北师大初中 三角形1
北师大版九年级下册1.4解直角三角形课件

c?
15 ?
a
B
讲授新课
例1.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且a= 15 ,b= 5 ,求这个三角 形的其他元素.
我们已知三角形的三边, 需要求角.直角三角形三边与 它的角有什么关系呢?它们通 过什么可以联系起来?
A
?
b5
C
c?
15 ?
a
B
讲授新课
例1.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且a= 15 ,b= 5 ,求这个三角 形的其他元素.
解:在Rt△ABC中, ∠C=90°, A
∠B=25° ,∴ ∠A=65°.
?
sin B = b ,b = 30,
c
c
=
b sin B
=
sin3205°
71.
b 30 C
c?
25°
a? B
tan
B
=
b ,b a
=
30, a
=
b tan
Bபைடு நூலகம்
=
tan3025°
64.
讲授新课
思考4:例2中已知元素是一锐角与一直角边,如 果已知的是一锐角与斜边,能解直角三角形吗?
思考5:已知元素是两锐角,能解直角三角形吗? A
65°
c? b?
25°
C
a? B
小结:解直角三角形最少需除直角外的两个元 素,且这两个元素中至少有一条边.
巩固练习
➢ 随堂练习 在Rt△ABC中, ∠C=90°, ∠A,∠B,∠C所
对的边分别为a,b,c,根据下列条件求出直角三角形 的其他元素(结果精确到1°):
北师大版七年级数学下册第四章 三角形1 第3课时 三角形的中线、角平分线

E
C
边上的中线.
BE = EC
让我们先看看三角形的中线有什么特点.
议一议 (1) 在纸上画出一个锐角三角形,确定它的中线.
你有什么方法?它有多少条中线?它们有怎样的 位置关系?
三条中线,相交于一点
(2) 钝角三角形和直角三角形的三条中线也有同样的位 置关系吗?折一折,画一画,并与同伴进行交流.
重
长 BG 交 AC 于 E,F 为 AB 上一点,CF 交 AD 于 H,
判断下列说法的正误.
A
(1)AD 是△ABE 的角平分线. ( D 上的中线. ( × ) 1 2 E
(3)BE 是△ABC 的边 AC 上的中线. ( × ) G
F
H
B
D
C
2. 如图,AE 是△ABC 的角平分线. 已知∠B = 45°,
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
角平分线与它的对边相交,这
A 12
个角的顶点与交点之间的线段 B
叫做三角形的角平分线.
D
C
∠1 =∠2
注意:“三角形的角平分线”是线段,不是射线.
做一做
每人准备锐角三角形、钝角三角形和直角三角形纸 片各一个.
三角形的中位线课件北师大版初中数学八年级下册(1)

延长BC至点F,使CF= BC,连结CD和EF.
2
(1)求证:DE=CF;
(2)求EF的长.
(1)证明:∵D,E分别为AB,AC的中点,
∴DE为△ABC的中位线,
1
∴DE= BC.
2
1
∵CF= BC,∴DE=CF.
2
学以致用
4.如图,等边△ABC的边长是2,D,E分别为AB,AC的中点,
1
延长BC至点F,使CF= BC,连结CD和EF.
E
F
C
我会证!
∴△ADE≌△CFE(SAS).
∴AD=CF,∠ADE=∠F.
∴BD∥CF.
∵AD=BD,
∴BD=CF.
∴四边形DBCF是平行四边形.
∴DF∥BC,DF=BC.
∴DE∥BC,且 DE=EF=
1
2
BC .
自主探学
法2:过点C作CF∥AB交DE的延长线于F
A
∵CF∥AB,
D
E
F
∴∠A=∠ECF
2
(1)求证:DE=CF;
(2)求EF的长.
(2)解:由(1),知DE=CF.
又∵DE//BC,
∴四边形DEFC是平行四边形,∴DC=EF.
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,∴∠BDC=90°,
在Rt△BDC中,由勾股定理,得DC= 2 − 2 = 3,即EF= 3.
E
B
H
顺次连接任意四边形的四边中点得到平行四边形。
D
这样的四边形也叫中点四边形
F
G
C
学以致用
3.如图,平行四边形ABCD的对角线AC,BD相交于点O,
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
北师大版九年级数学下册:第一章 1.4《解直角三角形》精品教案

