ProE渐开线直齿轮的参数化建模
ProE直齿、斜齿轮的参数化建模

摘要随着科技的发展,计算机辅助设计技术越来越广泛的应用在各个设计领域。
现在,它已经突破了二维图纸电子化的框架,转向以三维实体建模、动力学模拟仿真和有限元分析为主线的机械系统动态仿真技术。
其研究范围主要是机械系统运动学和动力学分析,核心是利用计算机辅助技术进行机械系统的运动学和动力学分析,以确定系统及其各构件在任意时刻的位置、速度和加速度,同时,通过求解代数方程组确定引起系统各构件运动所需的作用力和反作用力。
动态仿真技术一出现,就受到人们的普遍关注和重视,并且出现了许多基于动态方=仿真技术的商业软件,较有影响的有美国参数技术公司的PTC。
以Pro/MECHANICA为分析平台,运用有限元分析方法,对直齿轮、斜齿轮实际受力情况、边界条件和施加载荷进行研究。
运动分析模块可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等。
运动分析模块的分析结果可以指导修改零件的结构设计(加长或者缩短构件的力臂长度、修改凸轮型线、调整齿轮齿数比和中心距等)或者调整零件的材料(减轻或者加重或者增加硬度等)。
设计的更改可以直接反映在装配主模型的复制品分析方案(Scenario)中,再重新分析,一旦确定优化的设计方案,设计更改就可直接反映到装配主模型中。
将Pro/E三维实体造型与Pro/MECHANICA机构运动分析相结合,完成对连杆和凸轮机构的机构运动分析,及运动仿真。
加强对连杆和凸轮机构的认识与理解。
关键词: 直齿轮、斜齿轮; Pro/E 、Pro/MECHANICA; 运动仿真、有限元AbstractWith the development of technology, computer-aided design technology becomes more widely used in various design.Now, it has broken through the framework of two-dimensional drawings、 electronic、shift tothree-dimensional solid modeling, dynamic simulation and finite element analysis of the main line of the mechanical system dynamic simulation techniques.The major areas of its study kinematics and dynamics of mechanical systems, the core technology is the use of computer-aided kinematics and dynamics of mechanical systems analysis to determine the system and its components at any time of the position, velocity and acceleration at the same time,by solving algebraic equations determine the cause of the required system component moving action and reaction.Dynamic simulation appeared to be widespread concern and attention, and there were many parties = simulation based on dynamic business software, more influential technology companies of U.S. parameters PTC.To Pro / MECHANICA platform for analysis using the finite element method, on the spur gear, helical gear by the force of the actual situation, boundary conditions and applied load were studied.Motion analysis module analyzes institutional interference, tracking the trajectory of parts, parts of bodies in the speed, acceleration, force, reaction force and torque