2023年广东省中考数学试题(含答案)

合集下载

2023广东中考数学21题

2023广东中考数学21题

2023广东中考数学21题21.小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a=;b=;c=;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【考点】方差;中位数;众数.【专题】数据的收集与整理;几何直观.【答案】(1)19,26.8,25.(2)选择B路线更优.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数, 中位数在第5和6个数为18和20,所以中位数为18+202=19, 求平均数b =25+29+23+25+27+26+31+28+30+2410=26.8, 众数c =25,故答案为:19,26.8,25.(2)小红统计的选择A 线路平均数为22,选择B 线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B 路线的波动性更小,所以选择B 路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.。

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)及答案解析

2023年广东省中考数学模拟试卷(一)一、选择题(共30分)1.(3分)6﹣1=()A.﹣6B.6C.﹣D.2.(3分)下列各组数中互为相反数的是()A.与﹣2B.﹣1与﹣(+1)C.﹣(﹣3)与﹣3D.2与|﹣2| 3.(3分)如图是由6个相同的小正方体组成的几何体,其俯视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)5.(3分)将一把直尺与一块直角三角板按如图所示的方式放置,若∠1=125°,则∠2的度数为()A.35°B.40°C.45°D.55°6.(3分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.则斜坡CD的长度为()米.A.80B.40﹣60C.120﹣60D.120﹣407.(3分)某公司今年1~6月份的利润增长率的变化情况如图所示.根据图示条件判断,下列结论正确的是()A.该公司1~6月份利润在逐渐减少B.在这六个月中,该公司1月份的利润最大C.在这六个月中,该公司每月的利润逐渐增加D.在这六个月中,该公司的利润有增有减8.(3分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若AC=12,则在△ABD中AB边上的高为()A.3B.4C.5D.69.(3分)随着国产芯片自主研发的突破,某种型号芯片的价格经过两次降价,由原来每片a元下降到每片b元,已知第一次下降了10%,第二次下降了20%,则a与b满足的数量关系是()A.b=a(1﹣10%﹣20%)B.b=a(1﹣10%)(1﹣20%)C.a=b(1+10%+20%)D.a=b(1+10%)(1+20%)10.(3分)如图,在正方形ABCD中,F为CD上一点,AF交对角线BD于点E,点G是BC上的一点且AE=EG,连结AG,交BD于点H.满足AH2=HE•HD,现给出下列结论:①EG⊥AF;②BG+DF=FG;③若tan∠DAF=,则.其中正确的有()个.A.0B.1C.2D.3二、填空题(共15分)11.(3分)分解因式:2m3﹣8m=.12.(3分)一个不透明的口袋中,装有4个红球,2个黄球,1个白球,这些球除颜色外完全相同.从口袋中随机摸一个球,则摸到红球的概率是.13.(3分)如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为mm.14.(3分)已知x=m是一元二次方程x2﹣x+1=0的一个根,则代数式2m﹣2m2+2021的值为.15.(3分)已知在Rt△ABC中,∠C=90°,∠ABC=75°,AB=5.点E为边AC上的动点,点F为边AB上的动点,则线段FE+EB的最小值是.三、解答题(共75分)16.(8分)计算:(2022﹣π)0+3tan30°+|﹣3|﹣()﹣1.17.(8分)解不等式组:.18.(8分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.19.(9分)如图,四边形ABCD内接于⊙O,对角线AC,BD交于点E,过点A作⊙O的切线MN,若MN∥BD,CE=4,AC=5.(1)求证:∠ACD=∠ACB;(2)求AD的长.20.(9分)2019年10月1日是中华人民共和国成立70周年纪念日,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.(9分)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.22.(12分)在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC 只有一个公共点,求m的取值范围.23.