11.深圳市2016年高考模拟试题命题比赛参赛试题(理科数学)
14深圳2016年高考模拟试题命题比赛参赛试题理科数学

(14)2016年高考模拟试题命题比赛参赛试题深圳市理科数学注意事项:.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自1 己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
用铅笔把答题卡上对应题目的答案标号涂黑。
选出每个小题答案后,2.回答第Ⅰ卷时,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
3 .考试结束后,将本试卷和答题卡一并交回。
4第Ⅰ卷在每个小题给出的四个选项中,只有一项是(小题,每小题5分。
一.选择题:本大题共12) 符合题目要求的。
z(1?i)?z1?z)(满足,则1.复数i1? B. 2 C. A.1 3D. 4【命题意图】本题主要考察复数的运算与复数模的概念。
【答案】A2Z=1,Z?1【解析】i1?【试题来源】原创2x?1A?N?0}|?A?{x(),则2.集合4?3x{-1,0,1}{0,1}{1}{0} D. C.B. A.【命题意图】本题主要考察分式不等式与集合的交集。
【答案】D14N是自然数,A?N?{0,1}?x|{A?x??},【解析】32原创【试题来源】3.某几何体的三视图如下图所示,则几何体的体积为()7512 D. C. A.B. 3333【命题意图】本题主要考察三视图的应用与几何体的体积。
D【答案】下图为还原成的几何体是一个上下底面都是等腰直【解析】7角三角形的棱台,棱台的的体积为3【试题来源】原创a2?n4??Sa?16}a{)4、在等比数列,中,(,45n a n15?5或5?1531D. A.B. C.【命题意图】本题主要考察等比数列的概念和性质的应用。
C 【答案】a2242n?1a?q???q?2,a?aq16,??qa?4,【解析】1115a n4)qa(1?1?S?15或-54q?1改编【试题来源】22?5a)a)??(y?(x?a2y,x yx?2、5变量为常数,当满足不等式,其中的最大值为?220??(ya)(x?a)???a)时,则(77-1或1?0A. B. C.D. 33【命题意图】本题主要考察线性规划和圆的相关知识。
2016届广东省深圳市高考数学二模试卷(理科)(解析版)

2016年广东省深圳市高考数学二模试卷(理科)一、选择题1.若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2 D.12.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.4.若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.25.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1 B.2 C.lg2 D.106.已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=7.以直线y=±x为渐近线的双曲线的离心率为()A.2 B.C.2或 D.8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是()A.B.C.D.9.如图,正方形ABCD中,M、N分别是BC、CD的中点,若=λ+μ,则λ+μ=()A.2 B.C.D.10.已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,) B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48 B.16 C.32 D.1612.设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值二、填空题13.高为π,体积为π2的圆柱体的侧面展开图的周长为.14.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于.15.在(2+﹣)10的展开式中,x4项的系数为(结果用数值表示).16.如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为.三、解答题17.设数列{a n}的前n项和为S n,a n是S n和1的等差中项.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.参考公式:K2=,其中n=a+b+c+d..在三棱柱﹣111中,,侧面11是边长为的正方形,点,分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.21.已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.[选修4-1:几何证明选讲]22.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证: +≥1.2016年广东省深圳市高考数学二模试卷(理科)参考答案与试题解析一、选择题1.若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2 D.1【考点】复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)z=1﹣i(i为虚数单位),∴(1﹣i)(1+i)z=(1﹣i)(1﹣i),∴2z=﹣2i,即z=﹣i.则|z|=1.故选:D.2.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】x∈(A∩B),可得x∈A,则反之不一定成立,即可判断出关系.【解答】解:x∈(A∩B)⇒x∈A,则反之不一定成立.∴“x∈A”是“x∈(A∩B)”的必要不充分条件.故选:B.3.若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.【考点】三角函数中的恒等变换应用.【分析】直接利用二倍角的余弦得答案.【解答】解:由cos(﹣α)=,得cos(π﹣2α)=cos2()==.故选:C.4.若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用斜率的几何意义,进行求解即可.【解答】解:作出不等式组对应的平面区域,z=的几何意义是区域内的点到点D(﹣3,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,5),则z=的最大值z===,故选:C.5.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1 B.2 C.lg2 D.10【考点】程序框图.【分析】根据已知及程序框图,判断执行语句x=lga+lgc,从而计算求值得解.【解答】解:模拟执行程序框图,可得程序框图的功能是计算并输出x的值,由题意,a=2,b=4,c=5,不满足条件a>b且a>c,不满足条件b>c,执行x=lg2+lg5=lg10=1.故选:A.6.已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.【解答】解:已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,可得y=cos(x﹣)的图象,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,可得函数f(x)=cos(2x﹣)的图象,令2x﹣=kπ,可得f(x)的图象的对称轴方程为x=+,k∈Z,结合所给的选项,故选:A.7.以直线y=±x为渐近线的双曲线的离心率为()A.2 B.C.2或 D.【考点】双曲线的简单性质.【分析】讨论双曲线的焦点在x轴或y轴上,设出双曲线的标准方程,求得渐近线方程,运用双曲线的基本量的关系,由离心率公式计算即可得到所求值.【解答】解:当双曲线的焦点在x轴上时,设方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,即有b=a,c==2a,离心率为e==2;当双曲线的焦点在y轴上时,设方程为﹣=1(a',b'>0),可得渐近线方程为y=±x,由题意可得=,即有a'=b',c'==a',离心率为e==.综上可得离心率为2或. 故选:C .8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出3位女生中有且只有两位女生相邻包含的基本事件个数,由此能求出3位女生中有且只有两位女生相邻的概率.【解答】解:2位男生和3位女生共5位同学站成一排,基本事件总数n==120,3位女生中有且只有两位女生相邻包含的基本事件个数m==72,∴3位女生中有且只有两位女生相邻的概率p==.故选:B .9.如图,正方形ABCD 中,M 、N 分别是BC 、CD 的中点,若=λ+μ,则λ+μ=( )A .2B .C .D .【考点】向量的线性运算性质及几何意义.【分析】建立平面直角坐标系,使用坐标进行计算,列方程组解出λ,μ.【解答】解:以AB ,AD 为坐标轴建立平面直角坐标系,如图:设正方形边长为1,则=(1,),=(﹣,1),=(1,1).∵=λ+μ,∴,解得.∴λ+μ=.故选:D.10.已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,) B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)【考点】分段函数的应用.【分析】可判断f(x)是(﹣∞,0)∪(0,+∞)上的偶函数,再由函数的单调性解不等式.【解答】解:当x>0时,f(﹣x)=﹣ln(﹣(﹣x))﹣x=﹣lnx﹣x=f(x),故f(x)是(﹣∞,0)∪(0,+∞)上的偶函数;当x>0时,f(x)=﹣lnx﹣x为减函数,而ln=﹣ln2﹣2=f(2),故f()<ln=f(2),故>2,故0<m<;由f(x)是(﹣∞,0)∪(0,+∞)上的偶函数知,﹣<m<0;综上所述,m∈(﹣,0)∪(0,),故选C.11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48 B.16 C.32 D.16【考点】由三视图求面积、体积.【分析】根据三视图画出此几何体:镶嵌在正方体中的四棱锥,由正方体的位置关系判断底面是矩形,做出四棱锥的高后,利用线面垂直的判定定理进行证明,由等面积法求出四棱锥的高,利用椎体的体积公式求出答案.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,O、A、D分别为棱的中点,∴OD=2,AB=DC=OC=2,做OE⊥CD,垂足是E,∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,∵CD∩BC=C,∴OE⊥平面ABCD,∵△ODC的面积S==6,∴6==,得OE=,∴此四棱锥O﹣ABCD的体积V===16,故选:B.12.