and so on.Motion analysis results of the analysis module to modify parts of the structure could guide design (longer or shorter moment arm length of the component, modify the cam, adjust the gear ratio and center distance, etc.) or adjust the parts of the material (to reduce or add to or increase the hardnessetc.).Design changes can be directly reflected in the assembly of copies of the master model program (Scenario), the re-analysis, Once optimized design, design changes can be directly reflected in the assembly of the main model.The Pro / E three-dimensional solid modeling and Pro / MECHANICA combined kinematic analysis, complete linkage and cam mechanism of the body motion analysis andmotion simulation.Connecting rod and cam mechanism to strengthen knowledge and understanding.Key words: spur gears, helical gears; Pro / E, Pro / MECHANICA; motion simulation, finite element摘要 (1)第一章绪论 (6)1.1、课题来源 (6)1.2、研究目的和意义 (6)1.3、国内外研究现状和发展趋势 (7)1.3.1 我国齿轮工业的概况 (8)1.3.2 中国齿轮工业的资本结构已成为三足鼎立的局面 (8)1.4、本课题的主要研究内容及拟采取的技术路线、试验方案 (8)1.4.1 预期达到的目标 (9)1.4.2 论文的结构 (9)第二章Pro/ENGINEER软件的应用和MECHNICA模块的应用 (10)2.1 PRO/MECHANICA简介 (10)2.1.1 PRO/MECHANICA模块介绍 (10)2.1.2 PRO/MECHANICA的工作模式 (11)2.1.3 使用PRO/MECHANICA的一般步骤 (11)第三章直齿轮与斜齿轮参数化设计造型 (12)3.1齿轮的基本参数、各部分的名称和尺寸关系 (12)3.1.1 直齿圆柱基本参数 (12)3.1.2 斜齿轮基本参数 (15)3.2 渐开线直齿轮参数化造型 (16)3.2.1 直齿轮参数化制作过程如下: (16)3.2.2 渐开线斜齿轮参数化造型 (18)第四章有限元优化设计 (22)4.1 有限元分析方法与原理 (24)4.1.1有限元分析 (24)4.1.2有限元的基本原理和特点 (25)4.1.3有限元网格生成技术 (26)4.1.3 网格划分举例 (27)第五章基于Pro/Mechanism直齿轮啮合、斜齿轮啮合过程中装配与运动仿真 (34)5.1 Pro/M的简介及其主要特性 (34)5.1.1 Pro/M的简介 (34)5.1.2 Pro/M的主要特性 (35)5.2 机构运动仿真的一般过程 (35)5.3 机械系统运动仿真的优越性 (37)5.4 Pro/E装配模块 (37)5.4.1 对于组装时,我们需要把握以下原则: (37)5.4.2 关于直齿轮机构的组装 (38)5.5 基于Pro/Mechanism直齿轮啮合、斜齿轮运动仿真 (40)5.5.1 运动定义及运动分析的一般步骤 (40)5.5.2 空间定轴轮系机构的运动分析 (43)5.5.3 定义齿轮从动连接结构 (43)5.5.4 添加驱动器 (44)5.5.5 运动分析 (44)5.5.6 图形结果分析 (44)第六章直齿轮、斜齿轮的静力学分析 (44)6.1 Pro/MECHANICA有限元分析的基本步骤: (44)6.2 Pro/MECHANICA STRUCTURE基本分析过程 (45)6.3 简单算例 (53)6.3.1 接触算例 (53)总结 (62)致谢 (63)阅读的主要文献、资料 (64)第一章绪论1.1、课题来源以往对于直齿、斜齿圆柱齿轮的三维造型建模很烦琐,但三维造型软件Pro/E突破性的解决了此问题。
