概率论与数理统计 试卷6

合集下载

(完整word版)概率论与数理统计期末试卷及答案

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

概率论与数理统计试卷(选择)

概率论与数理统计试卷(选择)

题目部分,(卷面共有100题,454.0分,各大题标有题量和总分) 一、选择题(27小题,共88.0分) (3分)[1]要使函数cos ()0x x G x x Gϕ∈⎧=⎨∈⎩是某个随机变量的概率密度,则区间G 是( )。

A 、,22ππ⎡⎤-⎢⎥⎣⎦ B 、0,2π⎡⎤⎢⎥⎣⎦C 、[],2ππD 、,2ππ⎛⎫⎪⎝⎭(4分)[2]设随机变量ξ与η相互独立,且有相同的分布律( )。

则ζ=ξ- η的分布列为 A 、B 、C 、D 、(5分)[3]设ξ~N(3,4),η服从参数λ=0.2的指数分布,则下列各式错误的是( )。

A 、()8E ξη+= B 、()29D ξη+=C 、()2263Eξη+=D 、50252E ξη⎛⎫+-=⎪⎝⎭ (3分)[4]如果ξ,η不相关(cov(ξ,η)=0)则( )。

A 、D(a ξ+b η)=aD ξ+bD ηB 、D(ξ-η)=D ξ-D ηC 、D(ξη)=D ξ⋅D η D 、E(ξη)=E ξ⋅E η(2分)[5]设事件A 与B 互斥,PA 、=p,PB 、=q ,则()P AB 等于( )。

A 、(1- p)qB 、pqC 、qD 、p(3分)[6]设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( )。

A 、A 与B 不相容 B 、A 与B 相容C 、P(AB)=PA 、PB 、D 、P(A - B)=PA 、(3分)[7]随机试验E 为:统计某路段一个月中的重大交通事故的次数,A 表示事件“无重大交通事故”;B 表示事件“至少有一次重大交通事故”;C 表示事件“重大交通事故的次数大于1”;D 表示事件“重大交通事故的次数小于2”则不是对立关系的事件是( )。

A 、A 与B B 、C 与D C 、A 与C D 、(A Y C)与(B I D) (2分)[8]一批产品,优质品占20%,进行重复抽样检查,共取5件产品进行检查,则恰有三件是优质品的概率等于( )。

概率论与数理统计期末试卷与答案(最新5)

概率论与数理统计期末试卷与答案(最新5)

概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50个球,其中20个红球,30个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为 3/5 。

2、设P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么()P AB = 2/3 。

3、若随机变量X 的概率密度为2(),11,f x Ax x =-<<那么A= 3/2 。

4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/π,其它区域都是0,那么221()2P X Y +<= 1/2 。

5、掷n 枚骰子,记所得点数之和为X ,则EX = 3.5n 。

6、若X ,Y ,Z 两两不相关,且DX=DY=DZ=2,则D(X+Y+Z) = 6 。

7、若随机变量12,,,n X X X 相互独立且同分布于标准正态分布N(0,1),那么它们的平方和22212n X X X +++服从的分布是2()n χ。

8、设A n 是n 次相互独立的试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的0>ε,lim {||}An n p n→+∞-≥ε= 0 。

9、设总体2(,)XN μσ,其中2σ已知,样本为12,,,n X X X ,设00:H =μμ,10:H <μμ,则拒绝域为z α<-。

10、设总体X 服从区间[1,a ]上的均匀分布,其中a 是未知参数。

若有一个来自这个总体的样本2, 1.8, 2.7, 1.9, 2.2, 那么参数a 的极大似然估计值a = 12max{,,,} 2.7n x x x =。

二、选择题1、设10张奖券只有一张中奖,现有10个人排队依次抽奖,则下列结论正确的是( A ) (A )每个人中奖的概率相同; (B )第一个人比第十个人中奖的概率大;(C )第一个人没有中奖,而第二个人中奖的概率是1/9; (D )每个人是否中奖是相互独立的 2、设随机变量X 与Y 相互独立,且21(,)X N μσ,22(,)Y N μσ,则X Y -服从的分布是( B )(A )212(,)N -μμσ;(B )212(,2)N -μμσ;(C )212(,)N +μμσ;(D )212(,2)N +μμσ3、设事件A 、B 互斥,且()0P A >,()0P B >,则下列式子成立的是( D )(A )(|)()P A B P A =; (B )(|)0P B A >; (C )(|)()P A B P B =; (D )(|)0P B A =;4、设随机变量X 与Y 独立同分布,P(X= -1) = P(Y= -1) =1/2,P(X= 1) = P(Y= 1) =1/2,则下列成立的是( A )(A )()1/2P X Y ==; (B )()1P X Y ==; (C )(0)1/4P X Y +==; (D )(1)1/4P XY ==;5、有10张奖券,其中8张2元,2张5元。

