对任意的x D ∈,都有()()f x T f x +…成立,我们称函数()f x 为“T 同比不增函数”.若函数()cos f x kx x =+是“3π同比不增函数",则实数k 的取值范围是 A.3,π⎡⎫+∞⎪⎢⎣⎭ B.3,π⎛⎤-∞- ⎥⎝⎦ C.3,π⎡⎫-+∞⎪⎢⎣⎭ D.3,π⎛⎤-∞ ⎥⎝⎦8.已知数列{}n a 的前n 项和为n S ,满足()1*132n n n a S n -⎛⎫+=-∈ ⎪⎝⎭N ,则下列结论正确的是A.23a a <B.68742a a a +=C.数列{}2nn a 是等比数列 D.13n S <…二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.某市新冠肺炎疫情工作取得阶段性成效,为加快推进各行各业复工复产,对当地进行连续11天调研,得到复工复产指数折线图(如图所示),下列说法错误..的是A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数的极差大于复工指数的极差C .第3天至第11天复工复产指数均超过80%D .第9天至第11天复工指数的增量大于复产指数的增量 10.已知0,0a b 厖,且1a b +=,则A.22a b +…B.221a b +…C.23log 12a b ⎛⎫-+>- ⎪⎝⎭D.ln(1)a a +…的充要条件是1b = 11.佼波那契数列又称黄金分割数列,因意大利数学家列昂纳多-斐波那契以兔子繁殖为例子而引人,故又称为“兔子数列”,在现代物理、准晶体结构、化学等领域都有直接的应用.在数学上,芠波那契数列被以下递推的方法定义:数列{}n a 满足:121a a ==,()*21n n n a a a n ++=+∈N.则下列结论正确的是A.813a =B.2023a 是奇数C.2222123202*********a a a a a a ++++= D.2022a 被4除的余数为012.定义在R 上的函数()f x 的导函数为()f x ',对于任意实数x ,都有2()()xf x ef x -=,且满足22()()21x f x f x x e '-+=+-,则A.函数2()()F x e f x =为偶函数 B.(0)0f = C.不等式()x xxe f x e e +<的解集为(1,)+∞ D.若方程2()()0f x x a x--=有两个根12,x x ,则122x x a +> 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.522x x ⎛⎫+ ⎪⎝⎭展开式中4x 的系数为_______.14.设函数sin ,0,()(1)1,0,x x f x f x x π>⎧=⎨+-⎩…,则53f ⎛⎫-= ⎪⎝⎭________. 15.一个盒子中有4个白球,m 个红球,从中不放回地每次任取1个,连取2次,已知第二次取到红球的条件下,第一次也取到红球的概率为59,则m =________. 16.在ABC 中,点D 是$BC$上的点,$AD$平分,BAC ABD ∠面积是ADC 面积的2倍,且AD AC λ=,则实数λ的取值范围为________;若ABC 的面积为1,当BC 最短时,λ=______.(第一空2分,第二空3分) 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚. 17.(10分)定义在(1,1)-上的函数()f x 和()g x ,满足()()0f x g x +-=,且1()log 2a xg x +=,其中1a >. (1)若122f ⎛⎫=⎪⎝⎭,求()f x 的解析式;(2)若不等式()1f x >的解集为1,3m ⎛⎫- ⎪⎝⎭,求m a -的值. 18.(12分)在(1)(0)1f =,(2)函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,(3)函数()f x 图像上相邻两个对称中心的距离为π,这三个条件中任选两个补充在下面问题中,并给出问题的解答.已知函数()2sin()02,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足 (1)求函数()f x 的解析式及单调递增区间;(2)在锐角ABC 中,()2,f B b ==求ABC 周长的取值范围. 19.(12分)2022年2月22日,中央一号文件发布,提出大力推进数字乡村建设,推进智慧农业发展.某乡村合作社借助互联网直播平台,对本乡村的农产品进行销售,在众多的网红直播中,随机抽取了10名网红直播的观看人次和农产品销售量的数据,如下表所示:参考数据:()()10102211600,768,80i i i i x x y y x==-=-==∑∑.(1)已知观看人次x 与销售量y 线性相关,且计算得相关系数16r =,求回归直线方程ˆˆˆy bx a =+; (2)规定:观看人次大于等于80(万次)为金牌主播,在金牌主播中销售量大于等于90(百件)为优秀,小于90(百件)为不优秀,对优秀赋分2,对不优秀赋分1.从金牌主㨨中随机抽取3名,若用X 表示这3名主播赋分的和,求随机变量X 的分布列和数学期望.(附:()()()121ˆˆˆ,niii nii x x y y bay bx x x ==--==--∑∑,相关系数()()niix x y y r --=∑20.(12分)已知等差数列{}n a 的前n 项和为512,35,8n S S a a =+=,记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T . (1)求数列{}n a 的通项公式及n S ;(2)是否存在实数λ,使得211(1)n n T λ+--…恒成立?若存在,求出实数λ的取值范围;若不存在,请说明理由.21.(12分)为了解新研制的抗病毒药物的疗效,某生物科技有限公司进行动物试验.先对所有白鼠服药,然后对每只白鼠的血液进行抽样化验,若检测样本结果呈阳性,则白鼠感染病毒;若检测样本结果呈阴性,则白鼠末感染病毒.现随机抽取()*,2n n n ∈N …只白鼠的血液样本进行检验,有如下两种方案: 方案一:逐只检验,需要检验n 次;方案二:混合检验,将n 只白鼠的血液样本混合在一起检验,若检验结果为阴性,则n 只白鼣末感染病毒;若检验结果为阳性,则对这n 只白鼠的血液样本逐个检验,此时共需要检验1n +次.(1)若10n =,且只有两只白鼠感染病毒,采用方案一,求恰好检验3次就能确定两只咸染病聿白业的概率; (2)已知每只白鼠咸染病暃的概率为(01)p p <<.①采用方案二,记检验次数为X ,求检验次数X 的数学期望;②若20n =,每次检验的费用相同,判斨哪种方案检验的费用更少?并说明理由. 22.(12分)已知函数1()ln f x x a x x=++,其中a ∈R . (1)求函数()f x 的最小值()h a ,并求()h a 的所有零点之和; (2)当1a =时,设()()g x f x x =-,数列{}()*n x n ∈N 满足1(0,1)x ∈,且()1n n xg x +=,证明:1322n n n x x x ++++>.高三数学试题参考答案及评分标准2022.11一、单项选择题(每小题5分,共40分) 1—5 ACCAD 6—10 CBD二、多项选择题(每小题5分,共20分)9.ABD10.AD11.BCD12.ABD三、填空题(每小题5分,共20分) 13.40142- 15.616.40,3⎛⎫ ⎪⎝⎭四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.解:(1)由题意知,()()2log 1a f x g x x=--=-, 又因为122f ⎛⎫=⎪⎝⎭,所以log 42a =,即2a =. 所以函数()f x 的解析式是()22log 111y x x=-<<-. (2)由()1f x >,得21a x >-,由题意知10x ->,所以211x a-<<, 所以21131a m ⎧-=-⎪⎨⎪=⎩,即321a m ⎧=⎪⎨⎪=⎩,所以12m a -=-. 18.解:(1)若选①②,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或()526k k πϕπ=+∈Z ,又因为02πϕ<<,所以6πϕ=,由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以432362k πππωπ+=+,()k ∈Z , 所以312k ω=+,()k ∈Z ,又因为02ω<<,所以1ω=,所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R ,当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,若选①③,由①得,()02sin 1f ϕ==,所以26k πϕπ=+或526k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,由③得,函数()f x 图像上相邻对称中心的距离为π,所以2T π=,所以1ω=, 所以()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k Z ∈,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k Z ∈,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z若选②③,由③得,函数()f x 图像上相邻对称中心的距离为π.所以2T π=,所以1ω=, 由②得,函数()f x 图像的一个最低点为4,23π⎛⎫-⎪⎝⎭,所以431232k ππϕπ⨯+=+,()k ∈Z ,即26k πϕπ=+,()k ∈Z ,又因为02πϕ<<,所以6πϕ=,所以()2sin 6f x x π⎛⎫=+⎪⎝⎭,x ∈R , 当22262k x k πππππ-+≤+≤+,()k ∈Z ,函数()f x 单调递增,即22233k x k ππππ-+≤≤+,()k ∈Z ,所以函数()f x 单调递增区间为22,233k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,(2)()2sin 26f B B π⎛⎫=+= ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭,又因为锐角三角形,所以3B π=.因为b =2sin bB==,由正弦定理可得22sin 2sin 3a A C π⎛⎫==- ⎪⎝⎭,2sin c C =, 所以ABC △的周长22sin 2sin 2sin 2sin 36ABC L a b c A C C C C ππ⎛⎫⎫=++=++=-+=+ ⎪⎪⎝⎭⎭△因为ABC △是锐角三角形,由022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,得62C ππ<<,所以2,633C πππ⎛⎫+∈ ⎪⎝⎭,所以sin 62C π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以(36ABC L C π⎛⎫=++ ⎪⎝⎭△, 所以ABC △周长的取值范围为(3+.19.解:(1)因为()()niix x y y r --=∑,所以()()1016iix x y y --=∑所以()()101660i i i x xy y =--=∑,所以()()()10110216601160010iii i i x x y y b x x==--===-∑∑, ()18087778310y =+++=118380510a y bx =-=-⨯=-,所以回归直线方程为11510y x =-. (2)金牌主播有5人,2人赋分为2,3人赋分为1, 则随机变量X 的取值范围是{}3,4,5()33351310C P X C ===,()122335345C C P X C ===,()2123353510C C P X C ===, 所以X 的分布列为:所以()345105105E X =⨯+⨯+⨯=.20.解:(1)因为{}n a 为等差数列,设公差为d ,首项为1a ,53535S a ==,解得37a =,12128a a a d +=+=,又因为3127a a d ++=,13a =,2d =所以()32121n a n n =+-=+()21122n n n S na d n n -=+=+. (2)证明:由(1)知22n S n n =+,所以()21111112222n S n n n n n n ⎛⎫===- ⎪+++⎝⎭, 所以11111111111111131121324112212122212n T n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+-=+--=-- ⎪ ⎪ ⎪-++++++⎝⎭⎝⎭⎝⎭,因为n T 为递增数列,所以当1n =时,n T 取得最小值为131112211123⎛⎫--= ⎪++⎝⎭,又因为0n >,所以34n T <,所以1334n T ≤<.当n 为奇数时,21n T λ-≤恒成立,即2113λ-≤,解得λ≤≤, 当n 为偶数时,21n T λ-≤-恒成立,即2314λ-≤-,解得1122λ-≤≤, 综上所述,实数λ的取值范围为11,22⎡⎤-⎢⎥⎣⎦. 21.解:(1)根据题意恰好在第一、三次确定两只感染病毒白鼠的概率12811109845P =⨯⨯=, 恰好在第二、三次确定有两只感染病毒白鼠的概率28211109845P =⨯⨯=, 所以恰好检验3次就能确定有两只白鼠感染病毒的概率28182121098109845P =⨯⨯+⨯⨯=.(2)①设检验次数为X ,可能取得值为1,1n +.则()()11nP X p ==-,()()111nP X n p =+=--,所以()()()()()()111111n n nE X p n p n n p ⎡⎤=-++--=+--⎣⎦.②方案二的检验次数期望为()()()11n E X n n p =+--,所以()()20201201E X p -=-⨯-, 设()()201201g p p =-⨯-,因为011p <-<,所以()g p 单调递增, 由()0g p =得1p =01p <<()0g p <,则()20E X <, 当11p <<时,()0g p >,则()20E X >, 故当01p <<时,选择方案二检验费用少,当11p -<<时,选择方案一检验费用少,当1p = 22.解:(1)函数()f x 的定义域为()0,+∞,且()221x ax f x x+-'=,令()0f x '=,得210x ax +-=,解得1x =2x =(舍去),所以()f x 在()10,x 上单调递减,在()1,x +∞单调递增,所以()()111min 11ln f x f x x a x x ==++,即()ln 2ah a a =,由1x 是方程210x ax +-=的根,则111a x x =-,所以()1111111ln h a x x x x x ⎛⎫=++- ⎪⎝⎭,令()11ln H x x x x x x ⎛⎫=++- ⎪⎝⎭,可知()1H H x x ⎛⎫= ⎪⎝⎭. 又因为()211ln H x x x ⎛⎫'=-+⎪⎝⎭,所以()H x 在()0,1单调递增,在()1,+∞单调递减. 而222130H e e e⎛⎫=-<⎪⎝⎭,()120H =>,所以有且仅有唯一()00,1x ∈,使得()00H x =, 所以()011,x ∈+∞,有010H x ⎛⎫= ⎪⎝⎭.所以方程()0H x =有且仅有两个根0x ,01x , 即1111111ln 0x x x x x ⎛⎫++-= ⎪⎝⎭有且仅有两根0x ,01x , 又因为()11110a x x x =->单调递减,所以()y h a =有两个零点设为1a ,2a (不妨设12a a <),则12000011101a a x x x x ⎛⎫⎪⎛⎫ ⎪+=-+-= ⎪ ⎪⎝⎭ ⎪⎝⎭.(2)由题意知1a =时,()()1ln g x f x x x x =-=+,因为()22111x g x x x x-'=-=, 令()0g x '>,得1x >,()0g x '<,得1x <.所以()g x 在()0,1上递减,在()1,+∞递增,则有()()11g x g ≥=,因为()10,1x ∈,所以()211x g x =>,()321x g x =>,…,()11n n x g x +=>.令()()1ln m x g x x x x x=-=+-,1x ≥,()2222131240x x x m x x x ⎛⎫--- ⎪-+-⎝⎭'==<,所以()m x 在区间[)1,+∞单调递减,所以()()10m x m ≤=. 所以()21110n n n n x x g x x ++++-=-<,即21n n x x ++< 又因为函数()m x 单调递减,所以()()21n n m x m x ++>, 即22112111ln ln n n n n n n x x x x x x +++++++->+-,即3221n n n n x x x x ++++->-,所以1322n n n x x x ++++>.。
2024学年山东省潍坊市普通高中高三物理第一学期期中经典试题含解析

2024学年山东省潍坊市普通高中高三物理第一学期期中经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、两个物体A、B的质量分别为m1和m2,并排静止在水平地面上,用同向水平拉力F1、F2分别作用于物体A和B上,各自作用-段时间后撤去.两物体运动的速度时间图象分别如图线a、b所示,已知拉力F1、F2分别撤去后,物体做减速运动过程的速度_时间图线彼此平行(相关数据已在图中标出)。