proe参数化建模

proe参数化建模简介(1)本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。
第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。
(后一部分要等一段时间了,呵呵)参数化设计是proe重点强调的设计理念。
参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。
参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。
关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。
所以,首先要了解proe中参数和关系的相关理论。
一、什么是参数?参数有两个含义:●一是提供设计对象的附加信息,是参数化设计的重要要素之一。
参数和模型一起存储,参数可以标明不同模型的属性。
例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。
●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。
二、如何设置参数在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。
1.参数的组成(1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。
注意:用于关系的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。
(2)类型:指定参数的类型∙a)整数:整型数据∙b)实数:实数型数据∙c)字符型:字符型数据∙d)是否:布尔型数据。
(3)数值:为参数设置一个初始值,该值可以在随后的设计中修改(4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见(5)访问:为参数设置访问权限。
∙a)完全:无限制的访问权,用户可以随意访问参数∙b)限制:具有限制权限的参数∙c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。
ProE渐开线直齿轮的参数化建模

基于ProE5.0渐开线变位圆柱直齿轮的参数化设计引言参数化设计方法相对传统的方法最大的优点在于存储了设计的整个过程,能设计出一系列复杂多变的产品模型,比如齿轮、蜗轮蜗、丝杠、珠承等。
参数化设计最大的好处就是使工程人员通过改变几个参数就能生成一个系列中多种零件来,对设计人员来说减少了设计过程中不必要的重复劳动,提高了工作效率。
关于齿轮参数化设计的资料也不少,但大部分都是标准齿轮的设计,很少有渐开线变位齿轮的设计资料,本设计与以往不同的是:增加了齿轮变位系数参数,增加了齿顶圆、齿根圆与变位系数的关系式,从新调整参数方程,最终形成具有变位功能的齿轮实体模型。
本设计主要在三维工程软件pro/ENGINEER Wildfire5.0版本下进行,因为很少有以pro/ENGINEER Wildfire5.0版本为平台来介绍《渐开线变位圆柱直齿轮的参数化设计》的资料,随着新版本新技术的不断更新,越来越多的年轻技术人员更容易接受新版本,而在新版本中更容易接受新的知识,所以本设计选择了较高的设计版本,也是本设计追求原创的一个重要理由。
此设计也是本人在设计工作中的一部分浅薄的工作经验,拿出来和大家交流分享,希望大家给与批判指正。
直齿圆柱齿轮的基本参数和尺寸关系齿数Z 一个齿轮的轮齿总数。
模数M 以z表示齿轮的齿数,那么齿轮的分度圆周长=πd = z p。
因此分度圆直径为:d=(p/π)·z,式中:p/π称为齿轮的模数,用m表示,即要使两个齿轮能啮合,它们的齿距必须相等。
因此互相啮合的两齿轮的模数m必须相等。
从d = mz中可见,模数m越大,轮齿就越大;模数m越小,轮齿就越小。
模数m是设计、制造齿轮时的重要参数。
不同模数的齿轮,要用不同模数的刀具来加工制造。
为了便于设计和减少加工齿轮的刀具数量,GBI357一78对齿轮的模数m已系列化,如下表所示。
在选用模数时,应优先采用第一系列的模数,其次是第二系列,括号内的尽可能不用。
ProE中渐开线齿轮画法讲解

(7)完成后的曲线如图3-14所示;
图3-14 完成后的渐开线
4.镜像渐开线
(1)在工具栏内单击 按钮,或者依次在主菜单上单击 “插入”→ “模型基准”→ “点”→ “点”,系统弹出“基准点”对话框,如图3-15所示;
图3-15“基准点”对话框
(2)单击分度圆曲线作为参照,按住Ctrl键,单击渐开线作为参照,如图3-16所示。在“基准点”对话框内单击【确定】,完成基准点“PNT0”的创建;