设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值【考点】利用导数研究函数的极值.【分析】由xf′(x)﹣f(x)=xlnx,得到=,求出的原函数,得到f(x)=+cx,由f()=,解出c的值,从而得到f(x)=+x,通过求导判断函数f(x)的单调性,进而判断函数的极值即可.【解答】解:∵xf′(x)﹣f(x)=xlnx,∴=,∴=,而=,∴=+c,∴f(x)=+cx,由f()=,解得c=,∴f(x)=+x,∴f′(x)=(1+lnx)2≥0,f(x)在(0,+∞)单调递增,故函数f(x)无极值,故选:D.二、填空题13.高为π,体积为π2的圆柱体的侧面展开图的周长为6π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据棱柱的体积计算底面半径,则侧面展开图矩形的边长为圆柱的底面周长和高.【解答】解:设圆柱的底面半径为r,则圆柱的体积V=πr2•π=π2,∴r=1.∴圆柱的底面周长为2πr=2π.∴侧面展开图的周长为2π×2+π×2=6π.故答案为:6π.14.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于45°.【考点】直线与圆的位置关系.【分析】由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°15.在(2+﹣)10的展开式中,x4项的系数为180(结果用数值表示).【考点】二项式定理的应用.【分析】通过分析只需考虑(2+﹣)10展开式中的第二项,进而只需考查的展开式中通项T k+1=210﹣k•中含x4的项,比较可得k=8,进而计算可得结论.【解答】解:(2+﹣)10==,依题意,只需考虑r=0时,即只需中x4项的系数,∵的展开式中通项T k+1=210﹣k•,令=x4,可得k=8,∴所求系数为210﹣8=180,故答案为:180.16.如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为+1.【考点】解三角形的实际应用.【分析】设∠ABC=α,∠ACB=β,求出AC,sinβ,利用余弦定理,即可求出对角线BD的最大值.【解答】解:设∠ABC=α,∠ACB=β,则AC2=4﹣2cosα,由正弦定理可得sinβ=,∴BD2=3+4﹣2cosα﹣2×××cos(90°+β)=7﹣2cosα+2sinα=7+2sin(α﹣45°),∴α=135°时,BD取得最大值+1.故答案为: +1.三、解答题17.设数列{a n }的前n 项和为S n ,a n 是S n 和1的等差中项. (1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n . 【考点】数列的求和;数列递推式. 【分析】(1)通过等差中项的性质可知2a n =S n +1,并与2a n ﹣1=S n ﹣1+1(n ≥2)作差,进而整理可知数列{a n }是首项为1、公比为2的等比数列,计算即得结论;(2)通过(1)可知T n =1•20+2•21+3•22+…+n •2n ﹣1,进而利用错位相减法计算即得结论. 【解答】解:(1)∵a n 是S n 和1的等差中项, ∴2a n =S n +1,2a n ﹣1=S n ﹣1+1(n ≥2),两式相减得:2a n ﹣2a n ﹣1=a n ,即a n =2a n ﹣1, 又∵2a 1=S 1+1,即a 1=1,∴数列{a n }是首项为1、公比为2的等比数列, ∴a n =2n ﹣1;(2)由(1)可知T n =1•20+2•21+3•22+…+n •2n ﹣1, 2T n =1•21+2•22+…+(n ﹣1)•2n ﹣1+n •2n , 两式相减得:﹣T n =1+21+22+…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , ∴T n =1+(n ﹣1)•2n .18.某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数”概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X 表示这3人中综合素质评价等级为“优秀”的个数,求X 的数学期望.参考公式:K 2=,其中n=a +b +c +d .【分析】(1)先求出从高一年级男生中抽出人数及x,y,作出2×2列联表,求出K2=1.125<2.706,从而得到没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.(2)①由(1)知等级为“优秀”的学生的频率为,从该市高一学生中随机抽取一名学生,该生为“优秀”的概率为.由此能求出所选3名学生中恰有2人综合素质评价为‘优秀’学生的概率.②X表示这3个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(3,),由此能求出X的数学期望.【解答】解:(1)设从高一年级男生中抽出m人,则,解得m=25.∴x=25﹣20=5,y=20﹣18=2.22∴没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.(2)①由(1)知等级为“优秀”的学生的频率为=,∴从该市高一学生中随机抽取一名学生,该生为“优秀”的概率为.记“所选3名学生中恰有2人综合素质评价为‘优秀’学生”为事件A,则事件A发生的概率为:P(A)==.②X表示这3个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(3,),∴X的数学期望E(X)=3×=2.19.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(I)取AB的中点D,连结CD,DF.设AC=a,计算CE,EF,CF,CD,DF,利用勾股定理的逆定理得出CD⊥DF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos<>|.【解答】证明:(I)取AB的中点D,连结CD,DF.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴AE=,EF==,DF==.设AC=a,则CE=,CD=.∵CE⊥EF,∴CF2=CE2+EF2=a2++=a2+.∵CD2+DF2=a2﹣1+=a2+.∴CD2+DF2=CF2,∴CD⊥DF.又AB⊂平面ABB1A1,DF⊂平面ABB1A1,AB∩DF=D,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴cos<>==.∴直线AC1与平面CEF所成角的正弦值为.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.【考点】抛物线的简单性质.【分析】(1)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+,联立方程组,根据A,B两点的纵坐标之积为﹣4,即可求出p的值,(2)表示出直线BD的方程可表示为,y=(x﹣4)①,抛物线C的准线方程为,x=﹣1②,构成方程组,解得P的坐标,求出直线AP的斜率,得到直线AP的方程,求出交点坐标即可.【解答】解:(1)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+与抛物线的方程联立,得y2﹣2mpy﹣p2=0,∴y1•y2=﹣p2=﹣4,解得p=±2,∵p>0,∴p=2,(2)依题意,直线BD与x轴不垂直,∴x2=4.∴直线BD的方程可表示为,y=(x﹣4)①∵抛物线C的准线方程为,x=﹣1②由①,②联立方程组可求得P的坐标为(﹣1,﹣)由(1)可得y1y2=4,∴P的坐标可化为(﹣1,),∴k AP==,∴直线AP的方程为y﹣y1=(x﹣x1),令y=0,可得x=x1﹣=﹣=∴直线AP与x轴交于定点(,0).21.已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出f(x)的导数,设出切点(m,n),可得切线的斜率,由切线方程可得a,m的方程,解方程可得a=1;(2)y=f(x)和y=x﹣的交点为(x0,y0),分别画出y=f(x)和y=x﹣在x>0的图象,可得1<x0<2,再由新定义求得最小值,求得h(x)的解析式,由题意可得h′(x)≥0在0<x<x0时恒成立,运用参数分离和函数的单调性,即可得到所求c的范围.【解答】解:(1)函数f(x)=的导数为f′(x)=,设切点为(m,n),即有n=,n=m,可得ame=e m,①由直线y=x为曲线y=f(x)的切线,可得=,②由①②解得m=1,a=1;(2)函数g(x)=min{f(x),x﹣}(x>0),由f(x)=的导数为f′(x)=,当0<x<2时,f(x)递增,x>2时,f(x)递减.对x﹣在x>0递增,设y=f(x)和y=x﹣的交点为(x0,y0),由f(1)﹣(1﹣1)=>0,f(2)﹣(2﹣)=﹣<0,即有1<x0<2,当0<x<x0时,g(x)=x﹣,h(x)=g(x)﹣cx2=x﹣﹣cx2,h′(x)=1+﹣2cx,由题意可得h′(x)≥0在0<x<x0时恒成立,即有2c≤+,由y=+在(0,x0)递减,可得2c≤+①当x≥x0时,g(x)=,h(x)=g(x)﹣cx2=﹣cx2,h′(x)=﹣2cx,由题意可得h′(x)≥0在x≥x0时恒成立,即有2c≤,由y=,可得y′=,可得函数y在(3,+∞)递增;在(x0,3)递减,即有x=3处取得极小值,且为最小值﹣.可得2c≤﹣②,由①②可得2c≤﹣,解得c≤﹣.[选修4-1:几何证明选讲]22.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.【考点】与圆有关的比例线段;弦切角.【分析】(1)连接OC,AC,证明△AOC为等边三角形,利用CF⊥AB,得出CF为△AOC 中AO边上的中线,即可证明结论;(2)证明B,E,D,F四点共圆,利用割线定理,求AD•AE的值.【解答】(1)证明:连接OC,AC,∵∠AEC=30°,∴∠AOC=60°.∵OA=OC,∴△AOC为等边三角形.∵CF⊥AB,∴CF为△AOC中AO边上的中线,即AF=FO.(2)解:连接BE,∵CF=,△AOC为等边三角形,∴AF=1,AB=4.∵AB是圆O的直径,∴∠AEB=90°,∴∠AEB=∠AFD.∴B,E,D,F四点共圆∴AD•AE=AB•AF=4.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C的参数方程为(α是参数),利用cos2α+sin2α=1可得直角坐标方程,把代入即可得出直角坐标方程.(2)把直线l的极坐标方程化为直角坐标方程,利用点到直线的距离公式可得圆心C(3,0)到直线l的距离d,即可得出切线长的最小值=.【解答】解:(1)曲线C的参数方程为(α是参数),利用cos2α+sin2α=1可得:(x﹣3)2+y2=4,展开可得:x2+y2﹣6x+5=0,∴极坐标方程为ρ2﹣6ρcosθ+5=0.(2)直线l的极坐标方程为ρsin(θ﹣)=1,展开为:(ρsinθ﹣ρcosθ)=1,可得y﹣x=1.圆心C(3,0)到直线l的距离d==2.∴切线长的最小值===2.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证: +≥1.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)根据绝对值不等式的性质进行转化求解.(2)利用1的代换,结合基本不等式的性质进行证明即可.【解答】解:(1)由绝对值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,若不等式|x﹣2|﹣|x+3|≥|m+1|有解,则满足|m+1|≤5,解得﹣6≤m≤4.∴M=4.(2)由(1)知正数a,b,c满足足a+2b+c=4,即 [(a+b)+(b+c)]=1∴+= [(a+b)+(b+c)](+)=(1+1++)≥(2+2)≥×4=1,当且仅当=即a+b=b+c=2,即a=c,a+b=2时,取等号.∴+≥1成立.2016年8月24日。