由图中信息可以得出( )A.力F1一定大于F2B.两个物体A、B与水平地面的动摩擦因数相同C.A物体运动的位移比B物体运动的位移大D.两图线的交点代表两物体相遇2、某学校组织趣味课外活动——拉重物比赛,如图所示。
设重物的质量为m,重物与地面间的动摩擦因数为μ,重力加速度为g。
某同学拉着重物在水平地面上运动时,能够施加的最大拉力为F,求重物运动时的最大加速度为()A.FmB.-FgmμC21-FgmμμD21-Fgmμμ+3、如图所示,轻质且不可伸长的细绳一端系一质量为m的小球,另一端固定在天花板上的O 点.则 小球在竖起平面内摆动的过程中,以下说法正确的是( )A .小球在摆动过程中受到的外力的合力即为向心力B .在最高点A 、B ,因小球的速度为零,所以小球受到的合外力为零C .小球在最低点C 所受的合外力,即为向心力D .小球在摆动过程中使其速率发生变化的力为绳子的拉力4、一辆汽车在平直的公路上运动,运动过程中先保持某一恒定加速度,后保持恒定的牵引功率,其牵引力和速度的图像如图所示,若已知汽车的质量m ,牵引力1F 和速度1v 及该车所能达到的最大速度3v ,运动过程中阻力大小恒定,则根据图像所给信息,下列说法正确的是( )A .汽车运动中的最大功率为13F vB .速度为2v 时的加速度大小为112F v mvC .汽车行驶过程中所受阻力113F v vD .恒定加速时,加速度为1F m5、如图所示,质量为m 的木块在质量为M 的长木板上,木块受到向右的拉力F 的作用而向右滑行,木板处于静止状态,已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。
2023-2024学年山东省聊城市高三(上)期中数学试卷【答案版】

2023-2024学年山东省聊城市高三(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x|0<x <5},B ={x|x+1x−4≤0},则A ∩B =( ) A .[﹣1,4]B .[﹣1,5)C .(0,4]D .(0,4)2.在平面直角坐标系xOy 中,已知角α的始边是x 轴的非负半轴,终边经过点P (﹣1,2),则cos (π﹣α)=( )A .√55B .2√55C .−√55D .−2√553.设复数z 满足2z +z =3+i ,则z i=( ) A .1+iB .1﹣iC .﹣1+iD .﹣1﹣i4.定义在R 上的函数f (x ),满足f (x )=f (﹣x ),且在(﹣∞,0]为增函数,则( ) A .f(cos2023π)<f(log120232022)<f(212023)B .f(212023)<f(cos2023π)<f(log 120232022) C .f(212023)<f(log 120232022)<f(cos2023π)D .f(log 120232022)<f(cos2023π)<f(212023)5.已知命题p :∃x ∈[1,4],log 12x <2x +a ,则p 为假命题的一个充分不必要条件是( )A .a >﹣1B .a >﹣11C .a <﹣1D .a <﹣116.函数f(x)=sin(2x +π6)向右平移m (m >0)个单位后,所得函数g (x )是偶函数,则m 的最小值是( ) A .−π6B .π6C .π3D .2π37.已知x >0,y >0,且x +2y =1,则3x +9y 的最小值为( ) A .2√3B .3√2C .3√3D .2√28.已知0<α<π2,2sin β﹣cos α=1,sinα+2cosβ=√3,则cos(α+π3)=( ) A .14B .−14C .13D .−13二、多项选择题:本题共4小题,每小题5分,共20分。
2023-2024学年山东省潍坊市高三(上)期中数学试卷【答案版】

2023-2024学年山东省潍坊市高三(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣22.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣13.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .34.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .86.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .18.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√21212.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 .14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 .15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为;在Ω中,异面直线AB与DE的距离为.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式;(2)求函数y=f(x+5π12)+f(x)在[−π3,π2]上的值域.19.(12分)在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AD=2CD=2,AA1=A1D=√5,A1C=√6.(1)证明:平面AA1D1D⊥平面ABCD;(2)求二面角A1﹣CD﹣D1的余弦值.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD (道路的宽度忽略不计),已知CD 把三角形空地分成两个区域,△ACD 区域为儿童娱乐区,△BCD 区域为休闲健身区.经测量,AC =BC =100米,AB =100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元. (1)若∠ADC =π4,求景观道路CD 的长度;(2)求∠ADC 为何值时,口袋公园的造价最低?21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32.(1)求{a n }的通项公式; (2)若数列{S 2n +15a n}的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132.22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若f (x )在定义域上存在极值,求a 的取值范围; (3)若f (x )≥1﹣sin x 恒成立,求a .2023-2024学年山东省潍坊市高三(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a →=(1,k ),b →=(2,1),若a →∥b →,则实数k =( ) A .12B .−12C .2D .﹣2解:因为a →=(1,k ),b →=(2,1),且a →∥b →,所以2k ﹣1=0,解得k =12.故选:A .2.若“∃x ∈R ,sin x <a ”为真命题,则实数a 的取值范围为( ) A .a ≥1B .a >1C .a ≥﹣1D .a >﹣1解:“∃x ∈R ,sin x <a ”,故a >(sin x )min ,a >﹣1. 故选:D .3.已知集合A ={1,3,a 2},B ={1,a +2},则满足A ∪B =A 的实数a 的个数为( ) A .0B .1C .2D .3解:A ∪B =A ,则B ⊆A ,当a +2=3,即a =1时,集合A 不满足元素的互异性,舍去, 当a +2=a 2,即a =2或a =﹣1,当a =2时,A ={1,3,4},B ={1,4},满足题意, 当a =﹣1时,集合B 不满足元素的互异性,舍去, 综上所述,a =2,故满足A ∪B =A 的实数a 的个数为1. 故选:B .4.北京故宫博物院展示着一件来自2200年前的宝物——秦诏文权(如图1).此文权下部呈圆台形,上部为鼻钮,被誉为最美、最具文化、最有政治和历史意义的文物之一.某公司仿照该文权制成一纸镇(如图2),已知该纸镇下部的上、下底面半径分别为3,4,高为3,则该纸镇下部的侧面积与体积分别为( )A .21π 37πB .21π 111πC .7√10π 37πD .7√10π 111π解:由题意得,S 侧=π(3+4)×√32+(4−3)2=7√10π,V =13π×(42+32+4×3)×3=37π.故选:C .5.设等差数列{a n }的前n 项和为S n ,且公差不为0,若a 4,a 5,a 7构成等比数列,S 11=66,则a 7=( ) A .5B .6C .7D .8解:等差数列{a n }的前n 项和为S n ,且公差d 不为0,若a 4,a 5,a 7构成等比数列,S 11=66, 故S 11=11(a 1+a 11)2=11a 6=66,解得a 6=6,故{a 6=6a 52=a 4⋅a 7,整理得{a 1+5d =6(a 1+4d)2=(a 1+3d)(a 1+6d),解得{a 1=−4d =2,故a 7=a 1+6d =8. 故选:D .6.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .b <c <a解:因为a =20.5=√2,c =log 410=log 2√10<log 25,所以b >c ,c =log 410=log 2√10>log 22√2=32>√2,所以 c >a ,所以a <c <b .故选:B .7.设函数f (x )={x +1,x ≤0√x −1,x >0,则方程f (f (x ))=0的实根个数为( )A .4B .3C .2D .1解:令t =f (x ),则方程f (f (x ))=0,即f (t )=0, 当t ≤0时,t +1=0,∴t =﹣1; 当t >0时,√t −1=0,∴t =1;当t =﹣1时,若x ≤0,则x +1=﹣1,∴x =﹣2,符合题意; 若x >0,则√x −1=−1,∴x =0,不合题意; 当t =1时,若x ≤0,则x +1=1,∴x =0,符合题意;若x >0,则√x −1=1,∴x =4,符合题意,即方程f (f (x ))=0的实根个数为3. 故选:B .8.已知cos(π4−α)=35,sin(5π4+β)=−1213,其中α∈(π4,3π4),β∈(0,π4),则tanαtanβ=( )A .−5663B .5663C .﹣17D .17解:cos(π4−α)=35,∵α∈(π4,3π4),∴π4−α∈(−π2,0),∴sin (π4−α)=−√1−cos 2(π4−α)=−45,sin (α−π4)=45,cos α=cos[(α−π4)+π4]=cos (α−π4)cos π4−sin (α−π4)sin π4=35×√22−45×√22=−√210,则sin α=√1−(√210)2=7√210,则tan α=sinαcosα=−7, sin(5π4+β)=−1213,∵β∈(0,π4),∴5π4+β∈(5π4,3π2), ∴cos (5π4+β)=−√1−sin 2(5π4+β)=−513,sin β=sin [(5π4+β)−5π4]=sin(5π4+β)cos 5π4−cos(5π4+β)sin 5π4=−1213×(−√22)−513×√22=7√226,cos β=√1−(7226)2=17√226,则tan β=sinβcosβ=717,则tanαtanβ=−7717=−17. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分,在每个小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,则直线l ,m ,n 的位置关系可能是( )A .l ,m ,n 两两垂直B .l ,m ,n 两两平行C .l ,m ,n 两两相交D .l ,m ,n 两两异面解:如图,当l 为BB 1,m 为BC ,n 为CD 时,满足直线l ⊂平面ABB 1A 1,直线m ⊂平面BCC 1B 1,直线n ⊂平面ABCD ,l ,m ,n 两两相交且垂直,当l 为A 1B ,m 为B 1C 1,n 为AC 时,三条直线两两异面,故ACD 正确; 三条直线不可能两两平行,若l ∥n ,则l ∥AB ∥n ,而AB 与平面BCC 1B 1相交,则AB 与M 不平行,故B 错误. 故选:ACD .10.已知函数f(x)=2sin(2x +π3),把f (x )的图象向左平移π3个单位长度得到函数g (x )的图象,则( )A .g (x )是奇函数B .g (x )的图象关于直线x =−π4对称C .g (x )在[0,π2]上单调递增D .不等式g (x )≤0的解集为[kπ+π2,kπ+π],k ∈Z解:由题意g (x )=2sin[2(x +π3)+π3]=2sin (2x +π)=﹣2sin2x ,A 中,可得g (x )为奇函数,所以A 正确;B 中,函数g (x )的对称轴方程满足2x =π2+k π,k ∈Z , 解得x =π4+k 2π,k ∈Z ,当k =﹣1时,x =−π4,所以函数g (x )的图象关于x =−π4对称,所以B 正确; C 中,x ∈[0,π2],则2x ∈[0,π],显然g (x )不单调,所以C 不正确;D 中,令g (x )≤0,则2k π≤2x ≤π+2k π,k ∈Z ,解得k π≤x ≤π2+k π,k ∈Z ,即x ∈[k π,π2+k π],k ∈Z ,所以D 不正确. 故选:AB .11.已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根,则( ) A .a 2+b 2≥8 B .ab ≥4 C .√a +√b ≤2√2D .1a+2+12b≥3+2√212解:因为已知a ,b 为方程2x 2﹣8x +m =0(m >0)的两个实根, 所以Δ=64﹣8m ≥0,即m ≤8,又因为m >0,所以0<m ≤8, 由韦达定理可得:a +b =4,ab =m2>0,所以a >0,b >0. 对于选项A ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:a 2+b 2≥8,当且仅当a =b 时等号成立,故A 正确;对于选项B ,由a +b =4≥2√ab ,当且仅当a =b 时等号成立可得:ab ≤4,当且仅当a =b 时等号成立,故B 不正确;对于选项C ,由a+b 2≤√a 2+b 22,当且仅当a =b 时等号成立可得:√a+√b2≤√a+b 2,即√a +√b ≤2√2,当且仅当a =b 时等号成立,故C 正确;对于选项D ,1a+2+12b =(1a+2+12b)[(2a +4)+2b ]×112=112(2+2b a+2+a+2b +1)≥112(3+2√2b a+2⋅a+2b )=112(3+2√2),当且仅当2b a+2=a+2b,即a =√2b ﹣2时等号成立,故D 正确. 故选:ACD .12.已知正项数列{a n }满足:a 1=1,a n =na n+12na n+1+1,则( )A .a 2=√5−12B .{a n }是递增数列C .a n+1−a n >1n+1D .a n+1<1+∑ n k=11k解:由a 1=1,a n =na n+12na n+1+1,可得a 1=a 22a 2+1=1,解得a 2=1+√52(负的舍去),故A 错误;由a n +1﹣a n =na n+12+a n+1−na n+12na n+1+1=a n+1na n+1+1>0,即a n +1>a n ,则{a n }是递增数列,故B 正确;由a n+1na n+1+1−1n+1=a n+1−1(n+1)(na n+1+1)>0,则a n +1﹣a n >1n+1,故C 正确;由a n+1na n+1+1−1n=−1n(na n+1+1)<0,则a n +1﹣a n <1n ,所以a n +1=a 1+(a 2﹣a 1)+(a 3﹣a 2)+...+(a n +1﹣a n )<1+1+12+...+1n,故D 正确.故选:BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.已知点A (2,1),向量OA →绕原点O 顺时针旋转π2得到向量OB →,则点B 的坐标为 (1,﹣2) .解:点A (2,1),向量OA →绕原点O 顺时针旋转π2后等于OB →,则OA →=(2,1),OB →=(1,﹣2),则点B 的坐标为(1,﹣2). 故答案为:(1,﹣2).14.诺沃尔(Knowall )在1740年发现了一颗彗星,并推算出在1823年、1906年…人类都可以看到这颗彗星,即该彗星每隔83年出现一次.从现在开始到公元3000年,人类可以看到这颗彗星的次数为 12 . 解:由题意可知:彗星出现的年份构成一个公差为d =83,首项为a 1=1740的等差数列,所以a n=a1+(n﹣1)d=1740+83(n﹣1)=83n+1657,令2023≤a n≤3000,即2023≤83n+1657≤3000,解得36683≤n≤134383,又n∈N*,所以n=5、6、 (16)所以从现在开始到公元3000年,人类可以看到这颗彗星的次数为16﹣5+1=12次.故答案为:12.15.已知函数f(x)是R上的偶函数,f(x+2)为奇函数,若f(0)=1,则f(1)+f(2)+…+f(2023)=﹣1.