D12=da
其中D12为圆的直径尺寸代号,da为用户自定义的参数,即为齿顶圆直径。通过该关系式创建的圆即为齿顶圆;
(13)重复7—12步骤,创建另外两个齿轮的基本圆,分别为齿根圆和基圆,基中齿根圆的尺寸关系式为:
D13=df
基圆的尺寸代号为:
D14=db
完成后的基本圆曲线如图3-8所示,完成后的“关系”对话框如图3-9所示。
图3-8 完成后的基本圆曲线
图3-9 完成后的关系式
3.创建渐开线
(1)依次在主菜单上单击 “插入”→ “模型基准”→ “曲线”,或者在工具栏上单击 按钮,系统弹出“曲线选项”菜单管理器,如图3-10所示;
图3-10 “曲线选项”菜单管理器
(2)在“曲线选项”菜单管理器上依次单击 “从方程”→ “完成”,弹出“得到坐标系”菜单管理器,如图3-11所示;
(5)在工具栏内单击 按钮,或者依次在主菜单上单击 “插入”→ “模型基准”→ “平面”,系统弹出“基准平面”对话框;
(6)在绘图区单击选取“A_1”轴作为参照,按住Ctrl键,继续单击基准点“PNT0”作为参照,如图3-17所示;
图3-17“基准平面”对话框
(7)继续在工具栏内单击 按钮,或者依次在主菜单上单击 “插入”→ “模型基准”→ “平面”,系统弹出“基准平面”对话框,如图3-18所示;
ProE渐开线标准直齿圆柱齿轮参数化设计

ProE渐开线标准直齿圆柱齿轮参数化设计摘要:本文阐述了用Pro/E参数关系式设计渐开线齿面的原理及操作过程,推导出了设计渐开线齿面的公式模板,并在此基础上结合标准渐开线齿轮的相关参数用Pro/E完成了整个渐开线标准直齿轮的设计,文中所述标准渐开线直齿轮设计方法简洁,操作过程简单高效,可资同行借鉴。
关键词:渐开线基圆关系式可变截面扫描镜像渐开线齿轮传动由于其定传动比、运动精度高、冲击振动较小等优点被广泛应用于机械传动中。
Pro/E可变截面扫描特征可加入描述渐开线生成规律的关系式,利用此关系式可绘制任一齿数模数的渐开线齿面;在Pro/E中采取恰当的方法很容易满足在分度圆上齿厚与齿槽宽相等这一设计要求,从而精确完整的完成标准渐开线直齿轮的三维模型设计。
1、渐开线的形成原理及其特性当一直线沿半径为的圆作纯滚动时(如图1所示),此直线上任意一点K 的轨迹AK 称为该圆的渐开线,该圆称为基圆,该直线称为发生线,渐开线所对应的中心角称为渐开线AK 段的展角。
渐开线齿面上的截面线到中心线的距离在图1中OK用表示,在图2中用表示,则,设为图1中的弧度值,则在发生线沿基圆作纯滚动形成渐开线齿面的过程中始终存在着如下的数量关系:2、Pro/E渐开线齿面生成原理作渐开线齿轮的关键在于作渐开线齿面,Pro/E用可变截面扫描特征作渐开线齿面。
首先绘制一个圆心角约15°的基圆,(见图5所示基圆,用于限制齿面的扫描的范围),然后选取此基圆弧作为产生渐开线齿面的原始轨迹线,在草绘界面绘制扫描截面线,截面线是平行于齿轮中心线的直线,(也就是图2中剖面初始位置与终止位置的夹角,剖面绕齿轮中心线旋转),在扫描过程度中,随着值逐渐加大,截面线离开中心的距离为(见图1、图2)将按关系式2不断加大,并且此截面线始终位于垂直于基圆的剖面内,部面的旋转角度由所作基圆的圆心角决定,一般15°即可,这样扫描的结果就得到了渐开线齿面。
Creo3.0参数化绘制渐开线标准直齿圆柱齿轮

Creo3.0参数化绘制渐开线标准直齿圆柱齿轮用Creo3.0参数化绘制一个渐开线型标准直齿圆柱齿轮,用到的命令有拉伸,旋转,阵列等。
1.打开Creo3.0,设置工作目录,新建文件(输入文件名),选择mmns_part_solid模板,设置模型属性,更改密度设为7.85e-9,单位默认是t/mm^3。
2.选择工具/参数,添加参数,模数m=2,齿数z=20,压力角angl=20,齿宽b=50,无变位。
添加关系式:r=m*z*cos(angl)/2,r为渐开线基圆半径。
3.选择基准/曲线/来自方程的曲线,笛卡尔坐标系,打开曲线方程编辑器。
输入渐开线方程:theta=t*90y=r*cos(theta)+r*sin(theta)*theta*(pi/180)z=r*sin(theta)-r*cos(theta)*theta*(pi/180)x=0确定后,自动生成一条渐开线。
4.进入草绘,依次随机绘制3个同心圆,分别作为为齿顶圆,分度圆,齿根圆,确认退出。
5.在3D模式下,选取3个同心圆,添加关系式:d0=(z+2)*md1=z*md2=(z-2.5)*m自动生成由关系式控制的尺寸:44,40,35。
6.选择拉伸命令,绘制一个以齿顶圆为直径的圆柱体,再为圆柱体添加关系d3=b(齿宽)。
7.选择拉伸/去除材料,绘制一个齿槽。