大学概率论与数理统计期末考试试卷

大学概率论与数理统计期末考试试卷

大学概率论与数理统计期末考试试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为(A) A. B.BCC.ABC D.2.设随机事件A与B相互独立,且P(A)=,P(B)=,则P(A B)=(B) A. B.C. D.3.设随机变量X~B(3,0.4),则P{X≥1}=(C)A.0.352B.0.432C.0.784D.0.936A.0.2B.0.35C.0.55D.0.85.设随机变量X的概率密度为f(x)=,则E(X),D(X)分别为(B)A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=(A)A.B.C.2 D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~(B )A.N(-3,-5)B.N(-3,13)C.N(1,)D.N(1,13)8.设X,Y 为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY =(D ) A. B. C. D.9.设随机变量X~2(2),Y~2(3),且X 与Y 相互独立,则(C )A.2(5)B.t(5)C.F(2,3) D.F(3,2)10.在假设检验中,H 0为原假设,则显著性水平的意义是(A ) A.P{拒绝H 0|H 0为真}B.P{接受H 0|H 0为真}C.P{接受H 0|H 0不真} D.P{拒绝H 0|H 0不真}二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,P(A)=0.6,P(B|A)=0.3,则P(AB)=_0.18_____. 12.设随机事件A 与B 互不相容,P()=0.6,P(A B)=0.8,则P(B)=_0.4_____.13.设随机变量X 服从参数为3的泊松分布,则P{X=2}=_____.14.设随机变量X~N(0,42),且P{X>1}=0.4013,(x)为标准正态分布函数,则(0.25)=_0.5987____. 15.设二维随机变量(X,Y)的分布律为392e则P{X=0,Y=1}=_0.1_____.16.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y>1}=____0.5__.17.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=__13/16____.18.设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=__5____. 19.设随机变量X 1,X 2,…,X n ,…相互独立同分布,且E (X i )=则___0.5_______. 20.设随机变量X-2(n),(n)是自由度为n 的2分布的分位数,则P{x}=_1-a_____. 21.设总体X~N(),x 1,x 2,…,x 8为来自总体X 的一个样本,为样本均值,则D ()=__8____. 22.设总体X~N(),x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,s 2为样本方差,则~__t(n-1)___.23.设总体X 的概率密度为f(x;),其中(X)=,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值.若c 为的无偏估计,则常数c=__0.5____. 24.设总体X~N(),已知,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,则参数的置信度为1-的置信区间为__=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→0lim 1σμn n X P n i i n 22(a ax x nn-+____. 25.设总体X~N(,x 1,x 2,…,x 16为来自总体X 的一个样本,为样本均值,则检验假设H 0:时应采用的检验统计量为______.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A 表示“第二次取到的全是新球”,求P(A).解:27.设总体X 的概率密度为,其中未知参数x 1,x 2,…,x n 为来自总体X 的一个样本.求的极大似然估计.解:四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机变量x 的概率密度为求:(1)常数a,b ;(2)X 的分布函数F(x);(3)E(X).(0,1)416x u N =22322244311()444C C p A C C =+=2121111111(,,;)2(2)ln ln 2(21)ln ln 2ln 02ln nnnn iii i nii ni i nii L X X xx L n x Lnx n x θθθθθθθθθθ--========+-∂=+=∂∴=-∏∏∑∑∑解:(1)(2)(3) 29.设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)分别关于X,Y 的边缘分布律;(2)D(X),D(Y),Cov(X ,Y). 解:(1)2021()1()1ax b dx ax b dx ⎧+=⎪⎨+=⎪⎩⎰⎰121a b ⎧=-⎪⇒⎨⎪=⎩1102()20x x f x ⎧-+<<⎪=⎨⎪⎩其他20212F x x x x x ⎧⎪⎪+≤<⎨⎪≥⎪⎩0x<01()=-4212()(1)23E X x x dx =-+=⎰(2)XY 的分布列为五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.解:由于xy 相互独立得:2222()()03.6()()() 3.6(,)()()()E X E Y EX EY D X D Y EX EX Cov x y E XY E X E Y ======-==-()0(,)0E XY Cov x y ==110001200010()1000010()20000x x e x f x e y f y --⎧>⎪=⎨⎪⎩⎧>⎪=⎨⎪⎩x<0y<011100020001191000200051200120010,0(,)()()20000000()1000()200011{1200,1200}10002000x y x y e x y f x y f x f y E x E y p x y e dxe dy e -----+∞+∞⎧>>⎪==⎨⎪⎩==>>==⎰⎰其他。