解:f(x+2)是奇函数,故f(x+2)=﹣f(﹣x+2)且f(2)=0,因为f(x)为偶函数,故f(x+2)=﹣f(﹣x+2)=﹣f(x﹣2),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数周期为8,因为f(x+2)=﹣f(﹣x+2),故f(3)+f(1)=0,f(4)+f(0)=0,即f(4)=﹣1,f(5)=﹣f(1),f(6)=﹣f(2)=0,f(7)=﹣f(3),f(8)=f(0)=1,故f(1)+f(2)+…+f(8)=0,f(1)+f(2)+…+f(2023)=﹣f(8)=﹣1.故答案为:﹣1.16.右图为几何体Ω的一个表面展开图,其中Ω的各面都是边长为1的等边三角形,将Ω放入一个球体中,则该球表面积的最小值为2π;在Ω中,异面直线AB与DE的距离为√63.解:把平面展开图还原为空间几何体为正八面体,如图所示:球表面积最小,则正八面体的八个顶点在球面上,∴正八面体外接球的球心为正方形ACFD的中心O,半径R=OA=12AF=12√12+12=√22,∴S表=4πR2=4π×12=2π;∵平面ABC∥平面DEF,∴异面直线AB与DE的距离为平面ABC与平面DEF的距离,又∵O到平面ABC的距离与O到平面DEF的距离相等,∴直线AB与DE的距离为O到平面ABC的距离2倍,∵V O﹣ABC=V B﹣AOC,∴13S△ABC•h=13S△AOC•OB,∴√34h=12×√22×√22×√22,∴h=√66,∴异面直线AB与DE的距离为√6 3.故答案为:2π;√6 3.四、解答题:本大题共6道小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)已知函数f(x)=log12x,F(x)=f(x+1)+f(1﹣x).(1)判断F(x)的奇偶性,并证明;(2)解不等式|F(x)|≤1.解:(1)F(x)为偶函数;证明:∵f(x)=log12x,由{x+1>01−x>0,得x∈(﹣1,1),∴F(x)=f(x+1)+f(1﹣x)=log12(x+1)+log12(1−x)的定义域为(﹣1,1),又F(﹣x)=log12(1−x)+log12(x+1)=F(x),∴F(x)为偶函数;(2)∵F(x)=log12(x+1)+log12(1−x)=log12(1−x2)≥log121=0,∴|F(x)|≤1⇔0≤F(x)=log12(1−x2)≤1,∴1≥1﹣x2≥12,解得−√22≤x≤√22,∴原不等式的解集为[−√22,√22].18.(12分)已知函数f(x)=A sin(ωx+φ)+B(其中A,ω,φ,B均为常数,ω>0,A>0,|φ|<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)求函数y =f(x +5π12)+f(x)在[−π3,π2]上的值域.解:(1)由图知A =3−02=32,B =3+02=32, 且{ω⋅(−π3)+φ=−π2+2kπ,k ∈Z ω⋅π2+φ=π2+2kπ,k ∈Z ,|φ|<π2,解得ω=65,φ=−π10, 所以f (x )=32sin (65x −π10)+32; (2)y =f (x +5π12)+f (x )=32sin[65(x +5π12)−π10]+32+32sin (65x −π10)+32=32[sin (65x −π10+π2)+32sin (65x x −π10)+3=32 [cos (65x x −π10)+sin (65x x −π10)]+3=3√22 s in (65x x −π10+π4)+3=3√22 s in (65x x +3π20)+3, 因为x ∈[−π3,π2],所以65x +3π20∈[−π4,3π4], 所以sin (65x +3π20)∈[−√22,1], 所以y ∈[3√22•−√22+3,3√22×1+3]=[32,3√22+3]. 即函数y 的值域为[32,3√22+3]. 19.(12分)在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,AD =2CD =2,AA 1=A 1D =√5,A 1C =√6.(1)证明:平面AA 1D 1D ⊥平面ABCD ;(2)求二面角A 1﹣CD ﹣D 1的余弦值.(1)证明:取AD 的中点O ,连接OC ,因为AA 1=A 1D =√5,得A 1O ⊥AD ,因为A 1D =√5,OD =1,所以A 1O =2,又OD =DC =1,所以OC =√2,在△A 1OC 中,OC =√2,A 1C =√6,A 1O =2,所以A 1C 2=A 1O 2+OC 2,故△A 1OC 为直角三角形,A 1O ⊥OC ,因为OC ∩AD =O ,故A 1O ⊥平面ABCD ,因为A 1O ⊂平面AA 1D 1D ,所以平面AA 1D 1D ⊥平面ABCD ;(2)解:如图,以O 为坐标原点,分别以DC →,OD →,OA 1→的正方向为x 轴,y 轴,z 轴正方向, 建立如图所示空间直角坐标系:故A 1(0,0,2),C (1,1,0),D (0,1,0),D 1(0,2,2),则CD →=(−1,0,0),A 1C →=(1,1,﹣2),DD 1→=(0,1,2),设平面A 1CD 的一个法向量为m →=(x 1,y 1,z 1),则{m →⋅CD →=−x 1=0m →⋅A 1C →=x 1+y 1−2z 1=0,令y 1=2,则m →=(0,2,1),设平面CDD 1C 1的一个法向量为n →=(x 2,y 2,z 2),则{n →⋅CD →=x 2=0n →⋅DD 1→=y 2+2z 2=0,令y 2=2,则n →=(0,2,﹣1),所以cos <m →,n →>=|m →⋅n →||m →||n →|=3√5×√5=35, 由图可知二面角A 1﹣CD ﹣D 1为锐角,所以二面角A1﹣CD﹣D1的余弦值为3 5.20.(12分)为方便居民休闲娱乐,某市计划在一块三角形空地上修建一个口袋公园,如图所示.在公园内部计划修建景观道路CD(道路的宽度忽略不计),已知CD把三角形空地分成两个区域,△ACD区域为儿童娱乐区,△BCD区域为休闲健身区.经测量,AC=BC=100米,AB=100√3米.若儿童娱乐区每平方米的造价为100元,休闲健身区每平方米的造价为50元,景观道路每米的造价为2500元.(1)若∠ADC=π4,求景观道路CD的长度;(2)求∠ADC为何值时,口袋公园的造价最低?解:(1)在△ABC中,AC=BC=100,AB=100√3,所以AC2+AB2﹣BC2=1002﹣(100√3)2﹣1002=30000,则cosA=AC2+AB2−BC22AC⋅AB=√32,A∈(0,π),所以A=B=π6,在△ACD中,∠ADC=π4,由正弦定理得ACsin∠ADC=CDsinA,即CD=AC⋅sinAsin∠ADC=10Osinπ6sinπ4=50√2,所以景观道路CD的长度为50√2米.(2)设∠ADC=θ(π6<θ<5π6),在△ACD中,CD=50sinθ,所以S△ADC=12AC⋅CD sin∠ACD=12×100×50sin(5π6−θ)sinθ=2500sin(5π6−θ)sinθ,又S△ABC=12AC⋅AB•sin A=12×100×100√3×12=2500√3,所以S△BCD=2500√3−2500sin(5π6−θ)sinθ,所以投资总额y=2500CD+100S△ACD+50S△BCD=2500×50sinθ+100×2500sin(5π6−θ)sinθ+50[2500√3−2500sin(5π6−θ)sinθ]=2500×50[√3+1+sin(5π6−θ)sinθ]=2500×50(3√32+2+cosθ2sinθ),因为2+cosθ2sinθ=3cos2θ2+sin2θ24sinθ2cosθ2=34tanθ2+tanθ24≥2√34tanθ2⋅tanθ24=√34,当且仅当tan θ2=√3,即θ=2π3时取等号, 此时y 取得最小值,即公园造价最低,所以∠ADC =2π3,口袋公园的造价最低. 21.(12分)设S n 为数列{a n }的前n 项和,s n =3n+1−32. (1)求{a n }的通项公式;(2)若数列{S 2n +15a n }的最小项为第m 项,求m ; (3)设b n =2a n (a n −2)2,数列{b n }的前n 项和为T n ,证明:T n <132. (1)解:当n =1时,a 1=S 1=32−32=3; 当n ≥2时,a n =S n ﹣S n ﹣1=3n+1−32−3n−32=3n , 因为a 1=3满足上式,所以a n =3n .(2)解:S 2n +15a n =32n+1−32+153n =32n+1+272⋅3n =32•(3n +93n )≥32•2√3n ⋅93n =9, 当且仅当3n =93n ,即n =1时,等号成立, 所以m =1. (3)证明:b n =2a n (a n −2)2=2⋅3n(3n −2)2, 当n =1时,b 1=2⋅31(31−2)2=6; 当n ≥2时,b n =2⋅3n 32n −4⋅3n +4<2⋅3n 32n −4⋅3n +3=2⋅3n (3n −1)(3n −3)=3n 3n −3−3n 3n −1=11−3−n+1−11−3−n , 所以T n =b 1+b 2+b 3+…+b n <6+(11−3−1−11−3−2)+(11−3−2−11−3−3)+…+(11−3−n+1−11−3−n )=6+11−3−1−11−3−n =152−11−3−n <152−1=132,命题得证. 22.(12分)已知函数f (x )=e x +aln (x +1)(a ∈R ).(1)当a =﹣2时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在定义域上存在极值,求a 的取值范围;(3)若f (x )≥1﹣sin x 恒成立,求a .解:(1)当a =﹣2时,f (x )=e x ﹣2ln (x +1),可得f ′(x)=e x −2x+1,此时f′(0)=e0−21=−1,又f(0)=e0﹣2ln1=1,曲线y=f(x)在点(0,f(0))处的切线方程为y﹣1=﹣(x﹣0),即x+y﹣1=0;(2)易知f′(x)=e x+ax+1(x>−1),当a≥0时,f′(x)≥0恒成立,此时函数f(x)在(﹣1,+∞)上单调递增,不符合题意;当a<0时,f′(x)=e x−a(x+1)2>0,所以当a<0时,f′(x)在定义域上单调递增,又f′(a2)=e a2+aa2+1,因为aa2+1≥−12,e a2>1,所以f′(a2)>0;当a<﹣1时,易知f′(0)=1+a<0,所以函数f(x)在(0,a2)上存在极值点;当a=﹣1时,f′(x)=e x−1x+1,易知f′(0)=0,所以x=0为f(x)的极值点;当﹣1<a<0时,f′(a2−1)=e a2−1+1 a ,因为e a2−1<1,1a<−1,所以f′(a2﹣1)<0,则函数f(x)在(a2﹣1,a2)上存在极值点,综上所述,满足条件的a的取值范围为(﹣∞,0);(3)若f(x)≥1﹣sin x恒成立,即sin x+e x+aln(x+1)≥1恒成立,不妨设g(x)=sin x+e x+aln(x+1),函数定义域为(﹣1,+∞),可得g′(x)=cosx+e x+ax+1,不妨设h(x)=cos x+e x+ax+1,函数定义域为(﹣1,+∞),可得h′(x)=﹣sin x+e x−a(x+1)2,若a=﹣2,当x∈(﹣1,0]时,cosx+e x≤2,−2x+1≤−2,所以g'(x)≤0,当x∈[0,+∞)时,e x≥1,h′(x)≥0,所以g′(x)≥g′(0)=cos0+e0﹣2=0,则x=0时,函数g(x)在x∈(﹣1,+∞)上取得唯一极小值点,此时g(x)≥g(0)=1,所以a=﹣2时,f(x)≥1﹣sin x恒成立;若a<﹣2,易知e x﹣sin x>0,−a(x+1)2>0,所以h′(x)>0,即函数g'(x)单调递增,又g′(−a)=e−a+cos(−a)+a−a+1>e2−1−1>0,因为g'(0)=2+a<0,所以存在x1∈(0,﹣a),使得g'(x1)=0,当0<x<x1时,g′(x1)<0,g(x)单调递减,所以g(x1)<g(0)=1,不符合题意;若﹣2<a<0,由(2)知g′(x)单调递增,当﹣1<x<﹣1−a2<0时,ax+1<−2,g′(x)<1+1+ax+1<0,又g′(0)=2+a>0,所以存在x2∈(﹣1,0),使得g′(x2)=0,当x2<x<0 时,g′(x)>0,g(x)单调递增,所以g(x2)<g(0)=1,不符合题意;若a≥0,易知cos x+e x>0,ax+1≥0,所以g′(x)>0,g(x)单调递增,又g(0)=1,所以当﹣1<x<0时,g(x)<g(0)=1,不符合题意,综上所述,满足条件的a的值为﹣2.。
【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
2023-2024学年山东省潍坊市高一(上)期中数学试卷【答案版】
2023-2024学年山东省潍坊市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={﹣1,1,2},B ={x |x 2=x },则A ∩B =( ) A .{﹣1}B .{1}C .{﹣1,1}D .{﹣1,0,1,2}2.命题“∃x ∈Z ,x ∈N ”的否定为( ) A .∃x ∈Z ,x ∉NB .∃x ∉Z ,x ∈NC .∀x ∈Z ,x ∉ND .∀x ∈Z ,x ∈N3.与函数y =√x 3为同一函数的是( ) A .y =x √xB .y =−x √xC .y =x √−xD .y =|x |4.函数f (x )=√−x 2+2x +3的单调递减区间是( ) A .(﹣∞,1]B .[1,3]C .(﹣1,3)D .[1,+∞)5.已知a >b >0,下列不等式中正确的是( ) A .a ﹣1<b ﹣1B .ab <b 2C .1a+1<1b+1D .c a>cb6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣17.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}11.若a >0,b >0,a +b =1,则( ) A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥3412.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称三、填空题:本题共4小题,每小题5分,共20分.13.已知集合M ={x ,x +2,2},若0∈M ,则x = . 14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 . 15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= .16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.19.(12分)已知函数f (x )=ax 2+(a ﹣2)x +14(a ∈R).(1)若关于x 的不等式f (x )≥0的解集是实数集R ,求a 的取值范围; (2)当a <0时,解关于x 的不等式f (x )−94≤0.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=y x)(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0). (1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x. ①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.2023-2024学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,1,2},B={x|x2=x},则A∩B=()A.{﹣1}B.{1}C.{﹣1,1}D.{﹣1,0,1,2}解:集合A={﹣1,1,2},B={x|x2=x}={0,1},则A∩B={1}.故选:B.2.命题“∃x∈Z,x∈N”的否定为()A.∃x∈Z,x∉N B.∃x∉Z,x∈N C.∀x∈Z,x∉N D.∀x∈Z,x∈N解:因为特称命题的否定是全称命题,所以“∃x∈Z,x∈N”的否定是:“∀x∈Z,x∉Z”.故选:C.3.与函数y=√x3为同一函数的是()A.y=x√x B.y=−x√x C.y=x√−x D.y=|x|解:∵函数y=√x3中x3≥0可得x≥0,故函数y=√x3的定义域为[0,+∞),排除CD,又y=√x3=x√x,排除B.故选:A.4.函数f(x)=√−x2+2x+3的单调递减区间是()A.(﹣∞,1]B.[1,3]C.(﹣1,3)D.[1,+∞)解:由﹣x2+2x+3≥0,解得﹣1≤x≤3,设t=﹣x2+2x+3,由二次函数的性质可知:t在x∈[﹣1,1]上单调递增,在x∈[1,3]上单调递减,又因为y=√t在定义上为增函数,由复合函数的性质可得:函数f(x)=√−x2+2x+3的单调递减区间是[1,3].故选:B.5.已知a>b>0,下列不等式中正确的是()A.a﹣1<b﹣1B.ab<b2C.1a+1<1b+1D.ca>cb解:因为a>b>0,所以a﹣1>b﹣1,A错误;因为a>b>0,所以ab>b2,B错误;因为a+1>b+1>0,所以0<1a+1<1b+1,C正确;因为1a<1b,所以c a<cb,D 错误.故选:C .6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣1解:∵函数f(x)={x +a ,x >0,|x|+1,x <0,∴f (﹣1)=|﹣1|+1=2, f (f (﹣1))=2+a =4, ∴a =2. 故选:A .7.