再绘制轮槽截面时应注意,如图红色圈标记处,当齿数z<41.5时,齿根圆<基圆,此时渐开线到齿根圆可用相切直线替代;当齿数Z>41.5时,齿根圆>基圆,直接为渐开线。
8.完成一个齿槽后,再为齿槽添加关系式:d5=b,(槽宽半角)d6=90/z。
9.再将轮槽进行阵列,阵列个数随机输入。
再为阵列添加关系式p13=z,再生。
10.改变颜色外观。
11.打开参数编辑器,更改参数m=5,z=40,再生完成,此时齿轮形状已改变。
12.旋转/去除材料绘制轴孔。
13. 拉伸/去除材料绘制键槽,采用矩形花键连接,花键大径102,内径92,宽度14,槽数10,先绘制一组键槽。
Proe设计常用齿轮的参数及关系、渐开线方程
Proe设计常用齿轮的参数及关系、渐开线方程这里稍微总结了四种常用的齿轮的参数及关系:1.柱形直齿轮所需参数:(11个)齿数(z)、模数(m)、压力角(angle)、齿厚(b)齿顶圆(da)、分度圆(d)、齿基圆(db)、齿根圆(df)齿顶高系数(hax)、顶隙系数(cx)、变位系数(x)齿顶高(ha)、齿根高(hf)基本关系:ha=mhf=1.25*mda=m*(z+2)d=m*zdb=d*cos(angle) df=m*(z-2.5)渐开线方程:theta=45*tr=db/2x=r*cos(theta)+r*sin(theta)*pi*theta/180 y=r*sin(theta)-r*cos(theta)*pi*theta/180 z=02.斜齿轮所需参数(14个)齿数(z)、模数(mn)、压力角(alpha)、螺旋角(beta)、齿厚(b)齿顶圆(da)、分度圆(d)、齿基圆(db)、齿根圆(df)齿顶高系数(hax)、顶隙系数(cx)、变位系数(x)齿顶高(ha)、齿根高(hf)基本关系:ha=(hax+x)*mnhf=(hax+cx-x)*mnd=mn*z/cos(beta)da=d+2*hadb=d*cos(alpha)df=d-2*hf渐开线方程:theta=45*tr=db/2x=r*cos(theta)+r*sin(theta)*pi*theta/180y=r*sin(theta)-r*cos(theta)*pi*theta/180z=03.锥形齿轮(伞形齿轮)所需参数(24个)齿数(z)、模数(m)、压力角(alpha)齿顶圆(da)、分度圆(d)、齿基圆(db)、齿根圆(df)齿顶高系数(hax)、顶隙系数(cx)、变位系数(x)齿顶高(ha)、齿高(h)、齿基高(hb)、齿根高(hf)顶锥角(delta_a)、分锥角(delta)、基锥角(delta_b)、根锥角(delta_f)锥顶宽(ba)、锥宽(b)、锥基宽(bb)、锥根宽(bf)锥距(rx)、与之相啮合的大齿轮齿数(z_asm)基本关系:ha=(hax+x)*mhf=(hax+cx-x)*mh=ha+hfdelta=atan(z/z_asm)d=m*zdb=d*cos(alpha)da=d+2*ha*cos(delta)df=d-2*hf*cos(delta)hb=(d-db)/(2*cos(delta))rx=d/(2*sin(delta))theta_a=atan(ha/rx)theta_b=atan(hb/rx)theta_f=atan(hf/rx)delta_a=delta+theta_adelta_b=delta-theta_bdelta_f=delta-theta_fba=b/cos(theta_a)bb=b/cos(theta_a)bf=b/cos(theta_a)渐开线方程:r=d11/2 (d11是分度圆直径,需具体确定)theta=60*tx=r*cos(theta)+r*sin(theta)*pi*theta/180 y=r*sin(theta)-r*cos(theta)*pi*theta/180z=04.人字形齿轮从上图不难看出:人字形齿轮其实是两个斜齿轮复合而成,其参数与斜齿轮一致渐开线方程:theta=60*tr=db/2x=r*cos(theta)+r*sin(theta)*pi*theta/180y=r*sin(theta)-r*cos(theta)*pi*theta/180z=0需要注意的是:以上渐开线均是以Proe的FRONT面为草绘面画圆时正确的渐开线。
proe齿轮的参数