2016届广东省深圳市六校联盟高三高考模拟数学(理)试题(A卷)

绝密★启用前2016届“六校联盟”高考模拟理 科 数 学 试 题 (A 卷)命题学校:深圳实验本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+; 如果事件A B 、相互独立,那么()()()P AB P A P B =; 若球的半径为R ,则球的表面积为24R S π=,体积为334R V π=. 一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.如果复数)()2(R a i ai ∈+的实部与虚部互为相反数,则a 的值等于( ) A . 1- B .1 C .2- D .2 2.下列命题中,是真命题的是( ) A .00,0x x R e∃∈≤ B .2,2x x R x ∀∈>C .已知,a b 为实数,则0a b +=的充要条件是1ab=- D .已知,a b 为实数,则1,1a b >>是1ab >的充要条件3.(东莞中学第6题)在等比数列{}n a 中,首项11a =,且3454,2,a a a 成等差数列,若数列{}n a 的前n 项之积为n T ,则10T 的值为( )A.921-B.362C.1021-D.4524.在平面直角坐标系中,不等式组22x y x ≤⎧⎪⎨-≤⎪⎩表示的平面区域的面积是( )A .82B .8C .42D .45.定义行列式运算:,32414321a a a a a a a a -=将函数3cos ()1 sin xf x x=的图象向左平移m 个单位(0)m >,若所得图象对应的函数为偶函数,则m 的最小值是( )A .32π B .3π C . 8π D .π65 6.已知边长为23的菱形错误!未找到引用源。
14.深圳市2016年高考模拟试题命题比赛参赛试题(文科数学)

绝密★启用前 试卷类型(A )深圳市2016年高考模拟试题命题比赛参赛试题(14)文科数学满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的.(1) 集合{|(21)(34)0}A x x x =+-<,其中N 是自然数集,则A N = ( )( A ) {1,0,1}- (B ) 14(,)23- (C) 4(,)3+∞ (D) {0,1} (2) 复数z 满足||11zi=-,则z =( ) ( A ) 1(B(C) 2 (D) 4(3) 在等比数列{}n a 中,24n na a +=,516a =,4S =( ) (A )15 (B )5- (C) 515-或 (D) 31(4) 已知(1,2)A ,(3,4)B ,在直线AB 上有一点C 满足2AC CB =,则C 的坐标为( ) (A ) 710(,)33 (B )(5,6) (C) (7,8) (D) 710(,)33或(5,6)(5) 实数x 、y 满足⎪⎩⎪⎨⎧≤+≥≤.4,2,y x x y x y 目标函数2z x y =-+的最大值为()(A )1-(B ) 0 (C) 1(D) 2(6) 在右面的程序框图算法执行完毕后,输出的S 为( )(A )92 (B ) 63 (C) 41 (D) 25 (7) 现在有四个小球编号1,2,3,4,把它们分别放到编号1,2,3,4的盒子里,每个盒子只放一个小球,事件A 表示“恰好有2个小球放入的盒子的编号与小球编号不一样”,事件B 表示“所有的小球放入的盒子的编号与小球编号不一样”,则()=P A B ⋃( ) (A )18 (B ) 23 (C) 58 (D) 12(8) 双曲线22221(,0)x y a b a b-=> ,过双曲线的焦点A 作双曲线的渐近线的垂线,垂足为B,OB =,则双曲线的离心率为( )(A(B )(C)(D) 2(9) 某几何体的三视图如下图所示,网格纸是边长为1的 小正方形,则几何体的体积为( )(A )13 (B ) 23 (C) 53 (D) 73(10) 函数()f x 定义在R 上,下列函数为偶函数的函数的个数( ) (1)()y f x = (2)()()y f x f x =+- (3)()()y f x f x =-- (4)()y f x =(A ) 1 (B ) 2 (C) 3 (D) 4(11) 正四面体O ABC -的所有棱长为2,一个球内置于正四面体内,则此球体的表面积的最大值为( ) (A )43π (B ) 23π (C) 16π (D) 83π (12) 已知函数()ln f x x =,对于下列结论: (1) ()1f x x ≤-; (2)*11()()n f n N n n +<∈; (3)*1(1)()n e n N n+<∈, 其中正确的个数为( )(A )0 (B ) 1 (C) 2 (D) 3第Ⅱ卷本卷包括必考题和选考题两部分。
2016届广东省深圳市高考数学二模试卷(理科)(解析版)

2016年广东省深圳市高考数学二模试卷(理科)一、选择题1.若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2 D.12.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.4.若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.25.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1 B.2 C.lg2 D.106.已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=7.以直线y=±x为渐近线的双曲线的离心率为()A.2 B.C.2或 D.8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是()A.B.C.D.9.如图,正方形ABCD中,M、N分别是BC、CD的中点,若=λ+μ,则λ+μ=()A.2 B.C.D.10.已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,) B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48 B.16 C.32 D.1612.设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值二、填空题13.高为π,体积为π2的圆柱体的侧面展开图的周长为.14.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于.15.在(2+﹣)10的展开式中,x4项的系数为(结果用数值表示).16.如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为.三、解答题17.设数列{a n}的前n项和为S n,a n是S n和1的等差中项.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.参考公式:K2=,其中n=a+b+c+d..在三棱柱﹣111中,,侧面11是边长为的正方形,点,分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.21.已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.[选修4-1:几何证明选讲]22.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证: +≥1.2016年广东省深圳市高考数学二模试卷(理科)参考答案与试题解析一、选择题1.若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2 D.1【考点】复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)z=1﹣i(i为虚数单位),∴(1﹣i)(1+i)z=(1﹣i)(1﹣i),∴2z=﹣2i,即z=﹣i.则|z|=1.故选:D.2.设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】x∈(A∩B),可得x∈A,则反之不一定成立,即可判断出关系.【解答】解:x∈(A∩B)⇒x∈A,则反之不一定成立.∴“x∈A”是“x∈(A∩B)”的必要不充分条件.故选:B.3.若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.【考点】三角函数中的恒等变换应用.【分析】直接利用二倍角的余弦得答案.【解答】解:由cos(﹣α)=,得cos(π﹣2α)=cos2()==.故选:C.4.若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用斜率的几何意义,进行求解即可.【解答】解:作出不等式组对应的平面区域,z=的几何意义是区域内的点到点D(﹣3,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,5),则z=的最大值z===,故选:C.5.在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1 B.2 C.lg2 D.10【考点】程序框图.【分析】根据已知及程序框图,判断执行语句x=lga+lgc,从而计算求值得解.【解答】解:模拟执行程序框图,可得程序框图的功能是计算并输出x的值,由题意,a=2,b=4,c=5,不满足条件a>b且a>c,不满足条件b>c,执行x=lg2+lg5=lg10=1.故选:A.6.已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.