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)解:因为对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,所以f (x )在R 上单调递减, 因为f (x )为奇函数,即f (0)=0, 因为f (x 2﹣x )<0=f (0), 所以x 2﹣x >0, 解得x >1或x <0. 故选:B .8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小解:设每次购买数量为x ,平均价格为b 1=a 1x+a 2x 2x=a 1+a 22, 设每次购买的费用为y ,平均价格为b 2=2y y a 1+ya 2=2a 1a2a 1+a 2,∵a 1≠a 2,∴(a 1+a 2)2>4a 1a 2⇒a 1+a 22>2a 1a 2a 1+a 2⇒b 1>b 2.故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)解:y =x +1的值域为R ,A 错误;y =x 2+2x +2=(x +1)2+1≥1,B 符合题意; y =1−x1+x =−x−1x+1=−1+2x+1≠−1,C 不符合题意; 当x ≥1时,y =x −1x +1单调递增,故y ≥1,D 符合题意. 故选:BD .10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}解:已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3}, 可得﹣4,3是方程ax 2+bx +c =0的两个根,且a <0,则{−ba =−4+3c a =−4×3,即b =a ,c =﹣12a ,所以c +12a =0,故A 错误,B 正确;因为1∉{x |x <﹣4或x >3},所以a ×12+b ×1+c >0,即a +b +c >0,故C 正确; 又不等式ax−b ax−c≤0等价于{(ax −b)(ax −c)≤0ax −c ≠0,即{(ax −a)(ax +12a)≤0ax +12a ≠0,即{(x −1)(x +12)≤0x ≠−12,解得﹣12<x ≤1,故D 正确. 故选:BCD .11.若a >0,b >0,a +b =1,则( )A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥34解:因为a +b =1≥2√ab ,解得ab ≤14,当且仅当a =b =12时,等号成立,故A 正确;由1a+1b=(a +b)(1a+1b)=2+b a+a b≥2+2√b a ⋅ab=4,当且仅当a =b =12时,等号成立,可得B 正确;当a =15,b =45时,|a −12|+|b −14|=1720>14,故|a −12|+|b −14|≤14不成立,故C 错误;根据题意,可得a 2+b =a 2−a +1=(a −12)2+34≥34,当且仅当a =b =12时,a 2+b 的最小值为34,故D 正确. 故选:ABD .12.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称解:由题意得f (x )={⋯x +1,−32<x ≤−12x ,−12<x ≤12x −1,12<x ≤32,x −2,32<x ≤52⋯,其大致图象如图所示,故f (2023)=f (2022)=f (2021)=…=f (0)=0,A 正确; 由函数的图象可知,函数的值域为(−−12,12],B 正确; 根据函数图象可知,f (x )在区间(−12,52]上不单调,C 错误; 根据函数的图象可知,f (x )的图象关于(k 2,0)对称,D 错误.故选:AB .三、填空题:本题共4小题,每小题5分,共20分. 13.已知集合M ={x ,x +2,2},若0∈M ,则x = ﹣2 . 解:集合M ={x ,x +2,2},若0∈M ,则x =0或x +2=0, 所以x =0或x =﹣2,当x =0时,x +2=2,不满足元素的互异性,舍去, 当x =﹣2时,集合M ={﹣2,0,2},符合题意, 综上所述,x =﹣2. 故答案为:﹣2.14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 {x |−12≤x ≤3且x ≠1} . 解:数y =f (x )的定义域为[﹣2,5],则{−2≤2x −1≤5x −1≠0,解得−12≤x ≤3且x ≠1,故函数y 的定义域为{x |−12≤x ≤3且x ≠1}. 故答案为:{x |−12≤x ≤3且x ≠1}.15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= ﹣4 .解:因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 且f (x )﹣g (x )=x 3+x 2+1,①所以f (﹣x )﹣g (﹣x )=(﹣x )3+(﹣x )2+1=﹣x 3+x 2+1,即﹣f (x )﹣g (x )=﹣x 3+x 2+1,变形可得:f (x )+g (x )=x 3﹣x 2﹣1,② 由①②解得:f (x )=x 3,g (x )=﹣x 2﹣1, 则f (1)=1,g (2)=﹣5, 故f (1)+g (2)=﹣4. 故答案为:﹣4.16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 7 .解:令f (x )=t ,则有y =f(f(x))−12=f (t )−12, 令f (t )−12=0,得f (t )=12,当0≤t <2时,由|t ﹣1|=12,解得t 1=12或t 2=32;当t ≥2时,由2(t ﹣3)2﹣1=12,解得t 3=3−√32,t 4=3+√32, 作出y =f (x )的图象,如图所示:由此可得当f (x )=12时,有4个根(y =f (x )的图象与y =12的图象有4个交点); 当f (x )=32时,有1根(y =f (x )的图象与y =32的图象有1交点); 当f (x )=3−√32时,有1根(y =f (x )的图象与y =3−√32的图象有1交点); 当f (x )=3+√32时,有1根(y =f (x )的图象与y =3+√32的图象有1交点);所以一共有4+1+1+1=7个零点. 故答案为:7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.解:(1)m =4时,A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}={x |3≤x ≤5}, 则∁U B ={x |x >5或x <3},A ∪B ={x |1<x ≤5},A ∩(∁U B )={x |1<x <3}; (2)若“x ∈A ”是“x ∈B ”的必要条件, 则B ⊆A ,则{m −1>1m +1<4,解得:2<m <3,即实数a 的取值范围是(2,3).18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.解:(1)设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),所以当x>0 时,f(x)=f(﹣x)=x2﹣2x,综合可得:f(x)={x2+2x,x≤0 x2−2x,x>0;(2)根据题意,由(1)的结论,f(x)={x2+2x,x≤0 x2−2x,x>0,其图象为:该函数的单调递增区间为(﹣1,0),(1,+∞).19.(12分)已知函数f(x)=ax2+(a﹣2)x+14(a∈R).(1)若关于x的不等式f(x)≥0的解集是实数集R,求a的取值范围;(2)当a<0时,解关于x的不等式f(x)−94≤0.解:(1)若关于x的不等式f(x)≥0的解集是实数集R,即ax2+(a−2)x+14≥0在实数集R上恒成立,当a =0时,x ≤18,不符合题意;当a ≠0时,要使关于x 的不等式f (x )≥0的解集是实数集R , 则要满足{a >0(a −2)2−4a ×14≤0,解得1≤a ≤4, 综上可得,实数l 的取值范围是{a |1≤a ≤4}.(2)由题意f(x)−94≤0 可变为ax 2+(a ﹣2)x ﹣2≤0, 可得ax 2+(a ﹣2)x ﹣2=(ax ﹣2)(x +1),当a <0时,方程(ax ﹣2)(x +1)=0的两根为−1,2a, ①当a <﹣2时,因为−1<2a ,解不等式得x ≤﹣1或x ≥2a ; ②当a =﹣2时,因为−1=2a ,此时不等式的解集为R ; ③当﹣2<a <0时,因为−1>2a,解不等式得x ≤2a或x ≥﹣1; 综上所述,不等式的解集为:当﹣2<a <0时,不等式的解集为{x|x ≤2a 或≥−1}; 当a =﹣2时,不等式的解集为R ;当a <﹣2时,不等式的解集为{x|x ≤−1或x ≥2a}.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=yx )(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 解:(1)∵y =12x 2+40x +5000, ∴yx =x 2+5000x+40,又x ∈[70,120],则y x=x 2+5000x+40≥2√x 2⋅5000x +40=140,当且仅当x 2=5000x,即x =100百吨时,平均成本最低;(2)选择方案一:设每日获利为y 1,∴y 1=100x ﹣(12x 2+40x +5000)+4200=−12x 2+60x ﹣800=−12(x ﹣60)2+1000,∵x ∈[70,120],∴当x =70百吨时,获得最大利润为950元; 选择方案二:设每日获利为y 2,则y 2=100x +40x +1700﹣(12x 2+40x +5000)=−12x 2+100x ﹣3300=−12(x ﹣100)2+1700,∵x ∈[70,120],∴当x =100百吨时,获得最大利润为1700元, 又1700>950,故选择方案二进行补贴.21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 解:(1)∵对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. ∴f (1+1)+2=f (1)+f (1),∴4+2=2f (1),∴f (1)=3; (2)证明:∵f (0+0)+2=f (0)+f (0),∴f (0)=2,又x ∈R ,∴g (﹣x )+g (x )=f (﹣x )﹣2+f (x )﹣2=f (﹣x )+f (x )﹣4=f (﹣x +x )+2﹣4=f (0)﹣2=0, ∴g (x )为奇函数;(3)由(2)知g (﹣x )+g (x )=0,f (x )=g (x )+2, ∴f (﹣x )+f (x )=4,又f (0)=2,∴f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023) =2023×4+2=8094.22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0).(1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x .①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.解:(1)证明:由题意,可得g(x)=x +a 2x ,令0<x 1<x 2,则g(x 2)−g(x 1)=x 2+a 2x 2−(x 1+a 2x 1)=(x 2−x 1)+a 2⋅x 1−x 2x 1x 2=(x 2−x 1)(1−a 2x 1x 2)=(x 2−x 1)x 1x 2−a 2x 1x 2,当0<x 1<x 2<a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2<0, 故g (x 2)﹣g (x 1)<0,故g (x )在区间(0,a )上为减函数; 当x 2>x 1>a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2>0,所以g (x 2)﹣g (x 1)>0,所以g (x )在区间(a ,+∞)上为增函数. (2)①令1−x 1+x>0⇔(1+x)(1−x)>0,解得﹣1<x <1,由g(x)=f(x)+a 2f(x)中f (x )可知, f(x)=√1−x 1+x 的定义域为(﹣1,1),且f(x)=√21+x−1, 因为x ∈(﹣1,1],所以x +1∈(0,2],所以2x+1−1∈(0,+∞),所以f (x )∈(0,+∞),令t =f (x ),则p(t)=t +1t, 所以p(t)=t +1t≥2,当且仅当t =1时取等号, 所以g (x )min =g (0)=2,②因为|g (r )﹣g (s )|<g (t )恒成立,所以g (x )max ﹣g (x )min <g (x )min ,所以g (x )max <2g (x )min , 由①可知,x ∈[−35,35]时,f(x)∈[12,2], 令t =f(x)∈[12,2],令ℎ(t)=t +a 2t, 由(1)知,h (t )在(0,a )上为减函数,在(a ,+∞)上为增函数, 所以当a ≥2时,h (t )在[12,2]上为减函数, 所以g(x)max =ℎ(t)max =ℎ(12)=12+2a 2,g(x)min =ℎ(t)min =ℎ(2)=2+a 22, 所以12+2a 2<2(2+a 22),所以−√142<a <√142,与a ≥2矛盾,当12<a <2时,h (t )在[12,a]上为减函数,h (t )在[a ,2]上为增函数,所以{ℎ(12)<2ℎ(a)ℎ(2)<2ℎ(a),所以{12+2a 2<4a 2+a 22<4a,解得4−2√3<a <2+√32,当a≤12时,h(t)在[12,2]上为增函数,所以2+a22<2(12+2a2),所以a2>27,所以a>√147或a<−√147,由a≤12,得a<−√147,又a>0,所以a∈∅,综上,a的取值范围为{a|4−2√3<a<2+√32}.。
2023-2024学年山东省潍坊市高三(上)期末数学试卷【答案版】
2023-2024学年山东省潍坊市高三(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P ={x |x <2},Q ={y |y =(12)x },则P ∩Q =( )A .(−∞,14)B .(0,14)C .(0,2)D .∅ 2.已知复数z 在复平面内对应的点的坐标为(﹣3,4),则z4+3i=( )A .iB .﹣iC .1+iD .1﹣i3.已知角φ的终边落在y =√3x(x >0)上,下列区间中,函数f (x )=2sin (x +φ)单调递增的区间是( ) A .(−π2,0)B .(0,π2)C .(π2,π)D .(π,3π2) 4.已知圆锥的侧面展开图是半径为2√3的半圆,则该圆锥的体积为( ) A .√3πB .2√3πC .3πD .9π5.如图,谢尔宾斯基地毯是一种无限分形结构,由波兰数学家谢尔宾斯基于1916年发明.它的美妙之处在于,无论将其放大多少次,它总是保持着相同的结构.它的构造方法是:首先将一个边长为1的正方形等分成9个小正方形,把中间的小正方形抠除,称为第一次操作;然后将剩余的8个小正方形均重复以上步骤,称为第二次操作;依次进行就得到了谢尔宾斯基地毯.则前n 次操作共抠除图形的面积为( )A .18(89)nB .1−(89)nC .1−8(19)nD .18−18(19)n6.若函数f (x )=ln |e x ﹣1|﹣mx 为偶函数,则实数m =( ) A .1B .﹣1C .12D .−127.已知甲:x ≥1,乙:关于x 的不等式x−ax−a−1<0(a ∈R),若甲是乙的必要不充分条件,则a 的取值范围是( ) A .a ≥1 B .a >1C .a <0D .a ≤08.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,点P 在C 上,且|PF 1|=2|AF 1|,∠PF 2F 1=60°,则C 的离心率为( ) A .√22B .√32C .√33D .12二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.某校举行演讲比赛,6位评委对甲、乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A .评委对甲评分的平均数低于对乙评分的平均数B .评委对甲评分的方差小于对乙评分的方差C .评委对甲评分的40%分位数为7.8D .评委对乙评分的众数为7.810.双曲线E :mx 2+ny 2=1(m >0,n <0)的左、右焦点分别为F 1,F 2,点P 在E 上,则( ) A .||PF 1|﹣|PF 2||=2√1m B .|F 1F 2|=2√n−mmnC .E 的离心率为√|mm+n |D .E 的渐近线方程为y =±√−m nx 11.如图,棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 为棱D 1C 1的中点,N 为棱CC 1上的动点,则( )A .直线AM 与BN 为异面直线B .存在点N ,使得MN ⊥平面BDNC .当AM ∥平面BDN 时,CN =23D .当N 为CC 1的中点时,点C 到平面BDN 的距离为√6312.已知函数f (x )=ax 2+2x +|x 2+ax +1|(a ∈R ),则( ) A .当a =﹣1时,f (x )为增函数B .若f (x )有唯一的极值点,则a >0C .当a ≤﹣2时,f (x )的零点为±1D .f (x )最多有2个零点三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13.