Proe齿轮参数,不正之处请指正标准渐开线齿轮的一般规律及默认参数,可用任何绘图软件绘制标准齿轮截面.(齿顶间隙系数默认为0.25,变位系数是0.)M模数,D表示直径,Z表示齿数,齿底圆直径D1,节圆直径D2,T(周节,指节圆上相邻两齿的中心距,齿距),齿宽L;齿顶宽不是很重要.以M 数为1的齿轮看,可取0.7~1.同时齿顶圆角和齿根圆角也可稍大或稍小.1:所有模数是1的齿轮,(顶圆直径与根圆直径差)为4.5,M=2时是9,M=3是13.5,M=4是18,模数每升1其径差增加 4.5;齿顶宽度M=1,d=0.7,M=2,d=1.4,M=3d=2.1,其齿顶宽d以0.7的倍数增加;模数每升0.5,其齿顶宽d以0.375的倍数增加2:M=1.5时,顶底圆差为6.75,M=2.5径差11.25,M=3.5径差15.75,也是模数每升1其径差增加4.5.综上所述模数每升0.5,顶圆和根圆差就增加2.25.3:节圆又叫分度圆节元直径D2=齿数Z*M,如画齿数是20,M=1的齿轮,节圆D2=Z*M=20*1=20,顶圆D=(20+2)*1=22齿底圆D1=22-4.5=17.5,齿高H=(D-D1)/2=4.5/2=2.25,公式:M=D/(Z+2),D顶=M*(Z+2),M=T/&(3.14),D表示直径,Z表示齿数, (&=3.14圆周率),T(周节,指节圆上相邻两齿的中心距,齿距);齿宽L=T/2,模数M=D顶/(Z+2)=T/&,周节T=M*&(&表示圆周率,3。
14)奇齿M数=D顶/Z偶齿轮M数=D/(Z+2)顶圆直径D顶=M*(Z+2)齿底圆直径D1=D顶-M*4.5(把模数M看成是从1向上以0.5为单位递增的变量)节圆直径D2=Z*M4:齿条是保证齿轮可以在其上顺畅滚动的直齿,其M数等于该齿轮的M 数,齿高相等,齿宽也相等,齿背可画成圆弧或直线都无所谓。
proe齿轮参数化设计
基于Pro /E的齿轮参数化设计摘要摘要Pro /E乃是当今世界上比较流行的三维模型设计软件,使用软件中的渐开线方程启动生成渐开线。
Pro /E有更好的图形界面,和设计环境更加生动,快速的渲染功能,反映了更大的灵活性。
而且可以利用计算机预先举行动态剖析及装配干预检查工作,从而最大幅度地提升工作效率。
本设计即利用该软件进行齿轮的参数化设计。
关键词:Pro /E;齿轮;参数化设计目录摘要 (Ⅰ)1绪论 (1)1.1研究背景 (1)1.2国内外研究现状与趋势 (1)2.PRO/E软件简介 (2)3.渐开线直齿轮的参数化造型 (2)3.1参数化技术 (2)3.2参数化模型 (2)4渐开线齿轮数学模型 (3)4.1齿轮的参数赋值 (3)4.2渐开线成型原理 (3)5P r o/E齿轮的参数化设计 (4)结论 (20)参考文献 (20)1.绪论1.1研究背景20 世纪80年代以来,以计算机辅助设计技巧为代表的新技术席卷全世界,该技术不仅促进了计算机本身性能的提高和推陈出新,而且深刻影响到全部的工业技术领域。
CAD技术经历了曲面造型,实体建模技术和参数化技术的跨越式发展,给工业技术领域带来极大的进步与发展。
渐开线齿轮作为各类机械传动配置中的紧要装配,具有传动比大、效率高、寿命长等优点,普遍应用于机器、船舶、航空、电力范畴。
随着三维CAD 软件纷繁涌现,一般机器零件的三维计划对平凡工程师来讲不再是艰苦的事情。
但对于渐开线齿形而言,由于确定其准确的模型非常困难,在传统圆柱齿轮设计中,对于齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,容易出现设计误差和错误,设计周期长且难以实现优化设计,进而粗糙的模型会影响到下面的齿轮加工操作。
对这个问题的解决过程中出现了CAD参数化设计的概念,。
参数化设计的出现大大提高了模型的生成和修改的速度,在产品的系列设计、相似设计及专用CAD 系统开发反面都具有较大的应用价值。
PROE齿轮画法大全---直齿轮
3.1直齿轮的创建3.1.1渐开线的几何分析图3-1 渐开线的几何分析渐开线是由一条线段绕齿轮基圆旋转形成的曲线。
渐开线的几何分析如图3-1所示。
线段s绕圆弧旋转,其一端点A划过的一条轨迹即为渐开线。
图中点(x1,y1)的坐标为:x1=r*cos(ang),y1=r*sin(ang) 。
(其中r为圆半径,ang为图示角度)对于Pro/E关系式,系统存在一个变量t,t的变化范围是0~1。
从而可以通过(x1,y1)建立(x,y)的坐标,即为渐开线的方程。
ang=t*90s=(PI*r*t)/2x1=r*cos(ang)y1=r*sin(ang)x=x1+(s*sin(ang))y=y1-(s*cos(ang))z=0以上为定义在xy平面上的渐开线方程,可通过修改x,y,z的坐标关系来定义在其它面上的方程,在此不再重复。
3.1.2直齿轮的建模分析本小节将介绍参数化创建直齿圆柱齿轮的方法,参数化创建齿轮的过程相对复杂,其中要用到许多与齿轮有关的参数以及关系式。
直齿轮的建模分析(如图3-2所示):(1)创建齿轮的基本圆这一步用草绘曲线的方法,创建齿轮的基本圆,包括齿顶圆、基圆、分度圆、齿根圆。
并且用事先设置好的参数来控制圆的大小。
(2)创建渐开线用从方程来生成渐开线的方法,创建渐开线,本章的第一小节分析了渐开线方程的相关知识。
(3)镜像渐开线首先创建一个用于镜像的平面,然后通过该平面,镜像第2步创建的渐开线,并且用关系式来控制镜像平面的角度。