同济大学版概率论和数理统计_修改版答案解析

概率论与数理统计练习题系专业班姓名学号第一章随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件(B )必然事件(C )随机事件(D )样本事件2.下面各组事件中,互为对立事件的有 [ B ] (A )1A {抽到的三个产品全是合格品}2A {抽到的三个产品全是废品}(B )1B {抽到的三个产品全是合格品} 2B {抽到的三个产品中至少有一个废品}(C )1C {抽到的三个产品中合格品不少于2个} 2C {抽到的三个产品中废品不多于2个}(D )1D {抽到的三个产品中有2个合格品} 2D {抽到的三个产品中有2个废品}3.下列事件与事件A B 不等价的是[ C ](A )A AB (B )()A B B(C )A B(D )A B4.甲、乙两人进行射击,A、B 分别表示甲、乙射中目标,则A B 表示 [ C](A )二人都没射中(B )二人都射中(C )二人没有都射着(D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D](A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x Bx x ,则AB表示 [ A](A ){|01}xx (B ){|01}x x(C ){|12}x x(D ){|0}{|1}x xx x 7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为[ A](A )C A C B ;(B )C AB ;(C )CAB CB A BCA ;(D )A BC .8、设随机事件,A B 满足()0P AB ,则 [ D ](A ),A B 互为对立事件(B),A B 互不相容(C)AB 一定为不可能事件(D)AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB,则称A 与B互不相容或互斥。

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。

2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。

3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。

4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。

5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。

6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。

(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。

(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。

概率论与数理统计期末考试试卷

一、填空题:(每题3分,共30分.请把答案填在题中横线上.)1.设C B A ,,是三个随机事件,则事件“C B A ,,不同时发生”可以表示为: .2. 三个人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,问三人中至少有一个人能将此密码译出的概率是____________.3.设离散型随机变量X 的分布函数为()F x ,则{}P a X b <≤= .4.设X 的概率密度函数是{}111()10.520x f x P X ⎧-<<⎪=-<<=⎨⎪⎩,则其它 . 5.若(2,4)X N ,令__________Y =,则(0,1)Y N . 6. 设随机变量X 的方差()D X 存在,则[]()D X '= .7.已知随机变量X 有2(),()E X D X μσ==,根据契比雪夫不等式,则{}3P X μσ-<≥ .8.已知离散型随机变量X 服从参数为2的泊松分布,则()D X = .9.设12,,n X X X 是来自总体X 的样本,则11ni i X X n ==∑,2S = .10.评价估计量的标准有无偏性、有效性和 .1.用3个机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别为0.94,0.9,0.95,求全部产品中的合格率.2.已知随机变量X 的分布律为1240.50.30.2Xp ⎛⎫⎪⎝⎭,求()F x 及{}1 2.5P X -<<.3.设连续型随机变量X 的分布函数为20()0xA Be x F x -⎧+>=⎨⎩其它,试求:(1)A 、B 的值;(2)概率密度函数()f x .4. 已知随机变量X 、Y 相互独立,二维随机变量(,)X Y 的联合概率分布如下,请将表内空白处填入适当的数.试卷装订线5. 袋中有2只黑球,2只白球,3只红球,从中任取2只,用ξ表示取到黑球的只数,以η表示取到白球的只数(1)求(,)ξη的联合分布律; (2)求(2)P ξη+≥,22(1)P ξη+≤.6.设随机变量1234,,,X X X X 相互独立,且有(),()5,1,2,3,4i i E X i D X i i ==-=,设12341232Y X X X X =-+-,求 1(),(),X YE Y D Y ρ.三、应用题(每题8分,共16分)1.设电站供电网有10000盏电灯,夜晚每一盏开灯的概率是0.8,假定开、关时间彼此独立,估计夜晚同时开着的灯数在7900与8100之间的概率.2.一个车间生产铁钉,从某天的产品里随机抽取9个,量得结果如下(单位:毫米): 215,0.09x s ==,已知铁钉长度服从正态分布,求平均长度的双侧置信区间(0.05α=). 以下数据有可能在计算过程中要用到 0.025(2.5)0.9938,(8) 2.306t Φ==测验题(一)一、填空1、设123,,A A A 是三个事件,则这三个事件中至少有两个发生的事件是 。