已知向量a →,b →满足|a →|=|b →|=2,<a →,b →>=60°,则|a →−b →|= . 14.已知函数f(x)={ln(−x +e),x ≤02f(x −1),x >0,则f (2)= .15.无重复数字且各位数字之和为8的三位数的个数为 .16.已知a n =1n ,若对任意的n (n ∈N *),都有(a 1+2)(a 2+2)⋯(a n +2)≥kn 2,则实数k 的最大值为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知等比数列{a n }满足a 1=12,a 42=a 6. (1)求{a n }的通项公式; (2)求数列{na n }的前n 项和.18.(12分)如图,矩形ABCD 中,AB =4,BC =6,点E ,F 在边BC ,AD 上,且CE =DF =2.将矩形CDFE 沿EF 折起至C 'D 'FE ,使得∠C 'EB =60°,M ,N 分别为AB ,C 'D '的中点. (1)证明:EN ⊥平面MNF ;(2)求EN 与平面C ′AE 所成角的正弦值.19.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =2√3b ,A −C =π3. (1)求cos B ;(2)若b =√5,求△ABC 的面积.20.(12分)已知函数f (x )=a (e x +a )﹣2lnx (a >0),f (x )的导函数为f '(x ). (1)当a =1时,解不等式f (x )>e x ; (2)判断f ′(x )的零点个数;(3)证明:f(x)≥4+a 2+ln a 24.21.(12分)某人从A 地到B 地有路程接近的2条路线可以选择,其中第一条路线上有n 个路口,第二条路线上有m 个路口.(1)若n =2,m =2,第一条路线的每个路口遇到红灯的概率均为23;第二条路线的第一个路口遇到红灯的概率为34,第二个路口遇到红灯的概率为35,从“遇到红灯次数的期望”考虑,哪条路线更好?请说明理由.(2)已知:随机变量X i 服从两点分布,且P (x i =1)=1﹣P (x i =0)=P ,则E (∑ n i=1X i )=∑ n i=1p i ,且E[(∑ n i=1X i )2]=∑ n i=1p i +2∑ i≠j p i p j (i ,j =1,2,⋯,n ).若第一条路线的第i 个路口遇到红灯的概率为12i ,当选择第一条路线时,求遇到红灯次数的方差.22.(12分)在直角坐标系xOy 中,点P 到直线y =92的距离等于点P 到点(0,72)的距离,记动点P 的轨迹为C .(1)求C 的方程;(2)设A ,B 是C 上位于y 轴两侧的两点,过A ,B 的C 的切线交于点Q ,直线QA ,QB 分别与x 轴交于点M ,N ,求△QMN 面积的最小值.2023-2024学年山东省潍坊市高三(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P ={x |x <2},Q ={y |y =(12)x },则P ∩Q =( )A .(−∞,14)B .(0,14)C .(0,2)D .∅解:P ={x |x <2},Q ={y |y =(12)x }={y |y >0},则P ∩Q =(0,2). 故选:C .2.已知复数z 在复平面内对应的点的坐标为(﹣3,4),则z 4+3i=( )A .iB .﹣iC .1+iD .1﹣i解:∵复数z 在复平面内对应点的坐标为(﹣3,4),∴z =﹣3+4i , ∴z 4+3i=−3+4i 4+3i=(−3+4i)(4−3i)(4+3i)(4−3i)=i .故选:A .3.已知角φ的终边落在y =√3x(x >0)上,下列区间中,函数f (x )=2sin (x +φ)单调递增的区间是( ) A .(−π2,0)B .(0,π2)C .(π2,π)D .(π,3π2)解:角φ的终边落在y =√3x(x >0)上,则φ=π3+2kπ,k ∈Z , 不妨取当k =0时,φ=π3,令−π2+2kπ≤x +π3≤π2+2kπ,k ∈Z ,解得−56π+2kπ≤x ≤π6+2kπ,k ∈Z , 当k =0时,函数f (x )的单调递增区间为(−56π,π6), 由选项可知,(−π2,0)符合题意. 故选:A .4.已知圆锥的侧面展开图是半径为2√3的半圆,则该圆锥的体积为( ) A .√3πB .2√3πC .3πD .9π解:设圆锥的底面半径为r ,则2πr =π×2√3,解得r =√3, 所以圆锥的高为h =√(2√3)2−(√3)2=3, 所以圆锥的体积为V =13π×(√3)2×3=3π.故选:C .5.如图,谢尔宾斯基地毯是一种无限分形结构,由波兰数学家谢尔宾斯基于1916年发明.它的美妙之处在于,无论将其放大多少次,它总是保持着相同的结构.它的构造方法是:首先将一个边长为1的正方形等分成9个小正方形,把中间的小正方形抠除,称为第一次操作;然后将剩余的8个小正方形均重复以上步骤,称为第二次操作;依次进行就得到了谢尔宾斯基地毯.则前n 次操作共抠除图形的面积为( )A .18(89)nB .1−(89)nC .1−8(19)nD .18−18(19)n解:根据题意,设第n 次扣除的图形的面积为a n , 最初正方形的边长为1,其面积为1,第一次操作中,扣除图形的面积为19,即a 1=19,从第二次操作开始,每次扣除图形的面积为上一次扣除图形面积的89,即a n =89a n ﹣1,故数列{a n }是首项a 1=19,公比为89的等比数列,其前n 项和S n =a 1(1−q n )1−q =19×[1−(89)n]1−89=1﹣(89)n ,即前n 次操作共抠除图形的面积为1﹣(89)n .故选:B .6.若函数f (x )=ln |e x ﹣1|﹣mx 为偶函数,则实数m =( ) A .1B .﹣1C .12D .−12解:根据题意,函数f (x )=ln |e x ﹣1|﹣mx , 则f (﹣x )=ln |e ﹣x ﹣1|+mx =ln |1e x−1|+mx =ln |e x ﹣1|﹣x +mx ,函数f (x )=ln |e x ﹣1|﹣mx 为偶函数,则f (﹣x )=f (x ),即ln |e x ﹣1|﹣x +mx =ln |e x ﹣1|﹣mx , 变形可得:(2m ﹣1)x =0,必有m =12. 故选:C .7.已知甲:x ≥1,乙:关于x 的不等式x−ax−a−1<0(a ∈R),若甲是乙的必要不充分条件,则a 的取值范围是( ) A .a ≥1B .a >1C .a <0D .a ≤0解:关于x 的不等式x−a x−a−1<0(a ∈R),则a <x <a +1,甲是乙的必要不充分条件, 则{x |a <x <a +1}⫋{x |x ≥1}, 故a ≥1. 故选:A .8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,点P 在C 上,且|PF 1|=2|AF 1|,∠PF 2F 1=60°,则C 的离心率为( ) A .√22B .√32C .√33D .12解:如图,设|AF 1|=a ﹣c ,则|PF 1|=2(a ﹣c ),由椭圆的性质可得:|PF 2|=2c ,所以在△PF 1F 2中,∠PF 2F 1=60°,由余弦定理可得:cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2|⋅|F 1F 2|=12,化简得:a =2c ,所以e =12. 故选:D .二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.某校举行演讲比赛,6位评委对甲、乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A.评委对甲评分的平均数低于对乙评分的平均数B.评委对甲评分的方差小于对乙评分的方差C.评委对甲评分的40%分位数为7.8D.评委对乙评分的众数为7.8解:甲的平均数为x=16×(7.5+7.5+7.8+7.8+8.0+8.0)=46.66,乙的平均数为y=16×(7.5+7.8+7.8+7.8+8.0+8.0)=46.96,所以甲评分的平均数低于乙评分的平均数,选项A正确;甲的平均数约为7.8,方差为s x2=16×[(﹣0.3)2+(﹣0.3)2+02+02+0.22+0.22]=0.266,乙的平均数约为7.8,方差为s y2=16×[(﹣0.3)2+02+02+02+0.22+0.22]=0.176,所以甲评分的方差大于乙评分的方差,选项B错误;因为6×40%=2.4,所以甲评分的40%分位数是第3个数,为7.8,选项C正确;乙评分的众数为7.8,选项D正确.故选:ACD.10.双曲线E:mx2+ny2=1(m>0,n<0)的左、右焦点分别为F1,F2,点P在E上,则()A.||PF1|﹣|PF2||=2√1m B.|F1F2|=2√n−mmnC.E的离心率为√|mm+n |D.E的渐近线方程为y=±√−mnx解:mx2+ny2=1,则x21m−y2−1n=1,即a=√1m,b=√−1n,c=√a2−b2=√1m +(−1n)=√1m−1n=√n−mmn,||PF1|﹣|PF2||=2a=2√1m,故A正确;|F1F2|=2c=2√n−mmn,故B正确;E的离心率为ca =√n−mn,故C错误;E的渐近线方程为y=±√−mnx,故D正确.故选:ABD.11.如图,棱长为2的正方体ABCD﹣A1B1C1D1中,M为棱D1C1的中点,N为棱CC1上的动点,则()A .直线AM 与BN 为异面直线B .存在点N ,使得MN ⊥平面BDNC .当AM ∥平面BDN 时,CN =23D .当N 为CC 1的中点时,点C 到平面BDN 的距离为√63解:以D 为原点,建立如图所示的空间直角坐标系,对于A :因为A ,B ,M 在平面ABC 1D 1内,N 在平面ABC 1D 1外,所以AM 与BN 是异面直线,故A 正确;对于B :N(0,2,a),NM →=(0,−1,2−a),DB →⋅NM →=−2,所以DB 与MN 不垂直,故MN 与平面BDN 不垂直,故B 错误;对于C :若CN =23,则B(2,2,0),N(0,2,23),DB →=(2,2,0),DN →=(0,2,23),设平面BDN 的法向量为n →1=(x 1,y 1,z 1),则{2x 1+2y 1=02y 1+23z 1=0,令x 1=1,则n →1=(1,−1,3),A(2,0,0),M(0,1,2),所以AM →=(−2,1,2),AM →⋅n →1=−2−1+6≠0,故C 错误; 对于D :N(0,2,1),DN →=(0,2,1),DB →=(2,2,0), 设平面BDN 的法向量为n 2→=(x 2,y 2,z 2),则{2x 2+2y 2=02y 2+z 2=0,令x 2=1,n 2→=(1,−1,2),又C(0,2,0),CN →=(0,0,1),所以点C 到平面BDN 的距离为|CN →⋅n 2→||n 2→|=√6=√63,故D 正确. 故选:AD .12.已知函数f (x )=ax 2+2x +|x 2+ax +1|(a ∈R ),则( ) A .当a =﹣1时,f (x )为增函数B .若f (x )有唯一的极值点,则a >0C .当a ≤﹣2时,f (x )的零点为±1D .f (x )最多有2个零点解:对于A 选项,当a =﹣1时,f (x )=﹣x 2+2x +|x 2﹣x +1|,因为x 2﹣x +1=(x −12)2+34>0,所以f (x )=﹣x 2+2x +x 2﹣x +1=x +1,函数单调递增,故A 正确; 对于B 选项,当a =0时,f (x )=x 2+2x +1有一个极值点,故B 错误; 对于选项C ,当a ≤﹣2时,设x 2+ax +1=0的两根分别为x 1,x 2且x 1≤x 2, 则x 1+x 2=﹣a ≥2,x 1x 2=1,所以0<x 1≤1,x 2≥1,当x <x 1或x >x 2时,f (x )=(a +1)x 2+(a +2)x +1,图像开口向下,对称轴为x =−a+22(a+1)<0,f (﹣1)=0,当x 1<x <x 2时,f (x )=(a ﹣1)x 2+(2﹣a )x ﹣1,图像开口向下,对称轴为x =a−2a−1>0,f (1)=0,如下图所示,故C 正确;对于D 选项,由选项C 可知,当a ≤﹣2时,f (x )有两个零点,当﹣2<a ≤2时,Δ=a 2﹣4<0,所以f (x )=(a +1)x 2+(a +2)x +1至多有两个零点,当a >2时,设x 2+ax +1=0的两根为x 1,x 2,且x 1≤x 2,则x 1+x 2=﹣a <﹣2,x 1x 2=1,所以x 1<﹣2,﹣1<x 2<0,当x <x 1或x >x 2时,f (x )=(a +1)x 2+(a +2)x +1,图像开口向上,对称轴为x =−a+22(a+1)<−12,f (0)=1,f (﹣1)=0,当x 1<x <x 2时,f (x )=(a ﹣1)x 2+(2﹣a )x ﹣1,图像开口上,对称轴为x =a ﹣2∈(0,1),f (1)=0,f (0)=﹣1,f (﹣1)=2(a ﹣2)>0,如下图所示,故D 正确.故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知向量a →,b →满足|a →|=|b →|=2,<a →,b →>=60°,则|a →−b →|= 2 .解:因为|a →|=|b →|=2,<a →,b →>=60°,所以(a →−b →)2=a →2−2a →•b →+b →2=22﹣2×2×2×cos60°+22=4, 所以|a →−b →|=2.故答案为:2.14.已知函数f(x)={ln(−x +e),x ≤02f(x −1),x >0,则f (2)= 4 . 解:因为f(x)={ln(−x +e),x ≤02f(x −1),x >0, 则f (2)=2f (1)=4f (0)=4lne =4.故答案为:4.15.无重复数字且各位数字之和为8的三位数的个数为 24 .解:无重复数字且之和为8的三个数有:0,1,7;0,2,6;0,3,5;1,2,5;1,3,4,当三个数为0,1,7时,组成三位数的个数为C 21⋅A 22=4个,当三个数为0,2,6时,组成三位数的个数为C 21⋅A 22=4个,当三个数为0,3,5时,组成三位数的个数为C 21⋅A 22=4个,当三个数为1,2,5时,组成三位数的个数为A 33=6个,当三个数为1,3,4时,组成三位数的个数为A 33=6个,所以一共有4+4+4+6+6=24个.故答案为:24.16.已知a n =1n ,若对任意的n (n ∈N *),都有(a 1+2)(a 2+2)⋯(a n +2)≥kn 2,则实数k 的最大值为 158 .解:a n =1n ,若对任意的n (n ∈N *),都有(a 1+2)(a 2+2)⋯(a n +2)≥kn 2,可得k ≤(1+2)(12+2)...(1n +2)n 2恒成立, 设b n =(1+2)(12+2)...(1n +2)n 2,则b n +1=(1+2)(12+2)...(1n +2)(1n+1+2)(n+1)2, b n+1b n =n 2(1n+1+2)(n+1)2=2n 3+3n 2(n+1)3,由2n 3+3n 2﹣(n +1)3=2n 3+3n 2﹣n 3﹣3n 2﹣3n ﹣1=n 3﹣3n ﹣1,当n =1时,2n 3+3n 2<(n +1)3;当n ≥2时,2n 3+3n 2>(n +1)3;即有b 1>b 2<b 3<b 4<...<b n ,则b 2为b n 的最小值,且为158, 则k ≤158,即k 的最大值为158. 故答案为:158.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等比数列{a n }满足a 1=12,a 42=a 6.(1)求{a n }的通项公式;(2)求数列{na n }的前n 项和.解:(1)因为等比数列{a n }满足a 1=12,a 42=a 6,所以(12q 3)2=12q 5, 解得,q =2,故a n =12×2n−1=2n ﹣2; (2)由(1)得na n =n •2n ﹣2,设数列{na n }的前n 项和为S n ,则S n =1×2﹣1+2×20+3×2+•+n •2n ﹣2, 2S n =1×20+2×21+•+(n ﹣1)•2n ﹣2+n •2n ﹣1,两式相减得,﹣S n =2﹣1+20+•+2n ﹣2﹣n •2n ﹣1=12(1−2n )1−2−n •2n ﹣1=(1﹣n )•2n ﹣1−12, 所以S n =(n ﹣1)•2n ﹣1+12. 18.(12分)如图,矩形ABCD 中,AB =4,BC =6,点E ,F 在边BC ,AD 上,且CE =DF =2.将矩形CDFE 沿EF 折起至C 'D 'FE ,使得∠C 'EB =60°,M ,N 分别为AB ,C 'D '的中点.(1)证明:EN ⊥平面MNF ;(2)求EN 与平面C ′AE 所成角的正弦值.解:(1)证明:在矩形C 'D 'FE 中,C 'N =C 'E =2,∠C '=90°,所以∠C 'NE =45°,同理∠D 'NF =45°,故EN ⊥NF ①,连结BC '、ME ,在△BEC ′中,由余弦定理知:BC ′2=EB 2+EC ′2﹣2EB •EC ′•cos ∠C ′EB =16+4﹣8=12,所以BC ′=2√3,MN =2√3,又因为NE =√C′N 2+C′E 2=√4+4=2√2,ME =√BM 2+BE 2=√4+16=2√5,所以ME 2=MN 2+NE 2,所以∠ENM =90°,即 EN ⊥MN ②,由①,②及MN ∩NF =N 可得EN ⊥平面MNF ;(2)以E 为坐标原点,EF ,EB 所在直线为x ,y 轴,建立如图所示的空间直角坐标系 E ﹣xyz . 