【解答】解:已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,可得y=cos(x﹣)的图象,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,可得函数f(x)=cos(2x﹣)的图象,令2x﹣=kπ,可得f(x)的图象的对称轴方程为x=+,k∈Z,结合所给的选项,故选:A.7.以直线y=±x为渐近线的双曲线的离心率为()A.2 B.C.2或 D.【考点】双曲线的简单性质.【分析】讨论双曲线的焦点在x轴或y轴上,设出双曲线的标准方程,求得渐近线方程,运用双曲线的基本量的关系,由离心率公式计算即可得到所求值.【解答】解:当双曲线的焦点在x轴上时,设方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,即有b=a,c==2a,离心率为e==2;当双曲线的焦点在y轴上时,设方程为﹣=1(a',b'>0),可得渐近线方程为y=±x,由题意可得=,即有a'=b',c'==a',离心率为e==.综上可得离心率为2或. 故选:C .8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出3位女生中有且只有两位女生相邻包含的基本事件个数,由此能求出3位女生中有且只有两位女生相邻的概率.【解答】解:2位男生和3位女生共5位同学站成一排,基本事件总数n==120,3位女生中有且只有两位女生相邻包含的基本事件个数m==72,∴3位女生中有且只有两位女生相邻的概率p==.故选:B .9.如图,正方形ABCD 中,M 、N 分别是BC 、CD 的中点,若=λ+μ,则λ+μ=( )A .2B .C .D .【考点】向量的线性运算性质及几何意义.【分析】建立平面直角坐标系,使用坐标进行计算,列方程组解出λ,μ.【解答】解:以AB ,AD 为坐标轴建立平面直角坐标系,如图:设正方形边长为1,则=(1,),=(﹣,1),=(1,1).∵=λ+μ,∴,解得.∴λ+μ=.故选:D.10.已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,) B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)【考点】分段函数的应用.【分析】可判断f(x)是(﹣∞,0)∪(0,+∞)上的偶函数,再由函数的单调性解不等式.【解答】解:当x>0时,f(﹣x)=﹣ln(﹣(﹣x))﹣x=﹣lnx﹣x=f(x),故f(x)是(﹣∞,0)∪(0,+∞)上的偶函数;当x>0时,f(x)=﹣lnx﹣x为减函数,而ln=﹣ln2﹣2=f(2),故f()<ln=f(2),故>2,故0<m<;由f(x)是(﹣∞,0)∪(0,+∞)上的偶函数知,﹣<m<0;综上所述,m∈(﹣,0)∪(0,),故选C.11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48 B.16 C.32 D.16【考点】由三视图求面积、体积.【分析】根据三视图画出此几何体:镶嵌在正方体中的四棱锥,由正方体的位置关系判断底面是矩形,做出四棱锥的高后,利用线面垂直的判定定理进行证明,由等面积法求出四棱锥的高,利用椎体的体积公式求出答案.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,O、A、D分别为棱的中点,∴OD=2,AB=DC=OC=2,做OE⊥CD,垂足是E,∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,∵CD∩BC=C,∴OE⊥平面ABCD,∵△ODC的面积S==6,∴6==,得OE=,∴此四棱锥O﹣ABCD的体积V===16,故选:B.12.设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值【考点】利用导数研究函数的极值.【分析】由xf′(x)﹣f(x)=xlnx,得到=,求出的原函数,得到f(x)=+cx,由f()=,解出c的值,从而得到f(x)=+x,通过求导判断函数f(x)的单调性,进而判断函数的极值即可.【解答】解:∵xf′(x)﹣f(x)=xlnx,∴=,∴=,而=,∴=+c,∴f(x)=+cx,由f()=,解得c=,∴f(x)=+x,∴f′(x)=(1+lnx)2≥0,f(x)在(0,+∞)单调递增,故函数f(x)无极值,故选:D.二、填空题13.高为π,体积为π2的圆柱体的侧面展开图的周长为6π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据棱柱的体积计算底面半径,则侧面展开图矩形的边长为圆柱的底面周长和高.【解答】解:设圆柱的底面半径为r,则圆柱的体积V=πr2•π=π2,∴r=1.∴圆柱的底面周长为2πr=2π.∴侧面展开图的周长为2π×2+π×2=6π.故答案为:6π.14.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于45°.【考点】直线与圆的位置关系.【分析】由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°15.在(2+﹣)10的展开式中,x4项的系数为180(结果用数值表示).【考点】二项式定理的应用.【分析】通过分析只需考虑(2+﹣)10展开式中的第二项,进而只需考查的展开式中通项T k+1=210﹣k•中含x4的项,比较可得k=8,进而计算可得结论.【解答】解:(2+﹣)10==,依题意,只需考虑r=0时,即只需中x4项的系数,∵的展开式中通项T k+1=210﹣k•,令=x4,可得k=8,∴所求系数为210﹣8=180,故答案为:180.16.如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为+1.【考点】解三角形的实际应用.【分析】设∠ABC=α,∠ACB=β,求出AC,sinβ,利用余弦定理,即可求出对角线BD的最大值.【解答】解:设∠ABC=α,∠ACB=β,则AC2=4﹣2cosα,由正弦定理可得sinβ=,∴BD2=3+4﹣2cosα﹣2×××cos(90°+β)=7﹣2cosα+2sinα=7+2sin(α﹣45°),∴α=135°时,BD取得最大值+1.故答案为: +1.三、解答题17.设数列{a n }的前n 项和为S n ,a n 是S n 和1的等差中项. (1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n . 【考点】数列的求和;数列递推式. 【分析】(1)通过等差中项的性质可知2a n =S n +1,并与2a n ﹣1=S n ﹣1+1(n ≥2)作差,进而整理可知数列{a n }是首项为1、公比为2的等比数列,计算即得结论;(2)通过(1)可知T n =1•20+2•21+3•22+…+n •2n ﹣1,进而利用错位相减法计算即得结论. 【解答】解:(1)∵a n 是S n 和1的等差中项, ∴2a n =S n +1,2a n ﹣1=S n ﹣1+1(n ≥2),两式相减得:2a n ﹣2a n ﹣1=a n ,即a n =2a n ﹣1, 又∵2a 1=S 1+1,即a 1=1,∴数列{a n }是首项为1、公比为2的等比数列, ∴a n =2n ﹣1;(2)由(1)可知T n =1•20+2•21+3•22+…+n •2n ﹣1, 2T n =1•21+2•22+…+(n ﹣1)•2n ﹣1+n •2n , 两式相减得:﹣T n =1+21+22+…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , ∴T n =1+(n ﹣1)•2n .18.某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数”概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X 表示这3人中综合素质评价等级为“优秀”的个数,求X 的数学期望.参考公式:K 2=,其中n=a +b +c +d .【分析】(1)先求出从高一年级男生中抽出人数及x,y,作出2×2列联表,求出K2=1.125<2.706,从而得到没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.(2)①由(1)知等级为“优秀”的学生的频率为,从该市高一学生中随机抽取一名学生,该生为“优秀”的概率为.由此能求出所选3名学生中恰有2人综合素质评价为‘优秀’学生的概率.②X表示这3个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(3,),由此能求出X的数学期望.【解答】解:(1)设从高一年级男生中抽出m人,则,解得m=25.∴x=25﹣20=5,y=20﹣18=2.22∴没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.(2)①由(1)知等级为“优秀”的学生的频率为=,∴从该市高一学生中随机抽取一名学生,该生为“优秀”的概率为.记“所选3名学生中恰有2人综合素质评价为‘优秀’学生”为事件A,则事件A发生的概率为:P(A)==.②X表示这3个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(3,),∴X的数学期望E(X)=3×=2.19.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(I)取AB的中点D,连结CD,DF.设AC=a,计算CE,EF,CF,CD,DF,利用勾股定理的逆定理得出CD⊥DF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1,从而平面ABB1A1⊥平面ABC;(II)以C为原点建立空间直角坐标系,求出和平面CEF的法向量,则直线AC1与平面CEF所成角的正弦值等于|cos<>|.【解答】证明:(I)取AB的中点D,连结CD,DF.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴AE=,EF==,DF==.设AC=a,则CE=,CD=.∵CE⊥EF,∴CF2=CE2+EF2=a2++=a2+.∵CD2+DF2=a2﹣1+=a2+.∴CD2+DF2=CF2,∴CD⊥DF.又AB⊂平面ABB1A1,DF⊂平面ABB1A1,AB∩DF=D,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴cos<>==.∴直线AC1与平面CEF所成角的正弦值为.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.【考点】抛物线的简单性质.