《概率论与数理统计》题库及答案

《概率论与数理统计》题库及答案一、填空题1.设有两门高射炮,每一门击中飞机的概率都是0.6,则同时发射一发炮弹而击中飞机的概率为 .若有一架敌机入侵领空,欲以99%以上的概率及中它,至少需 ___门高射炮.2.设ξ在[0,1]上服从均匀分布,则ξ的概率分布函数F (x )= ___,P (ξ≤2)= ___.3.设母体)4,30(~N ξ,),,,(4321ξξξξ为来自ξ的一个容量为4的样本,则样本均值~ξ___,=>)30(ξP ___,),,,(4321ξξξξ的概率密度为___.4. 将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为___.5. 两封信随机地投入四个邮筒, 则前两个邮筒没有信的概率为_______, 第一个邮筒只有一封信的概率为_________.6. 一批产品的废品率为0.2, 每次抽取1个, 观察后放回去, 下次再任取1个, 共取3次, 则3次中恰有两次取到废品的概率为_________.7.设ξ具有概率密度⎩⎨⎧<<+=其他031)(x b ax x f ,又)21(2)32(<<=<<ξξP P ,则a = ,b = .8.设ξ与η相互独立,ξ~N (0,1),η~N (1,2),令ζ=ξ+2η,则E ζ=___,D ζ=___, ζ的概率密度函数为___.9.已知B A ⊂,P (A )=0.1,P (B )=0.5,则P (AB )= ___,P (A +B )= ___,=)(B A P ___,P (A |B )= ___,=+)(B A P ___.10.设)4,3(~N ξ,则使得)()(c P c P ≤=>ξξ成立的=c ___. 11.已知1-=ξE ,3=ξD ,则 =-)]2(3[2ξE ___.12. 小概率原理认为:小概率事件在一次试验中是不会发生的,如果发生了则要 . 13. 相关系数的取值范围是 .14. 设总体),(~2σξa N ,2σ已知,),...,(1n X X 为来自ξ的一个样本,如检验00:a a H =(常数),则在0H 成立条件下,检验统计量服从 分布.15. 设总体ξ的概率分布列为),...,(,1)0(,)1(1n X X p P p P -====ξξ为来自ξ的一个样本,则=)(X D .16. 设ξ的密度函数为⎩⎨⎧<≥=-0,00,2)(2x x e x f x 当当,则=ξD .17. 设),(ηξ的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f , 则η的边沿密=)(y f .18. =+==⊂)(,5.0)(,1.0)(,B A P B P A P B A 则 .19. 若,5.0)(,6.0)(==B P A P 7.0)(=+B A P ,则=)(AB P . 20. 公交车每5分钟发一辆,则乘客等车时间不超过3分钟的概率为 .21. ⎪⎩⎪⎨⎧<<=其他,020,cos )(πx x A x f 为密度函数,则=A .22. 两随机变量ξ与η的方差分别为25及36,相关系数为0.4,则=-)(ηξD . 23. 设)1,0(~N ξ,)(~2n χη,且ξ与η相互独立,则统计量~nηξ. 二、选择题1.若事件A 、B 为互逆事件,则=)(B A P ( )A. 0B. 0.5C. 1D. Φ2.在四次重复贝努里试验中,事件A 至少发生一次的概率为80/81,则A 在每次试验中发生的概率p 为( )A.4532 B. 31 C.32D. 1-4532 3.若两个随机变量ξ和η的相关系数0=ξηρ,则下列结论正确的是( ).A. ()ηξηξD D D -=-B. ()ηξηξD D D +=+C. ()ηξξηD D D =D. ξ和η相互独立4. 设A 、B 、C 为三个事件,则A 、B 、C 至少发生一个的事件应表示为( )A. ABCB. A +B +CC. C B AD. C B A5. 每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).A. r n r r n p p C --)1(B. rn r r n p p C ----)1(11 C. rn r p p --)1( D. r n r r n p pC -----)1(1116. 设(ξ,η)具有概率密度函数⎪⎩⎪⎨⎧<<<<+=其他020,20)sin(),(ππy x y x A y x f ,则A=( )A. 0.1B. 0.5C. 1D. 27. 设),(~2σμξN ,且μ=0,12=σ,令βαξη+=,则D η=( )(α、β为常数)A.βα-B. βα+C.α ④2α 8. 已知ξ的概率密度函数为f (x ),则( )A.0≤f (x )≤1B.P (ξ=x )=f (x )C.⎰+∞∞-=1)(dx x f D.P (ξ=x )≤f (x )≤19. 若母体ξ的方差为2σ,则2σ的无偏估计为( )A.21S n n -B.2SC.21S n n- D.S 10.设A ,B 为两事件,B A ⊂,则不能推出结论( )A. )()(A P AB P =B. )()(B P B A P =⋃C.)()()(B P A P B A P -=D. )()()(A P B P B A P -= 11. 