(4)拉伸形成实体拉伸创建实体,包括齿轮的齿根圆实体和齿轮的一个齿形实体。
这一步是创建齿轮的关键步骤。
(5)阵列轮齿将上一步创建的轮齿进行阵列,完成齿轮的基本外形。
这一步同样需要加入关系式来控制齿轮的生成。
(6)创建其它特征创建齿轮的中间孔、键槽、小孔等特征,并且用参数和关系式来控制相关的尺寸。
图3-2 齿轮的建模分析3.1.3直齿轮的建模过程1.输入基本参数和关系式(1)单击,在新建对话框中输入文件名“gear”,然后单击;(2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图3-3所示;图3-3 “参数”对话框(3)在“参数”对话框内单击按钮,可以看到“参数”对话框增加了一行,依次输入新参数的名称、值、和说明等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ProE5.0渐开线变位圆柱直齿轮的参数化设计引言
参数化设计方法相对传统的方法最大的优点在于存储了设计的整个过程,能设计出一系列复杂多变的产品模型,比如齿轮、蜗轮蜗、丝杠、珠承等。
参数化设计最大的好处就是使工程人员通过改变几个参数就能生成一个系列中多种零件来,对设计人员来说减少了设计过程中不必要的重复劳动,提高了工作效率。
关于齿轮参数化设计的资料也不少,但大部分都是标准齿轮的设计,很少有渐开线变位齿轮的设计资料,本设计与以往不同的是:增加了齿轮变位系数参数,增加了齿顶圆、齿根圆与变位系数的关系式,从新调整参数方程,最终形成具有变位功能的齿轮实体模型。
本设计主要在三维工程软件pro/ENGINEER Wildfire5.0版本下进行,因为很少有以pro/ENGINEER Wildfire5.0版本为平台来介绍《渐开线变位圆柱直齿轮的参数化设计》的资料,随着新版本新技术的不断更新,越来越多的年轻技术人员更容易接受新版本,而在新版本中更容易接受新的知识,所以本设计选择了较高的设计版本,也是本设计追求原创的一个重要理由。
此设计也是本人在设计工作中的一部分浅薄的工作经验,拿出来和大家交流分享,希望大家给与批判指正。
直齿圆柱齿轮的基本参数和尺寸关系
齿数Z 一个齿轮的轮齿总数。
模数M 以z表示齿轮的齿数,那么齿轮的分度圆周长=πd = z p。
因此分度圆直径为:d=(p/π)·z,
式中:p/π称为齿轮的模数,用m表示,即
要使两个齿轮能啮合,它们的齿距必须相等。
因此互相啮合的两齿轮的模数m必须相等。
从d = mz中可见,模数m越大,轮齿就越大;模数m越小,轮齿就越小。
模数m是设计、制造齿轮时的重要参数。
不同模数的齿轮,要用不同模数的刀具来加工制造。
为了便于设计和减少加工齿轮的刀具数量,GBI357一78对齿轮的模数m已系列化,如下表所示。
在选用模数时,应优先采用第一系列的模数,其次是第二系列,括号内的尽可能不用。
(啮合角、齿形角)在节点P处,两齿廓曲线的公法线与两节圆的公切线所夹的锐角称啮合角,也称压力角。
我国采用的压力角a一般为20°,加工齿轮的原始基本齿条的法向压力角称齿形角。
因此,压力角a=啮合角=齿形角。
当标准直齿圆柱齿轮的模数m确定后,按照与m的比例关系可算出轮齿的各基本尺寸。
渐开线变位圆柱直齿轮的参数化设计过程
第一步:设置参数
1、启动软件——〉新建文件——〉给文件起名——〉取消窗体下方的“使用缺省模板”前的“∨”
——〉“确定”——〉选择“mmns-par-solid”(公制) ——〉“确定”。
2、“工具”——〉“参数”——〉“参数”——〉“添加参数”并一次添加入图1的参数——〉“确
定”。
图1
参数字母含义如下:
m--〉模数z--〉齿数ang--〉压力角b--〉齿轮厚度da--〉齿顶圆直径
df--〉齿根圆直径hax--〉定义齿高系数cx--〉定义齿顶系数x--〉变位系数
第二步:设置圆柱齿轮的基本尺寸关系
1、“工具”——〉“关系”——〉在“关系”编辑窗口键入
HA=(HAX+X)*M
HF=(HAX+CX-X)*M
(这就是变位系数与齿顶圆、齿根圆的关系式)
如图2——〉“确定”。
图2
2、以FRONT面为草绘平面进行“草绘”——〉绘制四个圆,直径分别为100、120、140、
160,如下图3——〉绘制完按“∨”确定。
图3
3、“工具”——〉“关系”——〉在“关系”编辑窗口键入
D=M*Z
DA=D+2*HA
DB=D*COS(ang)
DF=D-2*HF
d2=D
d1=DB
d0=DF
d3=DA
(这一部分程序就是本设计的一大特点)如图4——〉“确定”——〉按“再生”按钮(如图5)。
图4
图5
参数公式含义如下:
定义分度圆直径d=m*z;定义齿顶圆直径da=(z+2*ha)*m ;
定义齿根圆直径df=(z-2*(ha+c))*m;定义基圆直径db=m*z*cos(ang)