北师大版九年级数学下册:第一章 1.4《解直角三角形》精品教案一. 教材分析北师大版九年级数学下册第一章《解直角三角形》是整个初中数学的重要内容,它不仅巩固了初中阶段的知识,同时也为高中阶段的数学学习打下了基础。
本节课的主要内容是让学生掌握直角三角形的性质,学会使用勾股定理和锐角三角函数,并能解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,对于如何运用勾股定理和锐角三角函数解决实际问题,他们可能还存在一定的困难。
因此,在教学过程中,我们需要关注学生的学习需求,引导学生主动探索,培养他们的解决问题的能力。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和锐角三角函数的定义及应用。
2.能够运用勾股定理和锐角三角函数解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.教学重点:直角三角形的性质,勾股定理和锐角三角函数的定义及应用。
2.教学难点:如何引导学生运用勾股定理和锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生主动探索直角三角形的性质,激发学生的学习兴趣。
2.问题驱动法:设置一系列问题,引导学生思考和解决问题,培养学生的思维能力。
3.合作学习法:学生进行小组讨论和实践,提高学生的合作能力和动手能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.教学素材:准备一些实际的直角三角形问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量楼房的高度等,引出直角三角形的问题,激发学生的学习兴趣。
2.呈现(10分钟)通过课件展示直角三角形的性质,引导学生观察和思考,总结出直角三角形的性质。
3.操练(10分钟)让学生通过实际问题,运用勾股定理和锐角三角函数解决问题,巩固所学知识。
4.巩固(10分钟)设置一些练习题,让学生独立完成,检查他们对直角三角形性质的掌握程度。
()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版