若事件A 、B 互不相容,则=)(B A PA .0.5B .0C .1D .0.25 12. 设事件A 、B 相互独立,已知5.0)(,25.0)(==B P A P ,则=-)(B A P A .12.0 B .125.0 C .25.0 D .5.013. 设随机变量ξ的概率密度函数为⎪⎩⎪⎨⎧≤≤-≤≤=其它,021,210,)(x x x x x f ,则=≤)1.5(ξPA .0.875B .⎰-5.10)2dx x ( C .⎰-5.11)2dx x ( D .⎰∞--5.1)2xdx x (14. 设)(x f 为连续型随机变量ξ的概率密度,)(x F 为ξ的分布函数,则下列正确的是 A .)()(x f x F = B .1)(0<<x f C .)()(x F x P ==ξ D .⎰∞+∞-=1)(dx x f15. 设),(ηξ的概率密度为⎩⎨⎧≥≥=+-其它,00,0,),()(y x Ce y x f y x ,则C =A . 1B .0.5C .0.25D .216. 设随机变量ξ的概率密度函数为⎩⎨⎧<≥=-0,00,)(x x e x f x λλ , 则=ξEA .λB .λ1 C .2λ D .21λ17. 设A 、B 、C 为三个事件,则A 、B 、C 恰有两个发生的事件应表示为 A.C B A BC A C AB ++ B. AC BC AB ++ C.ABC C B A BC A C AB +++ D. C A C B B A ++18. 袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为 A .83 B .81)83(5 C .81)83(348C D .485C19. 设)1,0(~),4,(~2N a N ηξ记),1(),4(21≥=-≤=ηξp p a p p 则下列正确的是 A .21p p = B .21p p ≠ C .21p p < D .21p p >20. 设ξ的概率密度为⎩⎨⎧<<=其它,010,)(2x Ax x f , 则A =A .31 B .3 C .21D .221. 已知连续型随机变量ξ的概率密度为)(x f ,)(x F 为ξ的分布函数,则下列正确的是 A .)()(x f x P ==ξ B .1)(=⎰∞+∞-dx x f xC .1)(0≤≤x FD .)()(x f x P =≤ξ22. 设随机变量ξ的概率密度函数为)(x f ,如果( ),恒有1)(0≤≤x f .A .),1(~2σξN B .)1,2(~N ξ C .),(~2σξa N D .),0(~2σξN三、计算题1.如果在1500件产品中有1000件不合格品,如从中任抽150件检查,求查得不合格品数的数学期望;如从中有放回抽取150次,每次抽一件,求查得不合格品数的数学期望和方差.2. 如果n ξξξ,,,21 是n 个相互独立、同分布的随机变量,μξ=i E ,),,2,1(8n i D i ==ξ.对于∑==ni i n 11ξξ,写出ξ所满足的切贝晓夫不等式,并估计)4|(|<-μξP .3.在密度函数(),1)(ααx x f +=10<<x 中求参数α 的矩估计和极大似然估计.4. 已知随机变量ξ~N (0,1),求(1) ξηe =的概率密度; (2) ||ξζ=的概率密度.5. 全班20人中有8人学过日语,现从全班20人中任抽3人参加中日友好活动,令ξ为3人中学过日语的人数,求(1) 3人中至少有1人学过日语的概率; (2) ξ的概率分布列及E ξ.6. 设总体ξ服从指数分布,其概率密度函数为⎪⎩⎪⎨⎧<≤=-001)(1x x ex f x θθ,(θ>0)试求参数θ的矩估计和极大似然估计.7.一个盒子中共有10个球,其中有5个白球,5个黑球,从中不放回地抽两次,每次抽一个球,求(1) 两次都抽到白球的概率; (2) 第二次才抽到白球的概率; (3)第二次抽到白球的概率.8.已知ξ~N (0,1),求(1)ξe 的概率密度; (2)2ξ的概率密度.9.设总体X ~N(μ,1), ),,(1n X X 为来自X 的一个样本,试求参数μ的矩估计和最大似然估计. 10. 设母体ξ具有指数分布,密度函数为⎩⎨⎧<≤=-00),(x xe xf xλλλ(0>λ),试求参数λ的矩估计和极大似然估计.11. 袋子中有5件某类产品,其中正品3件,次品2件,现从中任意抽取2件,求2件中至少有1件是正品的概率12. 一条生产线生产甲、乙两种工件,已知该生产线有三分之一的时间生产甲种工件,此时停机的概率为0.3,有三分之二的时间生产乙种工件,此时停机的概率为0.4.如该生产线停机,求它是在生产甲种工件的概率. 13. 有3人同时走进一栋五层楼房的入口,设每人进入1至5层是等可能的,求没有两人进入同一层的概率. 14. 某地区高考数学成绩服从正态分布)6,90(~2N ξ,某考生数学成绩为96分,问比他成绩低的考生占多少?()8413.0)1(=Φ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2010年度第一学期《概率与数理统计》试卷
第 1 页 共 8 页
中国矿业大学徐海学院2009-2010学年第一学期
《概率与数理统计》(A卷)试卷
考试时间:120分钟 考试方式:闭卷
班级: 姓名: 学号: 序号:_________
题 号 一 二 三 总分 阅卷人
题 分
21 42 36 100