第三步:绘制渐开线齿轮轮廓曲线
1、点击“曲线”——〉选择“从方程”(如图6)
——〉在绘图区域点选中心坐标——〉选择“笛卡
儿”坐标—〉进入程序编辑器。
2、在程序编辑器输入如下方程:如图7
r=DB/2
theta=t*45
x=r*cos(theta)+r*sin(theta)*theta*pi/180
y=r*sin(theta)-r*cos(theta)*theta*pi/180
z=0
(此方程是渐开线的坐标参数方程)图6 3、编写完成后保存并推出——〉“确定”,这
样就会在绘图窗口产生一条曲线。
4、以RIGHT面和TOP面为参考创建中心轴A-1
——〉以分度圆和曲线为参照绘制如图8的参
考点PNT0——〉以点PNT0和中心轴A-1为基
准创建平面DTM1——〉DTM1平面为基准以中
心坐标为轴旋转创建齿廓中心面DTM2,如图8
所示。
这些基准点、基准轴、基准面的创建具
体操作可参考pro/ENGINEER Wildfire5.0的
有关学习教程,由于篇数有限这里不作详细说
明。
图7 5、打开如图4的“关系”窗口——〉在d3=D
下面输入:d6=360/(4*Z) ——〉“确定”
——〉按“再生”按钮(如图5)。
6、将渐开线以DTM2为中心平面创建“镜
像”特征,生成对称的渐开线,创建齿廓。
图8
第四步:绘制渐开线齿轮单齿实体
1、拉伸实体——〉在实体放置选择以FRONT
面为草绘平面进行“草绘”——〉使用如图
9的“使用”工具——〉在使用边上点选“环”
——〉在绘图区域选择最里面的圆(齿根圆
直径)——〉完成草图——〉拉伸长度初始
设为15。
2、打开如图4的“关系”窗口——〉在
d6=360/(4*Z)
下面输入:d7=B ——〉“确定”——〉按
“再生”按钮(如图5),这样就生成圆柱齿
轮的齿根圆实体。
图9
3、拉伸实体——〉在实体放置选择以
FRONT面为草绘平面进行“草绘”——〉
点选标题栏上面的“草绘”——〉点选“草
绘”里面的“参考”——〉在绘图区域同
时选择最里面的圆(齿根圆直径)、最外面
的圆(齿顶圆直径)、两条曲线(齿廓)、
DTM2平面(齿廓中心面)为参考——〉使
用如图9的“使用”工具在绘图区域选择
最里面的圆(齿根圆直径)、最外面的圆(齿
顶圆直径)、两条曲线(齿廓)——〉在两
条曲线附近绘制与齿根圆相切的两个小
圆,连个小圆同时与两条曲线(齿廓)的图10
延长线相切,如图10所示——〉采用“修
剪”工具修剪多余的线段,只留下齿轮的
齿廓形状,如图11——〉绘制完按“∨”
确定拉伸长度初始设为15。
4、打开如图4的“关系”窗口——〉在d7=B
下面输入:
d8=B
IF HAX<1
D9=0.46*M
ENDIF
IF HAX>=1
D9=0.38*M
ENDIF
(这是一个条件语句,描绘的是齿根过渡倒圆的大图11
小,仔细体会这些程序)
如图12所示
——〉“确定”——〉按“再生”按钮,生成的实体
图形如图13所示。
图12
图13
第五步:创建渐开线变位圆柱齿轮实体模型图14
1、选择“拉伸2”如图14所示——〉点选主菜单“编辑”菜单——〉点选“复制”——〉再点选“编辑”菜单——〉点选“选择性粘贴”,自动打开了“选择性粘贴”的对话框如图15所示——〉选择“仅尺寸和注释元素细节”——〉选择“对副本应用移动/旋转变换”——〉“确定”——〉进入选择粘贴的窗口如图16所示——〉选择轴“A-1”作为旋转轴,并在“变换”菜单下的“设置”下选择“旋转”初始旋转角为“30”,如图15所示——〉点击右上角“∨”表示完成。
图15 图16
2、打开如图4的“关系”窗口——〉在ENDIF 下方输入:d60=360/Z——〉“确定”——〉按“再生”按钮,生成的实体如图17。
图17
2、点选“以移动副本1”以中心轴“A-1”为中心进行“矩阵”,其余皆为默认值——〉打开如
图4的“关系”窗口在d60=360/Z 下方输入:
d65=360/Z
P68=Z-1
——〉“确定”——〉按“再生”按钮,生成的最终实体实体如图18。
图18 图19
第六步:输入新的参数观察渐开线变位圆柱齿轮实体模型变化
1、“工具”——〉“参数”,输入如图19的新参数:
模数“M”实数值由原来的“1.5”改为“2”
齿数“Z”实数值由原来的“17”改为“20”
变为系数“X”实数值由原来的“0”改为“0.2”
——〉确定——〉按“再生”按钮,生成的最终实体实体如图20。
2、根据这种参数的变化仔细观测实体模型的变化。
结论
本文重点阐述了应用pro/ENGINEER Wildfire5.0建立渐开线圆柱变为直齿轮的参数化建模的整个过程,描述了参数化设计的方法。
给我们的工程技术人员提供了建立参数化模型库的第一手资料,通过输入不同的参数自动生成不同的建立渐开线圆柱变为直齿轮模型,给以后的工作带来较大方便。