【分析】(1)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+,联立方程组,根据A,B两点的纵坐标之积为﹣4,即可求出p的值,(2)表示出直线BD的方程可表示为,y=(x﹣4)①,抛物线C的准线方程为,x=﹣1②,构成方程组,解得P的坐标,求出直线AP的斜率,得到直线AP的方程,求出交点坐标即可.【解答】解:(1)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+与抛物线的方程联立,得y2﹣2mpy﹣p2=0,∴y1•y2=﹣p2=﹣4,解得p=±2,∵p>0,∴p=2,(2)依题意,直线BD与x轴不垂直,∴x2=4.∴直线BD的方程可表示为,y=(x﹣4)①∵抛物线C的准线方程为,x=﹣1②由①,②联立方程组可求得P的坐标为(﹣1,﹣)由(1)可得y1y2=4,∴P的坐标可化为(﹣1,),∴k AP==,∴直线AP的方程为y﹣y1=(x﹣x1),令y=0,可得x=x1﹣=﹣=∴直线AP与x轴交于定点(,0).21.已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出f(x)的导数,设出切点(m,n),可得切线的斜率,由切线方程可得a,m的方程,解方程可得a=1;(2)y=f(x)和y=x﹣的交点为(x0,y0),分别画出y=f(x)和y=x﹣在x>0的图象,可得1<x0<2,再由新定义求得最小值,求得h(x)的解析式,由题意可得h′(x)≥0在0<x<x0时恒成立,运用参数分离和函数的单调性,即可得到所求c的范围.【解答】解:(1)函数f(x)=的导数为f′(x)=,设切点为(m,n),即有n=,n=m,可得ame=e m,①由直线y=x为曲线y=f(x)的切线,可得=,②由①②解得m=1,a=1;(2)函数g(x)=min{f(x),x﹣}(x>0),由f(x)=的导数为f′(x)=,当0<x<2时,f(x)递增,x>2时,f(x)递减.对x﹣在x>0递增,设y=f(x)和y=x﹣的交点为(x0,y0),由f(1)﹣(1﹣1)=>0,f(2)﹣(2﹣)=﹣<0,即有1<x0<2,当0<x<x0时,g(x)=x﹣,h(x)=g(x)﹣cx2=x﹣﹣cx2,h′(x)=1+﹣2cx,由题意可得h′(x)≥0在0<x<x0时恒成立,即有2c≤+,由y=+在(0,x0)递减,可得2c≤+①当x≥x0时,g(x)=,h(x)=g(x)﹣cx2=﹣cx2,h′(x)=﹣2cx,由题意可得h′(x)≥0在x≥x0时恒成立,即有2c≤,由y=,可得y′=,可得函数y在(3,+∞)递增;在(x0,3)递减,即有x=3处取得极小值,且为最小值﹣.可得2c≤﹣②,由①②可得2c≤﹣,解得c≤﹣.[选修4-1:几何证明选讲]22.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.【考点】与圆有关的比例线段;弦切角.【分析】(1)连接OC,AC,证明△AOC为等边三角形,利用CF⊥AB,得出CF为△AOC 中AO边上的中线,即可证明结论;(2)证明B,E,D,F四点共圆,利用割线定理,求AD•AE的值.【解答】(1)证明:连接OC,AC,∵∠AEC=30°,∴∠AOC=60°.∵OA=OC,∴△AOC为等边三角形.∵CF⊥AB,∴CF为△AOC中AO边上的中线,即AF=FO.(2)解:连接BE,∵CF=,△AOC为等边三角形,∴AF=1,AB=4.∵AB是圆O的直径,∴∠AEB=90°,∴∠AEB=∠AFD.∴B,E,D,F四点共圆∴AD•AE=AB•AF=4.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C的参数方程为(α是参数),利用cos2α+sin2α=1可得直角坐标方程,把代入即可得出直角坐标方程.(2)把直线l的极坐标方程化为直角坐标方程,利用点到直线的距离公式可得圆心C(3,0)到直线l的距离d,即可得出切线长的最小值=.【解答】解:(1)曲线C的参数方程为(α是参数),利用cos2α+sin2α=1可得:(x﹣3)2+y2=4,展开可得:x2+y2﹣6x+5=0,∴极坐标方程为ρ2﹣6ρcosθ+5=0.(2)直线l的极坐标方程为ρsin(θ﹣)=1,展开为:(ρsinθ﹣ρcosθ)=1,可得y﹣x=1.圆心C(3,0)到直线l的距离d==2.∴切线长的最小值===2.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证: +≥1.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)根据绝对值不等式的性质进行转化求解.(2)利用1的代换,结合基本不等式的性质进行证明即可.【解答】解:(1)由绝对值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,若不等式|x﹣2|﹣|x+3|≥|m+1|有解,则满足|m+1|≤5,解得﹣6≤m≤4.∴M=4.(2)由(1)知正数a,b,c满足足a+2b+c=4,即 [(a+b)+(b+c)]=1∴+= [(a+b)+(b+c)](+)=(1+1++)≥(2+2)≥×4=1,当且仅当=即a+b=b+c=2,即a=c,a+b=2时,取等号.∴+≥1成立.2016年8月24日。
【高考模拟试题及答案】2016深圳二模理科数学试题及答案解析

2016年深圳市高三年级第二次调研考试(深圳二模)于4月25日-26日考试,深圳二模紧扣2016高考大纲,是检测考生们复习的重点考试,以同学们一定要认真考试,从中找出自己的不足,查缺补漏,以更好的姿态去面对高考。以下是高考网小编整理的2016深圳二模试题及答案解析,供同学们参考学习。
高考英语历年真题
高考理综历年真题
高考文综历年真题
高考备考辅导;高考食谱大全;高考前必须做的事
2016深圳二模理科数学试题及答案解析正在整理中,请等待。
高考语文考点
高考数学考点
高考英语考点
高考理综考点
高考文综考点
高考语文复习资料
高考数学复习资料
高考英语复习资料
高考理综复习资料
高考文综复习资料
高考语文模拟试题
高考数学模拟试题
高考英语模拟试题
高考理综模拟试题
高考文综模拟试题
高考语பைடு நூலகம்历年真题
高考数学历年真题
高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题
2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M11,则它的体积为( )图M11A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M12,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1216.阅读如图M13所示的程序框图,运行相应的程序,输出S 的值为________.图M13三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M14,在四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60°,AP =1,AD =3,求三棱锥E ACD 的体积.图M1420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M15,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M15 图M16请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修41:几何证明选讲如图M16,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修45:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.故三棱锥E ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。
10深圳市2016年高考模拟试题命题比赛参赛试题(文科数学)
深圳市2016年高考模拟试题命题比赛参赛试题(10)文科数学本试卷共5页,24小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,0x M y y x ==>,{|lg(1)}N x y x ==-,则集合A 和B 之间的关系为( ) A .A B ⊆ B .B A ⊆ C .A B ⋂=∅ D .A B = 2. 已知复数 ,则复数z 的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.“0,0m n ><”是“方程221mx ny +=表示双曲线”成立的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知{}n a 为单调递增的等比数列,3610a a +=,4516a a =,则9a =( ) A .4 B . 8 C .16 D .325.在△ABC 所在的平面内有一点O ,如果22AB OC OB =+, 那么△OBC 的面积及△ABC 的面积之比是( ) A.14B.12C.13D.236.已知双曲线的渐近线方程是,则=a ( )A. 2B.C. D. 1 7.函数()sin()f x A x ωϕ=+(,0,0,)2x R A πωϕ∈>><的部分图象如图所示,如果1x 、,且12()()f x f x =,则12()f x x +等于( )A .-12B .-22C .-32D .-18. 已知一个几何体的三视图是三个全等的边长为2的正方形,如图所示,则它的体积为A .163 B .43 C .203D .4 9.执行如图所示的程序框图,输出的S 值是( )A.323 C.0 D. -3210. 已知正三棱锥O-ABC 的体积为94,底面边长为3,则正三棱锥O-ABC 的外接球的体积为( )A .4πB .3πC . 3D .33π11.已知不等式组所表示的平面区域为D ,若直线220mx y m ---=及平面区域D 有公共点,则m 的取值范围为是( )A .[5,3]-B .(,5][3,)-∞-+∞C .D . 12.设函数1()lnsin 1x f x x x x,则使得)12()(->x f x f 成立的x 的取值范围是( )A. (0,1)B.(-1,1)C.(-1,2)D.(-1,0)二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.13.在元旦联欢晚会上,有3个同学被分到一个小组,每个人分别给其他同学画了一幅画作为礼物,放在了3个相同的信封里,可是忘了做标记,现在每个人随机任取一个信封,则恰好有一人拿到了自己的画的概率为________.14. 已知曲线y xln x a =+在点11(,f ())处的切线是2y bx =+,则a b += .15.若函数,1()(48)2,1x a x f x a x x ⎧>=⎨-+≤⎩为R 上的单调减函数,则实数a 的取值范围是 .16.