则E (0,0,0),C ′(0,1,√3),A (4,4,0),N(2,1,√3),EC ′→=(0,1,√3),EA →=(4,4,0),设平面C ′AE 的法向量n →=(x ,y ,z ),则{y +√3z =04x +4y =0, 令x =√3,则y =−√3,z =1,所以n →=(√3,−√3,1),因为EN →=(2,1,√3),所以cos <n →,EN →>=n⋅EN→|n|EN →|=2√3√7×√8=√4214, 所以EN 与平面C ′AE 所成角的正弦值为√4214. 19.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =2√3b ,A −C =π3.(1)求cos B ;(2)若b =√5,求△ABC 的面积.解:(1)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =2√3b ,A −C =π3.所以由正弦定理可得:sin A +sin C =2√3sin B ,因为A ﹣C =π3,A +B +C =π,所以C =π3−B 2,A =2π3−B 2,所以sin (2π3−B 2)+sin (π3−B 2)=2√3sin B , 即sin 2π3cos B 2−cos 2π3sin B 2+sin π3cos B 2−cos π3sin B 2=2√3sin B , √3cos B2=2√3sin B ,所以cos B 2=4sin B 2cos B 2, 因为0<B 2<π2,所以sin B 2=14, 所以cos B =1﹣2sin 2B2=78;(2)由余弦定理可得b 2=a 2+c 2﹣2ac cos B ,即5=(a +c )2﹣2ac −74ac ,5=(2√3b )2−154ac , 得ac =443,因为cos B =78,所以sin B =√158,所以S △ABC =12ac sin B =11√1512. 20.(12分)已知函数f (x )=a (e x +a )﹣2lnx (a >0),f (x )的导函数为f '(x ).(1)当a =1时,解不等式f (x )>e x ;(2)判断f ′(x )的零点个数;(3)证明:f(x)≥4+a 2+ln a 24.解:(1)当a =1时,f (x )=e x +1﹣2lnx >e x ,所以lnx <12,所以0<x <√e ,所以不等式的解集为(0,√e).(2)函数f (x )的定义域为(0,+∞),f ′(x)=ae x −2x =axe x −2x . 令g (x )=axe x ﹣2,则g ′(x )=a (x +1)e x >0,所以g (x )在区间(0,+∞)上单调递增.又因为g(0)=−2<0,g(2a )=2e 2a −2=2(e 2a −1)>0,所以存在x 0∈(0,2a )使得g (x 0)=0,所以f ′(x )在区间(0,+∞)上有且只有一个零点x 0.(3)证明:由(2)知,当x ∈(0,x 0)时,f ′(x )<0,f (x )在(0,x 0)上单调递减,当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在(x 0,+∞)上单调递增,所以f(x)⩾f(x 0)=a(e x 0+a)−2lnx 0.因为ax 0e x 0−2=0,所以ae x 0=2x 0,lna +x 0=ln2−lnx 0. 所以f(x 0)=a(e x 0+a)−2lnx 0=2x 0+a 2−2(ln2−lna −x 0) =2x 0+2x 0+a 2+ln a 24⩾4+a 2+ln a 24, 所以f(x)⩾4+a 2+ln a 24. 21.(12分)某人从A 地到B 地有路程接近的2条路线可以选择,其中第一条路线上有n 个路口,第二条路线上有m 个路口.(1)若n =2,m =2,第一条路线的每个路口遇到红灯的概率均为23;第二条路线的第一个路口遇到红灯的概率为34,第二个路口遇到红灯的概率为35,从“遇到红灯次数的期望”考虑,哪条路线更好?请说明理由.(2)已知:随机变量X i 服从两点分布,且P (x i =1)=1﹣P (x i =0)=P ,则E (∑ n i=1X i )=∑ n i=1p i ,且E[(∑ n i=1X i )2]=∑ n i=1p i +2∑ i≠j p i p j (i ,j =1,2,⋯,n ).若第一条路线的第i 个路口遇到红灯的概率为12i ,当选择第一条路线时,求遇到红灯次数的方差.解:(1)应选择第一条路线,理由如下:设走第一、二条路线遇到的红灯次数分别为随机变量X 1,X 2,则X 1=0,1,2;X 2=0,1,2;P (X 1=0)=(13)2=19,P(X 1=1)=C 21×23×13=49,P(X 1=2)=C 22⋅(23)2=49, 所以E(X 1)=49+89=43; 又因为P(X 2=0)=14×25=110,P (X 2=1)=34×25+14×35=920,P(X 2=2)=34×35=920;所以E(X 2)=920+2×920=2720; 因为43<2720,所以应选择第一条路线.(2)设选择第一条路线时遇到的红灯次数为X ,所以E (X )=E (∑ n i=1X i )=∑ n i=1p i ,E (X 2)=E[(∑ n i=1X i )2]=∑ n i=1p i +2∑ i≠j p i p j (i ,j =1,2,⋯,n ). 设随机变量Y ,Y 取值为Y i (i =1,2,3,⋯,n ),其概率分别为q i ,且∑ n i=1q i =1,D (Y )=∑ n i=1{[Y i −E(Y)]2q i }=∑ n i=1{Y i 2•q i ﹣2E (Y )•Y i q i +[E (Y )]2•q i }=∑ n i=1Y i 2q i ﹣2E (Y )•∑n i=1(Y i q i )+[E (Y )]2•∑ n i=1q i =E (Y 2)﹣[E (Y )]2,所以D (X )=E (X 2)﹣(E (X ))2=∑ n i=1pp i +2∑ i≠j pp i p j −(∑ n i=1p i )2=∑ n i=1pp i +2∑ i≠j pp i p j ﹣(∑ n i=1p i 2+2∑ i≠j p i p j )=∑ n i=1(p i −p i 2); 又因为p i =12i ,所以D (X )=∑ n i=112i −∑ n i=114i =12×(1−12n )1−12−14×(1−14n )1−14=23+13×4n −12n . 22.(12分)在直角坐标系xOy 中,点P 到直线y =92的距离等于点P 到点(0,72)的距离,记动点P 的轨迹为C .(1)求C 的方程;(2)设A ,B 是C 上位于y 轴两侧的两点,过A ,B 的C 的切线交于点Q ,直线QA ,QB 分别与x 轴交于点M ,N ,求△QMN 面积的最小值.解:(1)设P (x ,y ),则√x 2+(y −72)2=|y −92|,整理得x 2=8﹣2y ;(2)设A(a ,4−a 22),B(b ,4−b 22),不妨设a <0<b ,因为y =4−x 22,所以y '=﹣x , 所以过点A 的切线方程为y −(4−a 22)=−a(x −a),即y =−ax +4+a 22,同理可得过点B 的切线方程y =−bx +4+b 22,联立QA,QB方程,得Q(a+b2,8−ab2),令y=0,得M(4a+a2,0),N(4b+b2,0),所以|MN|=4(a−b)ab+b−a2,所以△QMN的面积S=12|MN|×(8−ab2)=12[4(a−b)ab+b−a2](8−ab2),因为﹣a>0,所以S=12|4[b+(−a)]−ab+b+(−a)2|(8−ab2)≥12(4×2√−ab−ab+2√−ab2)(8−ab2)≥(4√−ab−ab+√−ab2)(8−ab2),令√−ab=t,得S min=(4t+t2)(8+t 22)=14(t3+16t+64t),所以S′=14(3t2+16−64t2),令S'=0,得t2=83,经检验,满足题意,所以当t=2√63时,S min=64√69.。
山东省济宁市兖州区2023-2024学年高三上学期期中考试 数学含解析
2023-2024学年第一学期期中质量检测高三数学试题(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为U ,集合M ,N 满足M N U ⊂⊂,则下列运算结果为U 的是()A .M N⋃ B.()()UUN M 痧 C.()U M Nð D.()U N Mð2.命题p :n ∃∈N ,22n n ≥,则命题p 的否定为()A .n ∀∈N ,22nn ≤ B.n ∃∈N ,22n n ≤C.n ∀∈N ,22n n < D.n ∃∈N ,22n n <3.函数()f x =的单调递增区间为()A.1,4⎛⎤-∞ ⎥⎝⎦B.(,1)-∞- C.3,2⎡⎫+∞⎪⎢⎣⎭D.1,4⎡⎫+∞⎪⎢⎣⎭4.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的(注:三角形的三条高线交于一点,此点为三角型的垂心)A.重心外心垂心 B.重心外心内心C.外心重心垂心D.外心重心内心5.2023年8月6日2时33分,山东平原县发生里氏5.5级地震,8月8日3时28分,菏泽市牡丹区发生2.6级地震,短时间内的两次地震引起了人们对地震灾害和避险方法的关注.地震发生时会释放大量的能量,这些能量是造成地震灾害的元凶.研究表明地震释放的能量E (单位:焦耳)的常用对数与震级M 之间满足线性关系,若4级地震所释放的能量为106.310⨯焦耳,6级地震所释放的能量为136.310⨯焦耳,则这次平原县发生的地震所释放的能量约为()(参考数据:lg 6.30.8≈,0.0510 1.1≈)A.11810⨯焦耳B.111.110⨯焦耳C.12810⨯焦耳D.131.110⨯焦耳6.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.已知()f x 的定义域为()R,21y f x =-为奇函数,()1y f x =+为偶函数,若当()1,1x ∈-时,()e x f x =,则()194f =()A.1eB.0C.1D.e8.已知ω是正整数,函数()()sin f x x ωω=+在()0,πω内恰好有4个零点,其导函数为()f x ',则()()f x f x '+的最大值为()A.2B.C.3D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数21iz =+(i 是虚数单位),则下列命题中正确的是()A.z = B.z 在复平面上对应点在第二象限C.1iz =+ D.z 的虚部为1-10.下列命题中正确..的是()A.若向量()1,2a =r ,()3,1b = ,则,a b可作为平面向量的一组基底B.若四边形ABCD 为平行四边形,且()()()5,1,1,7,1,2A B C --,则顶点D 的坐标为(7,6)-C.若ABC 是等边三角形,则π,3AB BC = .D.已知向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,则b 在a 上的投影向量的坐标为(2,2)11.若,,a b c ∈R ,则下列说法不成立的是()A.若0ab ≠且a b <,则11a b> B.若c b a <<且0ac <,则22cb ab <C.若01a <<,则3a a< D.若0a b >>,则11b ba a+<+12.已知函数32()1f x x ax bx =-++,则下列说法正确的是()A.当0b =时,()f x 有两个极值点B.当0a =时,()f x 的图象关于()0,1中心对称C.当24a b =,且4a >-时,()f x 可能有三个零点D.当()f x 在R 上单调时,23a b≥三、填空题:本题共4小题,每小题5分,共20分.13.已知23,25a b ==,则2log 45=___________.(用,a b 表示)14.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________.15.如图,,αβ是九个相同的正方形拼接而成的九宫格中的两个角,则αβ+=______.16.如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作圆弧交AD 于点F ,若P 为劣弧EF 上的动点,则PC PD ⋅的最小值为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合(2,2)B =-.(1)若2a =,求A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.18.已知a 、b是非零向量,()a ab ⊥- ,且a = 、4b = .(1)求a 与b的夹角θ;(2)求32a b -.19.已知()1f x a b =⋅- ,其中向量(sin 2,2cos ),)(R)a x x b x x ==∈,(1)求()f x 的最小正周期和最小值;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若4A f ⎛⎫= ⎪⎝⎭,a =,8b =,求边长c 的值.20.已知数列{}n a 的前n 项和,232-=n n nS .(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对N ,4n n t T *∀∈≤恒成立,求实数t 的最大值.21.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如下图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要30min.(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求高度差的最大值.(参考公式:sin sin 2cossin ,cos cos 2sin sin 2222θϕθϕθϕϕθθϕθϕ+-+--=-=)22.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.2023-2024学年第一学期期中质量检测高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为U ,集合M ,N 满足M N U ⊂⊂,则下列运算结果为U 的是()A.M N ⋃B.()()UUN M 痧 C.()U M Nð D.()U N Mð【答案】D 【解析】【分析】由题意作出Venn 图,再由集合的运算逐一判断即可【详解】全集U ,集合M ,N 满足M N U ⊂⊂,绘制Venn 图,如下:对于A :M N N ⋃=,A 错误;对于B :()()U UUN M M =痧,B 错误;对于C :()U M N ðU ⊂,C 错误;对于D :()U N M U ⋃=ð,D 正确.故选:D.2.命题p :n ∃∈N ,22n n ≥,则命题p 的否定为()A.n ∀∈N ,22n n ≤B.n ∃∈N ,22n n ≤C.n ∀∈N ,22n n <D.n ∃∈N ,22nn <【答案】C 【解析】【分析】由存在量词命题的否定为全称量词命题,判断命题p 的否定形式.【详解】存在量词命题的否定为全称量词命题,所以命题p 的否定应该为n ∀∈N ,22n n <.故选:C .3.函数()f x =的单调递增区间为()A.1,4⎛⎤-∞ ⎥⎝⎦B.(,1)-∞- C.3,2⎡⎫+∞⎪⎢⎣⎭D.1,4⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】【分析】由根式性质求定义域,结合二次函数和幂函数的性质确定增区间.【详解】由题意,令223t x x =--=()()2310x x -+≥,即1x ≤-或32x ≥,根据二次函数性质知:223t x x =--在(,1]-∞-上递减,在3,+2⎡⎫∞⎪⎢⎣⎭上递增又y =在定义域上递增,故()f x =3,+2⎡⎫∞⎪⎢⎣⎭.故选:C4.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的(注:三角形的三条高线交于一点,此点为三角型的垂心)A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心【答案】C 【解析】【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=- ,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.5.2023年8月6日2时33分,山东平原县发生里氏5.5级地震,8月8日3时28分,菏泽市牡丹区发生2.6级地震,短时间内的两次地震引起了人们对地震灾害和避险方法的关注.地震发生时会释放大量的能量,这些能量是造成地震灾害的元凶.研究表明地震释放的能量E (单位:焦耳)的常用对数与震级M 之间满足线性关系,若4级地震所释放的能量为106.310⨯焦耳,6级地震所释放的能量为136.310⨯焦耳,则这次平原县发生的地震所释放的能量约为()(参考数据:lg 6.30.8≈,0.0510 1.1≈)A.11810⨯焦耳B.111.110⨯焦耳C.12810⨯焦耳D.131.110⨯焦耳【答案】D 【解析】【分析】根据对数的运算性质即可代入数据求解 1.5 4.810M E +=,进而可求解.【详解】由题意可设lg E M λμ=+,则()()1013lg 6.3104lg 6.3106λμλμ⎧⨯=+⎪⎨⨯=+⎪⎩,解得 1.54.8λμ=⎧⎨=⎩,所以lg 1.5 4.8E M =+,所以 1.5 4.810M E +=,所以当 5.5M =时, 1.55.54.813.050.05131310101010 1.110E ⨯+===⨯≈⨯焦耳.