得 分

一、填空题(每空3分,共21分)
1、设 A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8.则

P(B)A
.
2、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、
1/3,此密码能被译出的概率是 .

3、设随机变量2(,)X,且二次方程240yyX无实根的
概率等于0.5, 则 .
4、设随机变量X服从泊松分布,且(X1)(X2)PP,则
(X4)P

= 。
5、如果随机变量X和Y满足)()()(YEXEXYE,则
)()(YXDYXD
= 。
6、设()16,()25DXDY,0.3XY,则()DXY= .
7、掷硬币n次,正面出现次数的数学期望为 .
2009-2010年度第一学期《概率与数理统计》试卷
第 2 页 共 8 页
二、计算题(共4小题,共42分)
1、(12分)设随机变量X的密度函数为




其它,010),1()(xxAx
xf

求:(1) 确定常数A; (2)X的分布函数;
(3) 求13{}22PX (4)X的数学期望EX和方差DX。
2009-2010年度第一学期《概率与数理统计》试卷

第 3 页 共 8 页
2、(10分)已知X服从区间[0,1]上的均匀分布,求随机变量
31YX

的概率密度函数。
2009-2010年度第一学期《概率与数理统计》试卷

第 4 页 共 8 页
3、(8分)设二维随机变量),(YX的联合密度函数为
2
12,01(,)0,yyxfxyothers


求:(1)随机变量X,Y的边缘概率密度函数)(xfX,)(yfY;

(2){1}PXY;
2009-2010年度第一学期《概率与数理统计》试卷

第 5 页 共 8 页
4、(12分)设总体X的分布函数为

,1,1,0,11),(x
x
x
xF

其中未知参数
nXXX,,,,121


为来自总体X的简单随机样本,求:

(1) 总体X的概率密度函数(,);fx
(2) 的矩估计量;
(3) 的最大似然估计量.
2009-2010年度第一学期《概率与数理统计》试卷

第 6 页 共 8 页
三、应用题(共4小题,共36分)
1、(10分)有两箱同类零件,第一箱有50个,其中10个一等品,第
二箱有30个,其中18个一等品。现任取一箱,从中任取零件两次,每次取
一个,取后不放回。求:(1)第二次取到的零件是一等品的概率;(2)在第
一次取到一等品的条件下,第二次取到一等品的条件概率;(3)两次取到的
都不是一等品的概率。
2009-2010年度第一学期《概率与数理统计》试卷

第 7 页 共 8 页
2、(10分)一篮球运动员的投篮命准率为45%,以X表示他首次投中
时累计已投篮的次数,写出X的分布律,并计算X取偶数的概率.

3、(10分)一批零件中有9个合格品与3个废品,在安装机器时,从
这批零件中任取1个,如果取出的是废品就不再放回去,求在取得合格品以
前,已经取出的废品数的数学期望和方差。
2009-2010年度第一学期《概率与数理统计》试卷

第 8 页 共 8 页
4、(6分)已知某种果树产量2(,)XN(单位:kg),随机抽取6
株果树测得其产量为:
221 191 202 205 256 236
以95%的置信水平来估计果树的平均产量。

0.050.05
((6)2.447,(5)2.571)tt

相关文档
最新文档