已知数列{a n }、{b n }的通项公式分布为a n =111n ()a +--,b n =,切对于一切的正整数n ,恒有a n <b n 成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)△ABC 在内角,,A B C 的对边分别为,,a b c ,已知44cos 3sin c a B b A =+. (1)求cos A ;(2)若△ABC 的面积为2,a =,b c .据统计,2015年“双11”天猫总成交金额突破912亿元.淘宝网又策划 “3.8女神节”活动.某购物网站为优化营销策略,对在3月8日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.若消费金额不低于600元的网购者为 “网购达人”,低于600元的网购者为“非网购达人”,采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)女性消费情况:消费金额 (0,200) [-200,400) [-400,600) [-600,800) [800,1000]人数510 15473男性消费情况:消费金额 (0,200) [-200,400) [-400,600) [-600,800) [800,1000]人数2x 1032(1)计算x 的值;把以上频率当概率,若从社会上随机抽取甲、乙2位女性消费者,求这两人中至少有一人是网购达人的概率.(2)根据以上统计数据填写右面22⨯列联表,是否有99%以上的把握认为 “是否为‘网购达人’及性别有关?”并说明理由.附:(22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++)19.(本小题满分12分)如图,在四棱锥E ABCD -中,底面ABCD 是一个梯形,且AB //CD , CD ⊥平面ADE ,AE DE ⊥,2,AE DE AB === 2CD AB =. (1)求证:平面BDE ⊥平面ABE ;(2)求点C 到平面BDE 的距离.DA已知点)0,1(-A ,点P 是圆C :()8122=+-y x 上的任意一点,,线段PA 的垂直平分线及直线CP 交于点E . (1)求点E 的轨迹方程;(2)若直线)0)(2(:>+=k x k y l 及点E 的轨迹相切,且及圆C 相交于点P 和Q ,求直线l 和三角形POQ ∆的面积. 21.(本小题满分12分) 设函数()21ln 2f x x ax bx =-- (1)当3,2a b ==时,求函数()f x 的单调区间; (2)令()()21(03)2aF x f x ax bx x x=+++<≤,其图象上任意一点00(,)P x y 处切线的斜率恒成立,求实数a 的取值范围.(3)当0,1a b ==-时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围。
2016年广东省深圳市高考数学二模试卷(理科)(解析版)
2016年广东省深圳市高考数学二模试卷(理科)一、选择题1.(5分)若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2D.12.(5分)设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.4.(5分)若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.25.(5分)在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1B.2C.lg2D.106.(5分)已知函数f(x)的图象是由函数g(x)=cos x的图象经过如下变换得到:先将g (x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=7.(5分)以直线y=±x为渐近线的双曲线的离心率为()A.2B.C.2或D.8.(5分)2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是()A.B.C.D.9.(5分)如图,正方形ABCD中,M、N分别是BC、CD的中点,若=λ+μ,则λ+μ=()A.2B.C.D.10.(5分)已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,)B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)11.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48B.16C.32D.1612.(5分)设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值二、填空题13.(5分)高为π,体积为π2的圆柱体的侧面展开图的周长为.14.(5分)过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB的长取最小值时,直线l的倾斜角等于.15.(5分)在(2+﹣)10的展开式中,x4项的系数为(结果用数值表示).16.(5分)如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC 变化时,对角线BD的最大值为.三、解答题17.(12分)设数列{a n}的前n项和为S n,a n是S n和1的等差中项.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.(12分)某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.参考公式:K2=,其中n=a+b+c+d.临界值表:19.(12分)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.(12分)过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.21.(12分)已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.[选修4-1:几何证明选讲]22.(10分)如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证:+≥1.2016年广东省深圳市高考数学二模试卷(理科)参考答案与试题解析一、选择题1.(5分)若复数z满足(1+i)z=1﹣i(i为虚数单位),则|z|=()A.B.C.2D.1【解答】解:∵(1+i)z=1﹣i(i为虚数单位),∴(1﹣i)(1+i)z=(1﹣i)(1﹣i),∴2z=﹣2i,即z=﹣i.则|z|=1.故选:D.2.(5分)设A,B是两个集合,则“x∈A”是“x∈(A∩B)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:x∈(A∩B)⇒x∈A,则反之不一定成立.∴“x∈A”是“x∈(A∩B)”的必要不充分条件.故选:B.3.(5分)若coa(﹣α)=,则cos(π﹣2α)=()A.﹣B.C.﹣D.【解答】解:由cos(﹣α)=,得cos(π﹣2α)=cos2()==.故选:C.4.(5分)若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.2【解答】解:作出不等式组对应的平面区域,z=的几何意义是区域内的点到点D(﹣3,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,5),则z=的最大值z===,故选:C.5.(5分)在如图所示的流程图中,若输入a,b,c的值分别为2,4,5,则输出的x=()A.1B.2C.lg2D.10【解答】解:模拟执行程序框图,可得程序框图的功能是计算并输出x的值,由题意,a=2,b=4,c=5,不满足条件a>b且a>c,不满足条件b>c,执行x=lg2+lg5=lg10=1.故选:A.6.(5分)已知函数f(x)的图象是由函数g(x)=cos x的图象经过如下变换得到:先将g (x)的图象向右平移个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=【解答】解:已知函数f(x)的图象是由函数g(x)=cos x的图象经过如下变换得到:先将g(x)的图象向右平移个单位长度,可得y=cos(x﹣)的图象,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,可得函数f(x)=cos(2x﹣)的图象,令2x﹣=kπ,可得f(x)的图象的对称轴方程为x=+,k∈Z,结合所给的选项,故选:A.7.(5分)以直线y=±x为渐近线的双曲线的离心率为()A.2B.C.2或D.【解答】解:当双曲线的焦点在x轴上时,设方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,即有b=a,c==2a,离心率为e==2;当双曲线的焦点在y轴上时,设方程为﹣=1(a',b'>0),可得渐近线方程为y=±x,由题意可得=,即有a'=b',c'==a',离心率为e==.综上可得离心率为2或.故选:C.8.(5分)2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是()A.B.C.D.【解答】解:2位男生和3位女生共5位同学站成一排,基本事件总数n==120,3位女生中有且只有两位女生相邻包含的基本事件个数m==72,∴3位女生中有且只有两位女生相邻的概率p==.故选:B.9.(5分)如图,正方形ABCD中,M、N分别是BC、CD的中点,若=λ+μ,则λ+μ=()A.2B.C.D.【解答】解:以AB,AD为坐标轴建立平面直角坐标系,如图:设正方形边长为1,则=(1,),=(﹣,1),=(1,1).∵=λ+μ,∴,解得.∴λ+μ=.故选:D.10.(5分)已知f(x)=,则关于m的不等式f()<ln的解集为()A.(0,)B.(0,2)C.(﹣,0)∪(0,)D.(﹣2,0)∪(0,2)【解答】解:当x>0时,f(﹣x)=﹣ln(﹣(﹣x))﹣x=﹣lnx﹣x=f(x),故f(x)是(﹣∞,0)∪(0,+∞)上的偶函数;当x>0时,f(x)=﹣lnx﹣x为减函数,而ln=﹣ln2﹣2=f(2),故f()<ln=f(2),故>2,故0<m<;由f(x)是(﹣∞,0)∪(0,+∞)上的偶函数知,﹣<m<0;综上所述,m∈(﹣,0)∪(0,),故选:C.11.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为()A.48B.16C.32D.16【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,O、A、D分别为棱的中点,∴OD=2,AB=DC=OC=2,做OE⊥CD,垂足是E,∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,∵CD∩BC=C,∴OE⊥平面ABCD,∵△ODC的面积S==6,∴6==,得OE=,∴此四棱锥O﹣ABCD的体积V===16,故选:B.12.