故选:D.6.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+,则11(1)222n S n d d a d n a n -=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}n Sn 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+,即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立,于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C7.已知()f x 的定义域为()R,21y f x =-为奇函数,()1y f x =+为偶函数,若当()1,1x ∈-时,()e x f x =,则()194f =()A.1eB.0C.1D.e【答案】C 【解析】【分析】根据函数的奇偶性可以求出函数的周期,利用周期运用代入法进行求解即可.【详解】()21y f x =-为奇函数,即()()21210f x f x -+--=,所以()f x 关于()1,0-中心对称,则()(2)f x f x =---,()1y f x =+为偶函数,即()()1()1(2)f x f x f x f x +=-+⇒-=,所以(2)(2)(2)(2)(4)()f x f x f x f x f x f x -=---⇒+=--⇒+=-,故()()()84f x f x f x +=-+=,即()f x 是周期为8的周期函数,所以()()()()1948242201f f f f =⨯+===,故选:C【点睛】关键点睛:本题的关键是利用函数的奇偶性求出函数的周期.8.已知ω是正整数,函数()()sin f x x ωω=+在()0,πω内恰好有4个零点,其导函数为()f x ',则()()f x f x '+的最大值为()A.2B.C.3D.【答案】B 【解析】【分析】根据函数零点的定义,导数的运算公式,结合正弦型函数的最值性质进行求解即可.【详解】因为()f x 在()0,πω内恰好有4个零点,所以35π022T T ω<-≤,即3π5ππωωω<≤,所以235ω<≤,又N ω+∈,所以2ω=,所以()()sin 22f x x =+,()()2cos 22f x x '=+,所以()()()22f x f x x ϕ'+=++≤πtan 20,2ϕϕ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数21iz =+(i 是虚数单位),则下列命题中正确的是()A.z = B.z 在复平面上对应点在第二象限C.1i z =+ D.z 的虚部为1-【答案】ACD 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可判断A 选项;利用复数的几何意义可判断B选项;利用共轭复数的定义可判断C 选项;利用复数的概念可判断D 选项.【详解】因为()()()21i 21i 1i 1i 1i z -===-++-.对于A 选项,z =A 对;对于B 选项,z 在复平面上对应点的坐标为()1,1-,位于第四象限,B 错;对于C 选项,1i z =+,C 对;对于D 选项,z 的虚部为1-,D 对.故选:ACD.10.下列命题中正确..的是()A.若向量()1,2a =r ,()3,1b = ,则,a b可作为平面向量的一组基底B.若四边形ABCD 为平行四边形,且()()()5,1,1,7,1,2A B C --,则顶点D 的坐标为(7,6)-C.若ABC 是等边三角形,则π,3AB BC = .D.已知向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,则b 在a 上的投影向量的坐标为(2,2)【答案】ABD 【解析】【分析】对于A ,由基底的定义分析判断,对于B ,由AB DC =可求出点D 的坐标,对于C ,由向量夹角的定义分析判断,对于D ,由数量积的几何意义分析判断.【详解】对于A ,因为()1,2a =r ,()3,1b = ,且满足1231≠,所以,a b 不共线,所以,a b可作为平面向量的一组基底,所以A 正确,对于B ,设(,)D x y ,因为四边形ABCD 为平行四边形,所以AB DC =,所以(6,8)(1,2)x y -=--,解得7,6x y ==-,所以顶点D 的坐标为(7,6)-,所以B 正确,对于C ,因为ABC 是等边三角形,所以32π,AB BC = ,所以C 错误,对于D ,因为向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,所以b 在a上的投影向量的坐标为cos ,4(2,2)2a b a b a⋅=⨯=,所以D 正确,故选:ABD11.若,,a b c ∈R ,则下列说法不成立的是()A.若0ab ≠且a b <,则11a b > B.若c b a <<且0ac <,则22cb ab <C.若01a <<,则3a a< D.若0a b >>,则11b b a a+<+【答案】ABD【解析】【分析】A.由0,0a b <>判断;B.由0b =判断;C.作差法判断;D 作差法判断.【详解】A.若0,0a b <>得不到11a b>,故错误;B.若0b =时,不成立,故错误;C.因为01a <<,所以()()3110a a a a a -=+-<,故正确;D.()()10111b b ab a ab b a b a a a a a a ++----==>+++,所以11b b a a+>+,故错误;故选:ABD.12.已知函数32()1f x x ax bx =-++,则下列说法正确的是()A.当0b =时,()f x 有两个极值点B.当0a =时,()f x 的图象关于()0,1中心对称C.当24a b =,且4a >-时,()f x 可能有三个零点D.当()f x 在R 上单调时,23a b≥【答案】BC【解析】【分析】特殊值法可排除A 项,利用函数的对称性可判定B ,取特殊值结合导数研究函数的单调性、极值与最值可判定C ,利用导函数非负结合判别式可判定D .【详解】对于A ,当0b =时,32()1f x x ax =-+,2()32f x x ax '=-,若0a =时,2()30f x x '=≥,则()f x 在定义域内单调递增,无极值点,故A 错误;对于B ,当0a =时,3()1f x x bx =++,3()1f x x bx -=--+,则()()2f x f x +-=,所以()f x 的图象关于()0,1中心对称,故B 正确;对于C 项,当24a b =时,232()14a f x x ax x =-++,22()323462a a a f x x ax x x '⎛⎫⎛⎫=-+=-- ⎪⎪⎝⎭⎝⎭,取4a -<<-,即36454a -<<-时,此时62a a >,所以当2a x <时,()0f x '>,所以()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,当26a a x <<时,()0f x '<,所以()f x 在,26a a ⎛⎫ ⎪⎝⎭上单调递减,当6a x >时,()0f x '>,所以()f x 在,6a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以函数极小值为310654a a f ⎛⎫=+< ⎪⎝⎭,函数极大值为102a f ⎛⎫=> ⎪⎝⎭,即026a a f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,26a a ⎛⎫ ⎪⎝⎭有一个零点,又因为325()1042a f a =+<-<,()39104a f a -=-+>,所以()f x 在,6a a ⎛⎫- ⎪⎝⎭有一个零点,在,2a a ⎛⎫ ⎪⎝⎭有一个零点,即当4a -<<-时,()f x 有三个零点,故C 正确;对于D 项,若()f x 在定义域R 上是单调函数,则2()320f x x ax b '=-+≥恒成立,所以2Δ4120a b =-≤,解得23a b ≤,所以D 错误,故选:BC .【点睛】关键点睛:本题C 项,利用导数研究函数的零点个数,结合极大小值的正负及取特殊点判断函数值符合是关键.三、填空题:本题共4小题,每小题5分,共20分.13.已知23,25a b ==,则2log 45=___________.(用,a b 表示)【答案】2a b +##2b a+【解析】【分析】根据指数式与对数式的互化,求出22log 3,log 5a b ==,结合对数的运算法则化简,即可得答案.【详解】因为23,25a b ==,所以22log 3,log 5a b ==,故2222log 45log 59log 52log 322b a a b =⨯=+=+=+,故答案为:2a b+14.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【解析】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当=1x -时,=3y -,故点在曲线上.求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=.故答案为:520x y -+=.15.如图,,αβ是九个相同的正方形拼接而成的九宫格中的两个角,则αβ+=______.【答案】π4【解析】【分析】结合图形,可得1tan 3α=,1tan 2β=,利用正切的和角公式,即可得出答案.【详解】由图得:1tan 3α=,1tan 2β=,所以1132tan()111132αβ++==-⨯,又因为,αβ为锐角,从而π4αβ+=.故答案为:π4.16.如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作圆弧交AD 于点F ,若P 为劣弧EF 上的动点,则PC PD ⋅ 的最小值为__________.【答案】5-【解析】【分析】建立直角坐标系,设(cos ,sin )(0)2P πθθθ≤≤,利用坐标运算求出PC PD ⋅ ,再利用辅助角公式即可求解.【详解】解:如图所示:建立平面直角坐标系,则(2,2)C ,(0,2)D ,由题意可设:(cos ,sin )(0)2P πθθθ≤≤,则(2cos ,2sin )PC θθ=-- ,(cos ,2sin )PD θθ=-- ,PC PD ⋅ 2cos (2cos )(2sin )θθθ=--+-2cos 4sin 5θθ=--+5)θφ=-+,其中1tan 2φ=,∴PC PD ⋅ 的最小值为5-.故答案为:5-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合(2,2)B =-.(1)若2a =,求A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.【答案】(1)(]2,3A B ⋃=-(2){|3a a ≤-或}2a ≥【解析】【分析】(1)可得出[],1,2A a a a =+=时,可得出集合A ,然后进行并集的运算即可;(2)根据[],1,(2,2)A a a B =+=-,并且A B ⋂=∅即可得出12a +≤-或2a ≥,从而可得出a 的取值范围.【小问1详解】2a =时,2(21)(1)0x a x a a -+++≤解得23x ≤≤,[]2,3A =,且(2,2)B =-,∴(]2,3A B =- ;【小问2详解】由2(21)(1)0x a x a a -+++≤解得1a x a ≤≤+,[],1A a a =+,(2,2)B =-,且A B ⋂=∅,12a ∴+≤-或2a ≥,3a ∴≤-或2a ≥,∴实数a 的取值范围为{|3a a ≤-或}2a ≥.18.已知a 、b 是非零向量,()a ab ⊥- ,且a = 、4b = .(1)求a 与b的夹角θ;(2)求32a b - .【答案】(1)6π(2)【解析】【分析】(1)依题意可得()0a a b ⋅-= ,根据数量积的运算律求出a b ⋅ ,再根据cos a b a b θ⋅=⋅ 计算可得;(2)根据32a b -= 及数量积的运算律计算可得;【小问1详解】解:因为()a a b ⊥- ,所以()0a a b ⋅-= ,即20a a b -⋅= ,即212a b a ⋅== ,所以cos 2a b a b θ⋅⋅=== ,因为[]0,θπ∈,所以6πθ=;【小问2详解】解:32a b -====19.已知()1f x a b =⋅-,其中向量(sin 2,2cos ),)(R)a x x b x x ==∈ ,(1)求()f x 的最小正周期和最小值;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若4A f ⎛⎫=⎪⎝⎭,a =,8b =,求边长c 的值.【答案】(1)最小正周期为π,最小值为2-.(2)2或6.【解析】【分析】(1)利用向量的数量积化简()f x 的解析式,进而可得()f x 的最小正周期和最小值;(2)先由4A f ⎛⎫= ⎪⎝⎭求得π3A =,再利用余弦定理列方程,即可求得边长c 的值.【详解】(1)()1f x a b =⋅-(sin 2,2cos ))1x x x =⋅-2π22cos 12cos 22sin 26x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭则()f x 的最小正周期2ππ2T ==,最小值为2-.(2)ππ2sin 22sin 64426A A A f ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪⎝⎭⎝⎭⎝⎭,则2πsin 62A ⎛⎫+= ⎪⎝⎭,又0πA <<,则ππ2π6632A <+<,故32ππ6A +=,解之得π3A=又a =,8b=,由余弦定理得(22218282c c =+-⨯⨯,即28120c c -+=,解之得2c =或6c =.经检验,均符合题意.20.已知数列{}n a 的前n 项和,232-=n n n S .(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对N ,4n n t T *∀∈≤恒成立,求实数t 的最大值.【答案】(1)32n a n =-(2)1【解析】【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.【小问1详解】当1n =时,由111a S ==;当2n ≥时,22133(1)(1)3222n n n n n n n a S S n -----=-=-=-,又11a =满足上式,所以{}n a 的通项公式为32n a n =-.【小问2详解】由32n a n =-,可得()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,则12...n n T b b b =+++1111111...3447323131n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦.因为()()()1110311313134n n n n T T n n n n ++-=-=>+++++,所以1n n T T +>,所以数列{}n T 是递增数列,所以1141444n n t t t T T T t ≤⇔≤⇔≤=⇔≤,所以实数t 的最大值是1.21.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如下图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要30min .(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求高度差的最大值.(参考公式:sin sin 2cos sin ,cos cos 2sin sin 2222θϕθϕθϕϕθθϕθϕ+-+--=-=)【答案】(1)45sin 55152ππH t ⎛⎫=-+ ⎪⎝⎭,[]0,30t ∈(2)π2π45cos 153h t ⎛⎫=-⎪⎝⎭,[]0,30h ∈;45m 【解析】【分析】(1)设sin()H A t B ωϕ=++π20,ωϕ⎛>≤⎫ ⎪⎝⎭,根据所给条件求出A 、B 、ω、ϕ;(2)由题意得:1号与9号座舱的角度差为π3,不妨假设1号座舱出发早于9号座舱,t min 时1号与9号的高度分别为19,H H ,即可得到19πππ5π45sin sin 152156h H H t t ⎛⎫⎛⎫=-=---⎪ ⎪⎝⎭⎝⎭,再由和差化积公式得到π2π45cos 153h t ⎛⎫=-⎪⎝⎭,[]0,30t ∈,最后根据余弦函数的性质计算可得.【小问1详解】设sin()H A t B ωϕ=++π20,ωϕ⎛>≤⎫ ⎪⎝⎭,则2ππ15T ω==,令0=t 时,sin 1ϕ=-,π2ϕ=-,又100451055A B A A B B +==⎧⎧⇒⎨⎨-+==⎩⎩,所以45sin 55152ππH t ⎛⎫=-+⎪⎝⎭,[]0,30t ∈.【小问2详解】由题意得:1号与9号座舱的角度差为π3.不妨假设1号座舱出发早于9号座舱,t min 时1号与9号的高度分别为19,H H ,则145sin 55152ππH t ⎛⎫=-+ ⎪⎝⎭,9πππ45sin 551523H t ⎛⎫=--+ ⎪⎝⎭,所以高度19πππ5π45sin 55sin 55152156h H H t ⎛⎫⎛⎫=-=-+--- ⎪ ⎪⎝⎭⎝⎭πππ5π45sin sin 152156t t ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,由参考公式得,上式为π2πππ2π90cos sin 45cos 1536153t t ⎛⎫⎛⎫-=- ⎪ ⎝⎭⎝⎭,从而高度差为π2π45cos 153h t ⎛⎫=- ⎪⎝⎭,[]0,30t ∈;当π2πcos 1153t ⎛⎫-= ⎪⎝⎭,即π2ππ153t k -=,N k ∈,解得1015t k =+,N k ∈,又[]0,30t ∈,所以10t =min 或25t =min ,此时高度差h 的最大值为45m.22.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1xh x x =--,证得e 1x x ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【小问1详解】因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10x f x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:由(1)得,()()()ln min 2ln ln ln e1a f a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1xh x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则202a <<;令()0g a '>,则22a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 2212ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.。