三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
北师大版八年级下册数学1.1直角三角形的性质和判定课件
(2)两条直线平行,同旁内角互补; 真 逆命题:同旁内角互补两直线平行 真
(3)如果ab=0,那么a=0,b=0. 假 逆命题:如果a=0,b=0,那么ab=0. 真
小结:由此可知,一个命题是真命题,它的逆 命题不一定是真命题;如果一个定理的逆命题 经过证明是真命题,那么它也是一个定理,其 中一个定理称之为另一个定理的逆定理。如定 理1和定理2是一对互逆定理,定理3和定理4也 是一对互逆定理。
解:
A
∵∠A=∠B=45°
∴ቤተ መጻሕፍቲ ባይዱC=180°-(∠A+∠B)
=180°-90°=90°,
且 AC=BC
又∵BC=3,∴在Rt△ABC中,
AB AC2 BC2 3 2
C
B
2、如图,在四边形ABCD中,AB∥CD,E为BC上一点, 且∠BAE=25°,∠CDE=65°,AE=2,DE=3,求AD的长。
∴这个三角形是直角三角形
几何语言: ∵在Rt△ABC中, ∠A+∠B=90°
∴△ABC是直角三角形
勾股定理
我们曾经利用数方格和割补的方法得到了勾股定理。事 实上,利用基本事实和已有定理,我们能够证明勾股定理 (参见读一读)
勾股定理:
直角三角形两直角边的平方和等于斜边的平方。
随堂小练:
1、在△ABC中,已知∠A=∠B=45°,BC=3,求AB长。
本课小结
1、学习了直角三角形的性质定理
定理1:直角三角形两锐角互余
定理3:勾股定理:直角三角形两直角边的平方和等于斜边的平方.
2、学习了直角三角形的判定定理
定理2:有两锐角互余的三角形是直角三角形
定理4:勾股定理的逆定理:如果三角形两边的平方和等于第 三边的平方, 那么这个三角形是直角三角形
北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)
获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”
北师大版数学八年级下册1.1《等边三角形的判定及含30°角的直角三角形的性质》(第4课时)说课稿
北师大版数学八年级下册 1.1《等边三角形的判定及含30°角的直角三角形的性质》(第4课时)说课稿一. 教材分析《等边三角形的判定及含30°角的直角三角形的性质》是人教版初中数学八年级下册的教学内容,属于几何部分。
本节课主要介绍了等边三角形的判定方法和含30°角的直角三角形的性质。
通过本节课的学习,学生能够掌握等边三角形的判定方法,理解含30°角的直角三角形的性质,并能够运用这些知识解决实际问题。
二. 学情分析在八年级下学期,学生已经学习了三角形的基本概念和性质,对三角形有一定的认识。
但是,对于等边三角形的判定和含30°角的直角三角形的性质,学生可能还没有完全理解和掌握。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索和发现等边三角形的判定方法和含30°角的直角三角形的性质,提高学生的几何思维能力。
三. 说教学目标1.知识与技能目标:学生能够掌握等边三角形的判定方法,理解含30°角的直角三角形的性质,并能够运用这些知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的几何思维能力,提高学生的问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:等边三角形的判定方法,含30°角的直角三角形的性质。
2.教学难点:等边三角形的判定方法的灵活运用,含30°角的直角三角形的性质的理解和应用。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法和手段:1.情境创设:通过生活实例引入等边三角形的判定和含30°角的直角三角形的性质,激发学生的学习兴趣。
2.自主探索:引导学生通过观察、操作、思考、交流等活动,自主探索等边三角形的判定方法和含30°角的直角三角形的性质。
北师大版七下数学4.1认识三角形(第1课时)说课稿
北师大版七下数学4.1认识三角形(第1课时)说课稿一. 教材分析北师大版七下数学4.1认识三角形是初中学段数学课程的一部分,本节课的主要内容是让学生掌握三角形的概念、特性以及分类。
通过本节课的学习,使学生能够认识三角形,了解三角形的性质,能够运用三角形的知识解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了线段、射线的基本知识,对图形的认知有一定的基础。
但是,对于三角形的特性以及分类,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,从简单到复杂,逐步引导学生掌握三角形的知识。
三. 说教学目标1.知识与技能目标:使学生能够理解三角形的概念,掌握三角形的特性,了解三角形的分类。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念,提高学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活实际的联系。
四. 说教学重难点1.教学重点:三角形的概念、特性以及分类。
2.教学难点:三角形的高的概念以及计算方法的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过展示生活中的三角形实例,引导学生回顾已学的线段、射线知识,为新课的学习做好铺垫。
2.探究新知:(1)介绍三角形的概念:让学生观察课件中的三角形实例,引导学生发现三角形的特征,从而总结出三角形的定义。
(2)探讨三角形的高:通过几何画板演示,让学生直观地理解三角形的高的概念,并引导学生掌握计算三角形高的方法。
(3)介绍三角形的分类:让学生观察不同类型的三角形,引导学生根据三角形的特性进行分类。
3.巩固练习:设计一些有关三角形的问题,让学生运用所学知识解决问题,巩固新学的知识。
4.课堂小结:对本节课的内容进行总结,使学生对三角形有更清晰的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形知多少1一.选择题。
1.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DC C.∠B =∠C ,∠BAD =∠CAD D. ∠B =∠C ,BD =DC2.如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是 A 100° B 80° C 70° D 50°3.如图示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5A B B D ==,则点D 到BC 的距离是:A 3 B 4 C 5 D 6 4.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组二.填空题。
1.在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠P AB =__________度.2.如图,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC =40°, 则∠CAP =_______________.3.如图所示,将△ABC 沿它的中位线MN 折叠后,点A 落在点A ′处,如果∠A =28°,∠B =120°,那么∠A ′NC = .4.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图示).如果将ABM△沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .5.如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .6.如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,则DE = cm ,ABC △的面积= cm 2.N M C B三.解答题。
1.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.2.如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.3.如图,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =.求证AB ED =.4.如图,点B 、F 、C 、E 在同一直线上,并且BF =CE ,∠B =∠C .(1)请你只添加一个条件(不再加辅助线),使得△ABC ≌△DEF .你添加的条件是: .(2)添加了条件后,证明△ABC ≌△DEF .5.如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
求证:△BEC ≌△CDA 。
6.如图1,在ABC △中,点P 为BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接.PM PN 、 (1)延长MP 交CN 于点E (如图2),①求证:BPM CPE △≌△;②求证:PM PN =;(2)若直线a 绕点A 旋转到图3的位置时,点B P 、在直线a 的同侧,其它条件不变.此时PM PN =还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM PN =还成立吗?不必说明理由.7.如图示,在△ABC 中,AB =AC ,延长BC 至D ,使CD =BC .点E 在边AC 上,以CD 、CE 为邻边作□CDFE .过点C 作CG ∥AB 交EF 于点G ,连接BG 、DE . (1)∠ACB 与∠DCG 有怎样的数量关系?请说明理由. (2)求证:△BCG ≌△DCE .8.如图,在△ABC 中,∠ACB =90º,AC =BC ,CE ⊥BE ,CE 与AB 相交于点F ,AD ⊥CF 于点D ,且AD 平分∠F AC .请写出图中两对..全等三角形,并选择其中一对加以证明.图1 图2 图39.如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明.供选择的三个条件(请从其中选择一个): ①AB =ED ;②BC =EF ;③∠ACB =∠DFE .10.如图,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于点F ,连接CD ,EB .(1)图中还有几对全等三角形,请你一一列举. (2)求证:.CF EF =11.(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由. (2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA ,PN ⊥OB.此方案是否可行?请说明理由.ACEBDF12.已知:如图,在△ABC 中,∠ACB=90,CD AB ⊥于点D,点E 在 AC 上,CE=BC,过E 点作AC的垂线,交CD 的延长线于点F .求证:AB=FC 。
13.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90º,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC 。
(1)求证:BG=FG ;(2)若AD=DC=2,求AB 的长。
14.(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.15.如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD. (1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.FB EC D G A A C D 图① ACD 图② F EE D CF B A 图③ E D C A B FG 'D ' A DE CB F α图④ 图⑤16.在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC AB 111△,交AC 于点E ,11AC 分别交AC BC 、于D F 、两点. (1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.17.如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.18.如图示,梯形ABCD 中,AD BC ∥,AB DC =,P 为梯形ABCD 外一点,PA PD 、分别交线段BC 于点E F 、,且PA PD =.(1)图中除了ABE DCF △≌△外,请你再找出其余三对全等的三角形(不再添加辅助线). (2)求证:ABE DCF △≌△.19.已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C .求证:OA =OD . ADBECF1A1CADBECF1A1C(第25题 图1)(第25题 图2)D CF EA B P20.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点.(1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180 ,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.21.复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB =AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,则BQ =CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ =CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ =CP ”仍然成立,请你就图②给出证明.22.如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系; (2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.23.已知:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B 。