(5分)设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f()=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值【解答】解:∵xf′(x)﹣f(x)=xlnx,∴=,∴=,而=,∴=+c,∴f(x)=+cx,由f()=,解得c=,∴f(x)=+x,∴f′(x)=(1+lnx)2≥0,f(x)在(0,+∞)单调递增,故函数f(x)无极值,故选:D.二、填空题13.(5分)高为π,体积为π2的圆柱体的侧面展开图的周长为6π.【解答】解:设圆柱的底面半径为r,则圆柱的体积V=πr2•π=π2,∴r=1.∴圆柱的底面周长为2πr=2π.∴侧面展开图的周长为2π×2+π×2=6π.故答案为:6π.14.(5分)过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB的长取最小值时,直线l的倾斜角等于45°.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°15.(5分)在(2+﹣)10的展开式中,x4项的系数为180(结果用数值表示).【解答】解:(2+﹣)10==,依题意,只需考虑r=0时,即只需中x4项的系数,∵的展开式中通项T k+1=210﹣k•,令=x4,可得k=8,∴所求系数为210﹣8=180,故答案为:180.16.(5分)如图,在凸四边形ABCD中,AB=1,BC=,AC⊥CD,AC=CD,当∠ABC变化时,对角线BD的最大值为+1.【解答】解:设∠ABC=α,∠ACB=β,则AC2=4﹣2cosα,由正弦定理可得sinβ=,∴BD2=3+4﹣2cosα﹣2×××cos(90°+β)=7﹣2cosα+2sinα=7+2sin(α﹣45°),∴α=135°时,BD取得最大值+1.故答案为:+1.三、解答题17.(12分)设数列{a n}的前n项和为S n,a n是S n和1的等差中项.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.【解答】解:(1)∵a n是S n和1的等差中项,∴2a n=S n+1,2a n﹣1=S n﹣1+1(n≥2),两式相减得:2a n﹣2a n﹣1=a n,即a n=2a n﹣1,又∵2a1=S1+1,即a1=1,∴数列{a n}是首项为1、公比为2的等比数列,∴a n=2n﹣1;(2)由(1)可知T n=1•20+2•21+3•22+…+n•2n﹣1,2T n=1•21+2•22+…+(n﹣1)•2n﹣1+n•2n,两式相减得:﹣T n=1+21+22+…+2n﹣1﹣n•2n=﹣n•2n=﹣1﹣(n﹣1)•2n,∴T n=1+(n﹣1)•2n.18.(12分)某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.①求所选3人中恰有2人综合素质评价为“优秀”的概率;②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.参考公式:K2=,其中n=a+b+c+d.临界值表:【解答】解:(1)设从高一年级男生中抽出m人,则,解得m=25.∴x=25﹣20=5,y=20﹣18=2.∴2×2列联表为:∴K2==1.125<2.706,∴没有90%的把握认为“综合素质评价测评结果为优秀与性别有关”.(2)①由(1)知等级为“优秀”的学生的频率为=,∴从该市高一学生中随机抽取一名学生,该生为“优秀”的概率为.记“所选3名学生中恰有2人综合素质评价为‘优秀’学生”为事件A,则事件A发生的概率为:P(A)==.②X表示这3个人中综合速度评价等级为“优秀”的个数,由题意,随机变量X~B(3,),∴X的数学期望E(X)=3×=2.19.(12分)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC1与平面CEF所成角的正弦值为.20.(12分)过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.(1)求抛物线C的方程;(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.【解答】解:(1)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+与抛物线的方程联立,得y2﹣2mpy﹣p2=0,∴y1•y2=﹣p2=﹣4,解得p=±2,∵p>0,∴p=2,(2)依题意,直线BD与x轴不垂直,∴x2=4.∴直线BD的方程可表示为,y=(x﹣4)①∵抛物线C的准线方程为,x=﹣1②由①,②联立方程组可求得P的坐标为(﹣1,﹣)由(1)可得y1y2=﹣4,∴P的坐标可化为(﹣1,),∴k AP==,∴直线AP的方程为y﹣y1=(x﹣x1),令y=0,可得x=x1﹣=﹣=∴直线AP与x轴交于定点(,0).21.(12分)已知函数f(x)=,直线y=x为曲线y=f(x)的切线(e为自然对数的底数).(1)求实数a的值;(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣}(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.【解答】解:(1)函数f(x)=的导数为f′(x)=,设切点为(m,n),即有n=,n=m,可得ame=e m,①由直线y=x为曲线y=f(x)的切线,可得=,②由①②解得m=1,a=1;(2)函数g(x)=min{f(x),x﹣}(x>0),由f(x)=的导数为f′(x)=,当0<x<2时,f(x)递增,x>2时,f(x)递减.对x﹣在x>0递增,设y=f(x)和y=x﹣的交点为(x0,y0),由f(1)﹣(1﹣1)=>0,f(2)﹣(2﹣)=﹣<0,即有1<x0<2,当0<x<x0时,g(x)=x﹣,h(x)=g(x)﹣cx2=x﹣﹣cx2,h′(x)=1+﹣2cx,由题意可得h′(x)≥0在0<x<x0时恒成立,即有2c≤+,由y=+在(0,x0)递减,可得2c≤+①当x≥x0时,g(x)=,h(x)=g(x)﹣cx2=﹣cx2,h′(x)=﹣2cx,由题意可得h′(x)≥0在x≥x0时恒成立,即有2c≤,由y=,可得y′=,可得函数y在(3,+∞)递增;在(x0,3)递减,即有x=3处取得极小值,且为最小值﹣.可得2c≤﹣②,由①②可得2c≤﹣,解得c≤﹣.[选修4-1:几何证明选讲]22.(10分)如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.(1)求证:AF=FO;(2)若CF=,求AD•AE的值.【解答】(1)证明:连接OC,AC,∵∠AEC=30°,∴∠AOC=60°.∵OA=OC,∴△AOC为等边三角形.∵CF⊥AB,∴CF为△AOC中AO边上的中线,即AF=FO.(2)解:连接BE,∵CF=,△AOC为等边三角形,∴AF=1,AB=4.∵AB是圆O的直径,∴∠AEB=90°,∴∠AEB=∠AFD.∴B,E,D,F四点共圆∴AD•AE=AB•AF=4.[选修4-4:坐标系与参数方程选讲]23.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为(α是参数),直线l的极坐标方程为ρsin(θ﹣)=1.(1)将曲线C的参数方程化为极坐标方程;(2)由直线l上一点向曲线C引切线,求切线长的最小值.【解答】解:(1)曲线C的参数方程为(α是参数),利用cos2α+sin2α=1可得:(x﹣3)2+y2=4,展开可得:x2+y2﹣6x+5=0,∴极坐标方程为ρ2﹣6ρcosθ+5=0.(2)直线l的极坐标方程为ρsin(θ﹣)=1,展开为:(ρsinθ﹣ρcosθ)=1,可得y﹣x=1.圆心C(3,0)到直线l的距离d==2.∴切线长的最小值===2.[选修4-5:不等式选讲]24.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证:+≥1.【解答】解:(1)由绝对值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,若不等式|x﹣2|﹣|x+3|≥|m+1|有解,则满足|m+1|≤5,解得﹣6≤m≤4.∴M=4.(2)由(1)知正数a,b,c满足足a+2b+c=4,即[(a+b)+(b+c)]=1∴+=[(a+b)+(b+c)](+)=(1+1++)≥(2+2)≥×4=1,当且仅当=即a+b=b+c=2,即a=c,a+b=2时,取等号.∴+≥1成立.。
2016届深圳一模理科数学(逐题详解)
第Ⅰ卷(选择题 共 60 分) 一、 选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是 符合题目要求的.
1. 已知集合 A = x y = A. x -3 £ x £ 1
{
(1 - x )( x + 3 )
} , B = { x log x £ 1} ,则 A I B = (
1 3 3 1 ´ 6sin 60° = < 3.10 ;第二次: n = 12 , S = ´ 12 sin 30 ° = 6 ´ 2 2 2 1 1 = 3 < 3.10 ;第三次: n = 24 , S = ´ 24 sin15° = 12 ´ 0.2588 = 3.1056 > 3.10 ,输出 n = 24 . 2 2 y A 2 p 2 15.过抛物线 y = 2 px ( p > 0 )的焦点 F ,且倾斜角为 的直线与抛物线交于 4
2
)
D.170
2 【解析】C;依题意得 a3 = a1a6 ,即 ( a1 + 2 ) = a1 ( a1 + 5 ) ,解得 a1 = 4 ,所以 S10 = 40 +
10 ´ 9 ´ 1 = 85 . 2
)
6.若函数 f ( x ) = 2 sin ( 2 x + j ) ( j < A. x =
O
1 2
1 2
2 1 O 1 S 1 2 H
【解析】B;设 DABC 的中心为 O 1 ,球心为 O ,则 O1 A =
1 3 × = 1 (即 DABC 外接圆 2 sin 60°
半径 r ), OO1 = R 2 - r 2 = 1 ,作 SH ^ 面 ABC ,画出示意图如图所示,显然 SO1 = 11.过点 ( 0, 2b ) 的直线 l 与双曲线 C :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在矩形 内随机取一点,则此点取自阴影部分的概率等于( )
A. B. C. D.
【题目来源】:2015年福建理科13改编
【命题意图】:考查幂函数、定积分及几何概型
【试题解析】:由已知可设幂函数 ,代入点 ,得 。阴影部分面
积为 .所以此点取自阴影部分的概率等于 ,选A。
已知函数 .