2018-2019学年山东省潍坊市高一(上)期中数学试卷(解析版)
2018-2019学年山东省潍坊市高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈N|-2<x<2}的真子集的个数是()A. 8B. 7C. 4D. 32.下列函数中,既是奇函数又是增函数的是()A. B. C. D.3.已知f(x)=,则f[f(2)]=()A. 5B.C.D. 24.a=40.9、b=80.48、c=()-1.5的大小关系是()A. B. C. D.5.已知函数f(x+1)=2x-3,若f(m)=4,则m的值为()A. B. C. D.6.函数f(x)=a x-(a>0,a≠1)的图象可能是()A. B.C. D.7.设f(x)是(-∞,+∞)上的减函数,则()A. B. C. D.8.下列变化过程中,变量之间不是函数关系的为()A. 地球绕太阳公转的过程中,二者间的距离与时间的关系B. 在银行,给定本金和利率后,活期存款的利息与存款天数的关系C. 某地区玉米的亩产量与灌溉次数的关系D. 近年来,中国高速铁路迅猛发展,中国高铁年运营里程与年份的关系9.已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A. B. C. D.10.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y与时间x(年)的函数图象(如图),以下给出了关于该产品生产状况的几点判断:①前三年的年产量逐步增加;②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同;④后两年均没有生产.其中正确判断的序号是()A. B. C. D.11.已知函数f(x)=,若函数g(x)=f(x)-m恰有一个零点,则实数m的取值范围是()A. B.C. ,D. ,12.已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(4)=()A. 10B. 2C. 0D. 4二、填空题(本大题共4小题,共20.0分)13.计算(2)×(3)=______.14.如图所示,图中的阴影部分可用集合U,A,B,C表示为______.15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=______.16.已知函数f(x)=(t>0)的最大值为M,最小值为N,且M+N=4,则实数t的值为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=+的定义域为集合M.(1)求集合M;(2)若集合N={x|2a-1≤x≤a+1},且M∩N={2},求N.18.已知函数f(x)=(a∈R).(1)若f(x)为奇函数,求实数a的值;(2)当a=0时,判断函数f(x)的单调性,并用定义证明.19.已知四个函数f(x)=2x,g(x)=()x,h(x)=3x,p(x)=()x,若y=f(x),y=g(x)的图象如图所示.(1)请在如图坐标系中画出y=h(x),y=p(x)的图象,并根据这四个函数的图象抽象出指数函数具有哪些性质?(2)举出在实际情境能够抽象出指数函数的一个实例并说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图①;投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图②.(注:收益与投资额单位:万元)(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?21.已知函数f(x)是定义在R上的增函数,且满足f(x+y)=f(x)•f(y),且f(2)=.(1)求f(4)的值;(2)当x∈[,]时,f(kx2)<2f(2x-5)恒成立,求实数k的取值范围.22.对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.(1)求函数y=x2的所有“保值”区间;(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.答案和解析1.【答案】D【解析】解:∵集合A={x∈N|-2<x<2}={0,1},∴集合A的真子集的个数是:22-1=3.故选:D.先求出集合A={0,1},由此能求出集合A的真子集的个数.本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:根据题意,依次分析选项:对于A,y=是奇函数但不是增函数,不符合题意;对于B,y=x-1,不是奇函数,不符合题意;对于C,y=-x2,为偶函数不是奇函数,不符合题意;对于D,y=2x是正比例函数,既是奇函数又是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性以及单调性,综合即可得答案.本题考查函数奇偶性、单调性的判定,关键是掌握常见函数的奇偶性、单调性,属于基础题.3.【答案】D【解析】解:f(2)=-2×2+3=-1,所以f[f(2)]=f(-1)=(-1)2+1=2.故选D.根据所给解析式先求f(2),再求f[f(2)].本题考查分段函数求值问题,属基础题,关键看清所给自变量的值所在范围.4.【答案】D【解析】解:∵a=40.9=21.8,b=80.48=21.44,c==21.5,∵y=2x为单调增函数,而1.8>1.5>1.44,∴a>c>b.故选:D.利用有理指数幂的运算性质将a,b,c均化为2x的形式,利用y=2x的单调性即可得答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值,属于中档题.5.【答案】B【解析】解:∵函数f(x+1)=2x-3,f(m)=4由2x-3=4,得x=,∴m=x+1=.故选:B.由2x-3=4,得x=,再由m=x+1,能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:当0<a<1时,函数f(x)=a x-,为减函数,当a>1时,函数f(x)=a x-,为增函数,且当x=-1时f(-1)=0,即函数恒经过点(-1,0),故选:D.先判断函数的单调性,再判断函数恒经过点(-1,0),问题得以解决.本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.【答案】D【解析】解:f(x)是(-∞,+∞)上的减函数,当a>0时,a<2a,f(a)>f(2a),当a≤0时,a≥2a,f(a)≤f(2a),故A错误;当a=0,则a2=a,则f(a2)=f(a),故B错误;当a=0,a2+a=a,则f(a2+a)=f(a),故C错误;由a2+1>a,则f(a2+1)<f(a).故选:D.采用排除法,根据a的取值范围,根据导数与函数单调性的关系,即可求得答案.本题考查导数与函数的单调性的关系,属于基础题.8.【答案】C【解析】解:根据函数的定义得:某地区玉米的亩产量与灌溉次数的关系不是函数关系,故选:C.根据函数的定义对各个选项分别判断即可.本题考查了函数的定义,考查对应关系,是一道基础题.9.【答案】A【解析】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:由该厂5年来某种产品的总产量y与时间x(年)的函数图象,得:前三年的年产量逐步减少,故错误,正确;后两年均没有生产,故错误,正确.故选:B.利用该厂5年来某种产品的总产量y与时间x(年)的函数图象直接求解.本题考查命题真假的判断,考查该厂5年来某种产品的总产量y与时间x(年)的函数图象的性质等基础知识,考查数形结合思想,是基础题.11.【答案】D【解析】解:令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选:D.作出f(x)的函数图象,根据图象判断m的值.本题考查了函数的零点与函数图象的关系,属于中档题.12.【答案】C【解析】解:∵f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),∴f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),∵f(1)=2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0)=0.故选:C.推导出f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),从而f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f (-1)+f(0),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.13.【答案】1【解析】解:(2)×(3)===.故答案为:1.化带分数为假分数,再由有理指数幂的运算性质化简求值.本题考查有理指数幂的运算性质,是基础的计算题.14.【答案】(A∩B)∩(∁U C)【解析】解:如图所示,图中的阴影部分可用集合U,A,B,C表示为:(A∩B)∩(∁U C).故答案为:(A∩B)∩(∁U C).利用维恩图直接求解.本题考查集合的交集的求法,考查维恩图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.15.【答案】1【解析】解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得f(-x)-g(-x)=-x3+x2+1,∵f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(x)=f(-x),g(-x)=-g(x),即f(x)+g(x)=-x3+x2+1,再令x=1,得f(1)+g(1)=1.故答案为:1.将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.本题考查利用函数奇偶性求值,本题中也可以将原代数式中的x直接令其等于-1也可以得到计算结果,属于基础题.16.【答案】2【解析】解:由题意,f(x)==+t,显然函数g(x)=是奇函数,∵函数f(x)最大值为M,最小值为N,且M+N=4,∴M-t=-(N-t),即2t=M+N=4,∴t=2,故答案为:2.由题意f(x)=t+g(x),其中g(x)是奇函数,从而2t=4,即可求出实数t的值.本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)要使函数f(x)=有意义,则需;解得-3<x≤2;∴函数f(x)的定义域M=(-3,2];(2)∵M∩N={2},且M=(-3,2];∴2∈N;∴ ;解得;∴ ,.【解析】(1)要使得函数f(x)有意义,则需满足,从而求出M=(-3,2];(2)根据M∩N={2},便可得出2∈N,从而得出2a-1=2,求出a即可得出集合N.考查函数定义域的概念及求法,指数函数的单调性,交集的概念,元素与集合的关系.18.【答案】解:(1)函数f(x)的定义域是R,且f(-x)==,由y=f(x)是奇函数,得对任意的x都有f(x)=-f(-x),故=-,得2x(a-1)=1-a,解得:a=1;(2)由a=0得:f(x)=1-,任取x1,x2∈R,设x1<x2,则f(x2)-f(x1)=-=,∵y=2x在R递增且x1<x2,∴ ->0,又(+1)(+1)>0,故f(x2)-f(x1)>0即f(x2)>f(x1),故f(x)在R递增.【解析】(1)根据函数的奇偶性的定义求出a的值即可;(2)根据函数的单调性的定义证明即可.本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道中档题.19.【答案】解:(1)画出y=h(x),y=p(x)的图象如图所示:4个函数都是y=a x(a>0,a≠1)的形式,它们的性质有:①定义域为R;②值域为(0,+∞);③都过定点(0,1);④当a>1时,函数在定义域内单调递增,0<a<1时,函数在定义域内单调递减;⑤a>1时,若x<0,则0<y<1,若x>0,则y>1.0<a<1时,若x>0,则0<y<1,若x<0,则y>1;⑥对于函数y=a x(a>0,a≠1),y=b x(b>0,b≠1),当a>b>1时,若x<0,则0<a x<b x<1;若x=0,则a x=b x=1;若x>0,则a x>b x>1.当0<a<b<1时,若x<0,则a x>b x>1;若x=0,则a x=b x=1;若x>0,则0<a x<b x<1.(2)举例:原来有一个细胞,细胞分裂的规则是细胞由一个分裂成2个,则经过x次分裂,细胞个数y,则y=2x,是一个指数函数.【解析】(1)根据指数函数的图象性质,得出结论.(2)举细胞分裂的例子,抽象出指数函数的一个实例.本题主要考查指数函数的性质,指数函数的应用,属于中档题.20.【答案】解:(Ⅰ)f(x)=k1x,g(x)=k2,∴f(1)==k1,g(1)=k2=,∴f(x)=x(x≥0),g(x)=(x≥0)(Ⅱ)设:投资债券类产品x万元,则股票类投资为20-x万元.y=f(x)+g(20-x)=+(0≤x≤20)令t=,则y==-(t-2)2+3所以当t=2,即x=16万元时,收益最大,y max=3万元.【解析】(Ⅰ)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(Ⅱ)由(Ⅰ)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.【答案】解:(1)令x=y=2,得:f(2+2)=f(2)•f(2),即f(4)═2(2)2f(2x-5)=f(4),f(2x-5)=f(2x-1)所以f(kx2)<2f(2x-5)化为:f(kx2)<f(2x-1),因为函数f(x)是定义在R上的增函数,所以kx2<2x-1在x∈[,]时恒成立,即k<在x∈[,]时恒成立,令y===-()2+1,x∈[,],∈[,],y有最小值为0.所以,k<0.【解析】(1)利用赋值法,x=y=2求解即可.(2)利用已知条件化简不等式为f(kx2)<f(2x-1),利用函数的单调性,分离变量,通过二次函数的性质求解闭区间上的最值即可.本题考查函数与方程的应用,函数的单调性以及二次函数的性质的应用,考查转化思想以及计算能力.22.【答案】解:(1)因为函数y=x2的值域是[0,+∞),且y=x2在[a,b]的值域是[a,b],所以[a,b]⊆[0,+∞),所以a≥0,从而函数y=x2在区间[a,b]上单调递增,或故有解得或又a<b,所以所以函数y=x2的“保值”区间为[0,1].…(3分)(2)若函数y=x2+m(m≠0)存在“保值”区间,则有:①若a<b≤0,此时函数y=x2+m在区间[a,b]上单调递减,所以消去m得a2-b2=b-a,整理得(a-b)(a+b+1)=0.因为a<b,所以a+b+1=0,即a=-b-1.又所以<.因为<,所以<.…(6分)②若b>a≥0,此时函数y=x2+m在区间[a,b]上单调递增,所以消去m得a2-b2=a-b,整理得(a-b)(a+b-1)=0.因为a<b,所以a+b-1=0,即b=1-a.又所以<.因为<,所以<.因为m≠0,所以<<.…(9分)综合①、②得,函数y=x2+m(m≠0)存在“保值”区间,此时m的取值范围是,,.…(10分)【解析】(1)由已知中保值”区间的定义,结合函数y=x2的值域是[0,+∞),我们可得[a,b]⊆[0,+∞),从而函数y=x2在区间[a,b]上单调递增,则,结合a<b即可得到函数y=x2的“保值”区间.(2)根据已知中保值”区间的定义,我们分函数y=x2+m在区间[a,b]上单调递减,和函数y=x2+m在区间[a,b]上单调递增,两种情况分类讨论,最后综合讨论结果,即可得到答案.本题考查的知识点是函数单调性,函数的值,其中正确理解新定义的含义,并根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为数学熟悉的数学模型是解答本题的关键.。