(12分)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是,位置关系是;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.2023年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(共30分)1.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:D.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数幂计算公式.2.【分析】根据相反数的定义及符号的化简逐一进行判断即可得到答案.【解答】解:A、与﹣2互为倒数,不符合题意;B、﹣(+1)=﹣1与﹣1相同,不符合题意;C、﹣(﹣3)=3与﹣3是相反数,符合题意;D、|﹣2|=2与2相同,不符合题意;故选:C.【点评】本题考查了相反数,绝对值化简,掌握相反数的定义:只有符号不同的两个数叫做互为相反数是关键.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是:故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用关于x轴对称点的性质进而得出答案.【解答】解:点(2,﹣1)关于x轴对称的点是:(2,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【分析】由平行线的性质可得∠3=∠1=125°,再利用三角形的外角性质即可求解.【解答】解:如图,由题意得:∠E=90°,AB∥CD,∴∠3=∠1=125°,∵∠3是△ABE的外角,∴∠2=∠3﹣∠E=35°,故选:A.【点评】本题主要考查平行线的性质,熟记平行线的性质是解题的关键.6.【分析】在直角三角形ABC中,利用锐角三角函数定义求出AC的长,然后设CD=2x,则DE=x,CE=x,构建方程即可解决问题.【解答】解:在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,AC===20(米),∵∠DCE=30°,设CD=2x米,则DE=x米,CE=x米,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴AB﹣AF=AC+CE,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=(80﹣120)(米),∴CD的长为(80﹣120)米.故选:A.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.7.【分析】根据折线统计图中数据的变化以及折线的变化情况进行分析即可.【解答】A.该公司1~4月份的利润率在逐渐减少,4~6月份的利润率在逐渐增加,则A选项错误,不合题意;B.在图中可以看出:在这六个月中,该公司1月份的利润率最大,不代表1月份的利润最大,则B选项错误,不合题意;C.在这6个月中,利润增长率为正数,说明利润每月在上月基础上都在增加,则C选项正确,符合题意,D有误,不合题意.故选:C.【点评】本题考查了折线统计图,准确识图分析是解题的关键.8.【分析】作DE⊥AB于E,利用BD是角平分线以及直角三角形30°所对的直角边是斜边的一半即可求解.【解答】解:作DE⊥AB于E.如图:由作图可知,BD是△ABC的角平分线,∴DE=CD,∵∠A=30°,∠AED=90°,∴AD=2DE,∵AC=12,∴AD+DC=2DE+DE=12,∴DE=4.故选:B.【点评】本题主要考查了含30°角的直角三角形,以及30°角的直角三角形三边的关系,解答本题的关键在于利用其性质进行解答.9.【分析】利用经过两次降价后的价格=原价×(1﹣第一次价格下降的百分率)×(1﹣第二次价格下降的百分率),即可找出a与b满足的数量关系.【解答】解:根据题意得:b=a(1﹣10%)(1﹣20%).故选:B.【点评】本题考查了列代数式,根据各数量之间的关系,找出a与b满足的关系式是解题的关键.10.【分析】①把它AH2=HE•HD化为=,证明△AHE∽△DHA,推出∠HAE=∠ADH,再根据正方形的性质得出∠ADH=45°,再根据AE=EG和三角形内角和求出∠AEG=90°,进而得出EG⊥AF;②将△ADF绕点A顺时针旋转90°到△ABM,推出AF=AM,DF=BM,∠DAF=∠BAM,进而证明△FAG≌△MAG(SAS),推出FG=MG,最后得出BG+DF=FG;③设正方形的边长为4,BG=a,根据tan∠DAF=,求出DF=FC=BM=2,进而得CG=4﹣a,MG=GF=2+a,根据勾股定理求出a,进而求出=.【解答】解:∵AH2=HE•HD,∴=,∵∠AHE=∠DHA,∴△AHE∽△DHA,∴∠HAE=∠ADH,∵四边形ABCD是正方形,∴∠ADC=90°,AC平分∠ADC,∴∠ADH=45°,∴∠HAE=∠EGA=45°,∵AE=EG,∴∠EAH=∠EGA=45°,∴∠AEG=90°,∴EG⊥AF,∴①正确;将△ADF绕点A顺时针旋转90°到△ABM,∴△ADF≌△ABM,∴AF=AM,DF=BM,∠DAF=∠BAM,∵∠FAG=45°,∠DAB=90°,∴∠DAF+∠GAB=45°,∴∠GAB+∠BAM=45°,∴∠FAG=∠MAG,在△FAG和△MAG中,,∴△FAG≌△MAG(SAS),∴FG=MG,∴MB+BG=FG,∴BG+DF=GF,∴②正确;设正方形的边长为4,BG=a,∵tan∠DAF=,∴DF=FC=BM=2,∴CG=4﹣a,MG=GF=2+a,在Rt△FCG中,CG2+CF2=GF2,∴(4﹣a)2+4=(a+2)2,解得:a=,即BG=,GC=,∴=,∴③错误.