(Ⅰ)若不等式 有解,求实数 的最小值 ;
(Ⅱ)在(I)的条件下,若正数 , 满足 ,证明: .
深圳市2016年高考模拟试题命题比赛参赛试题(11)
理科数学解析
本试卷共24题,满分150分。考试用时120分钟。
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
(Ⅱ)求证: .
23.(本小题满分10分)选修4—4:坐标系与参数方程
平面直角坐标系中,直线 的参数方程是 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,已知曲线 的极坐标方程为 .
(Ⅰ)求直线 的极坐标方程;
(Ⅱ)若直线 与曲线 相交于 、 两点,求 .
24.(本小题满分10分)选修4—5:不等式选讲
【试题解析】: , ,选C。
3.某几何体的三视图如图1所示,则该几何体的体积是
A. B.
C. D.
【题目来源】:原创
【命题意图】:考查通过三视图求几何体体积
【试题解析】:几何体为椎体,高为4,底面积为 ,体积为 ,选A。
4.阅读如下程序框图,运行相应的程序,则程序运行后
输出s的结果为()
A.30 B.55C.91D.140
深圳市2016年高考模拟试题命题比赛参赛试题(11)
理科数学
本试卷共24题,满分150分。考试用时120分钟。
注意事项:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
————8分
则
————10分
.即证 ————12分
18.(本小题12分)为了了解某工业园中员工的颈椎疾病与工作性质是否有关,在工业园内随机的对其中50名工作人员是否患有颈椎疾病进行了抽样调查,得到如下的列联表.
患有颈椎疾病
没有患颈椎疾病
合计
白领
5
蓝领
10
合计
50
已知在全部50人中随机抽取1人,抽到患有颈椎疾病的人的概率为 .
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。作答时,请写清题号。
22.(本小题满分10分)选修2-1:几何证明选讲
如图, 为圆 的直径, 为圆 的切线,点 为圆 上不同于 、 的一点, 为 的平分线,且分别与 交于 ,与圆 交于 ,与 交于 ,连结 、 .
(Ⅰ)求证: 平分 ;
11.已知函数 , ,则方程 实根的个
数()
A.2B.4C.1D.0
【题目来源】:2015年江苏13改编
【命题意图】:考查函数与方程
【试题解析】: ,此时 与 有2个交点; 此时有2个交点,选B。
12.若直角坐标平面内 , 两点满足:点 , 都在函数 的图像上;点 , 关于原点对称,则点对 是函数 的一个“姊妹点对”,点对 与 可看作是同一个“姊妹点对”,已知函数 ,则 的“姊妹点对”有( )
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.若 ( 是虚数单位),则 的值等于()
A. B. C. D.
2.已知集合 , ,则 ()
6.下列函数中为偶函数,且有零点的是( )
A. B. C. D.
【题目来源】:原创
【命题意图】:考查奇、偶函数的定义,函数的零点及数形结合解决函数问题的思想
【试题解析】:A、B为非奇非偶函数,C为偶函数,但函数图形与 轴没有交点,D满足
,为偶函数,且函数图形与 轴没有交点,选D。
7.若 是互不相同的空间直线, 是不重合的平面,则下列命题中正确的是( )
患有颈椎疾病
没有患颈椎疾病
合计
白领
5
蓝领
10
合计
50
已知在全部50人中随机抽取1人,抽到患有颈椎疾病的人的概率为 .
(Ⅰ)请将上面的列联表补充完整,并判断是否有 的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(Ⅱ)已知在患有颈椎疾病的10名蓝领中,有3为工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为 ,求 的分布列及数学期望.
A.0个B.1个C.2个D.3个
【题目来源】:2016年河南省六市高三第一次联考改编
【命题意图】:考查对新定义的理解和应用、函数性质的综合应用,难度较大
【试题解析】作出函数 的图象及其关于原点对称的图象,看其关于原点对称的图象与 的交点个数即可。利用导数可知 在定义域上单调递减且值域为 。故“姊妹点对”有2个,选C。
10.如图,点 的坐标为 ,点 的坐标为 ,点 在幂函数 上,若
在矩形 内随机取一点,则此点取自阴影部分的概率等于( )
A. B. C. D.
11.已知函数 , ,则方程 实根的个
数()
A.2B.4C.1D.0
12.若直角坐标平面内 , 两点满足:点 , 都在函数 的图像上;点 , 关于原点对称,则点对 是函数 的一个“姊妹点对”,点对 与 可看作是同一个“姊妹点对”,已知函数 ,则 的“姊妹点对”有( )
【命题意图】:考查归纳推理及数列求和
【试题解析】:等式右边首项分别为3,7,13,21,相差为4,6,8,假设第 个等式的右边首项为 利用迭加公式得 ,得 ,第 个等式右边有 个数,等式左边为 ,故结论 。
三、解答题(写出文字说明,证明过程或演算步骤。)
17.(本小题12分)已知 是各项均为正数的等比数列, 是 与 的等差中项且 .
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
【题目来源】:2016年河南省模拟考试题改编
【命题意图】:考查学生对独立性检验的判断及理解,考查分布列及期望
【试题解析】:
解:(Ⅰ)根据在全部50人中随机抽取1人患颈椎疾病的概率为 ,
20.(本小题12分)已知椭圆 : 的一个焦点为 ,左右顶点分别为 , .经过点 的直线 与椭圆 交于 , 两点.
(Ⅰ)当直线 的倾斜角为 时,求线段 的长;
(Ⅱ)记 与 的面积分别为 和 ,求 的最大值.
21.(本小题12分)已知函数 .
(Ⅰ)若曲线 在点 处的切线方程为 ,求函数 的单调区间;
(Ⅱ)设函数 ,且 ,若在 上至少存在一点 ,使得 成立,求实数 的取值范围.
(Ⅰ)请将上面的列联表补充完整,并判断是否有 的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(Ⅱ)已知在患有颈椎疾病的10名蓝领中,有3为工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为 ,求 的分布列及数学期望.
参考公式: ,其中 .
下面的临界值表仅供参考:
1.若 ( 是虚数单位),则 的值等于()
A. B. C. D.
【题目来源】:原创
【命题意图】:考查复数乘法、复数的模及共轭复数的模相等
【试题解析】: , ,选B。
2.已知集合 , ,则 ()
A. B. C. D.
【题目来源】:原创
【命题意图】:考查解一元二次不等式、集合交集、集合的表示及整数集的表示符号
A.0个B.1个C.2个D.3个
第II卷
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。)
13.在 的展开式中 的系数为 ,则 的值为:.
14. 中,点 、 满足 , .若 ,则 .
15.在 中,已知 ,则 的值为:.
16.观察下列算式,猜测第 个等式为:.
三、解答题(写出文字说明,证明过程或演算步骤。)
17.(本小题12分)已知 是各项均为正数的等比数列, 是 与 的等差中项且 .
(Ⅰ)求 的通项公式;
(Ⅱ)设 ,数列 的前 项和 ,求证: .
18.(本小题12分)为了了解某工业园中员工的颈椎疾病与工作性质是否有关,在工业园内随机的对其中50名工作人员是否患有颈椎疾病进行了抽样调查,得到如下的列联表.
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。)
(Ⅰ)求 的通项公式;
(Ⅱ)设 ,数列 的前 项和 ,求证: .
【题目来源】:原创
【命题意图】:考查等比数列的通项及等差中项概念,考查学生利用“裂项相消法”时的恒等变形能力.
【试题解析】:(Ⅰ)令 ,得 ,所以有 , ————2分
解得 或 (舍) ————3分
又 ,得 ,所以 . ————5分