正确的有2个.故选:C.【点评】本题考查三角形相似的判定和性质、全等三角形的判定与性质、正方形的性质、解直角三角形,熟练掌握这四个知识点的综合应用,将△ADF绕点A顺时针旋转90°到△ABM是证明△FAG≌△MAG的解题关键.二、填空题(共15分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵袋子中共有4+2+1=7个球,其中红球有4个,∴摸到红球的概率是,故答案为:.【点评】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】直接利用相似三角形的判定与性质得出△CDE∽△CAB进而得出比例式求出答案.【解答】解:由题意可得:∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:DE=2,故答案为:2.【点评】此题主要考查了相似三角形的应用,根据题意得出正确比例关系是解题关键.14.【分析】根据题意可得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,从而可得m2﹣m=﹣1,然后代入式子中进行计算即可解答.【解答】解:由题意得:把x=m代入方程x2﹣x+1=0中得:m2﹣m+1=0,∴m2﹣m=﹣1,∴2m﹣2m2+2021=﹣2(m2﹣m)+2021=﹣2×(﹣1)+2021=2+2021=2023,故答案为:2023.【点评】本题考查了一元二次方程的解,一元二次方程的定义,熟练掌握一元二次方程的解的意义是解题的关键.15.【分析】作F关于AC的对称点F',延长AF'、BC交于点B',当B、E、F'共线且与AB'垂直时,求BD的长即可.【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',作BD⊥AB'于D,∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,在△ABD中,BD=AB=,故答案为:.【点评】本题主要考查轴对称﹣最短路线问题,将BE+EF转化为求线段BD是解题的关键.三、解答题(共75分)16.【分析】直接特殊角的三角函数值、零指数幂的性质、负整数指数幂的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=1+3×+3﹣﹣=1++3﹣﹣=.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<2,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)由A的人数除以所占的百分比求出总人数,进而求出D的人数,得到C占的百分比,补全统计图即可;(2)根据题意列出算式,计算即可得到结果;(3)列表得出所有等可能的情况数,找出粽子馅料不同的结果,即可求出所求的概率.【解答】解:(1)根据题意得:6÷15%=40(人),D的人数为40×40%=16(人),C占的百分比为1﹣(10%+15%+40%)=35%,补全统计图,如图所示:(2)根据题意得:(6×4+4×5+14×6+16×7)÷40=6(个),则该班学生制作粽子个数的平均数是6个;故答案为:6个;(3)列表如下:M M N N M﹣﹣﹣(M,M)(N,M)(N,M)M(M,M)﹣﹣﹣(N,M)(N,M)N(M,N)(M,N)﹣﹣﹣(N,N)N(M,N)(M,N)(N,N)﹣﹣﹣所有等可能的情况有12种,其中粽子馅料不同的结果有8种,则P==.【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.【分析】(1)由切线的性质得到半径OA⊥MN,而MN∥BD,得到OA⊥BD,由垂径定理推出=,即可证明问题;(2)由圆周角定理推出△ADE∽△ACD,得到AD:AC=AE:AD,即可求出AD的长.【解答】(1)证明:连接OA,∵MN切⊙O于A,∴半径OA⊥MN,∵MN∥BD,∴OA⊥BD,∴=,∴∠ACD=∠ACB;(2)∵∠ADE=∠ACB,∠ACD=∠ACB,∴∠ADE=∠ACD,∵∠DAE=∠DAC,∴△ADE∽△ACD,∴AD:AC=AE:AD,∵AE=AC﹣CE=5﹣4=1,∴AD:5=1:AD,∴AD=.【点评】本题考查切线的性质,垂径定理,圆周角定理,相似三角形的判定和性质,熟练掌握以上知识点是解题的关键.20.【分析】(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据购进了第二批这种纪念衫数量是第一批购进量的2倍列出方程,求出方程的解即可得到结果;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,由题意列出不等式,求出不等式的解集确定出y的最小值即可.【解答】解:(1)设该商家购进的第一批纪念衫单价是x元,则第二批纪念衫单价是(x+10)元,根据题意得:×2=,解得:x=80,经检验x=80是分式方程的解,且符合题意,则该商家购进的第一批纪念衫单价是80元;(2)根据(1)得:第一批数量为40件,第二批为80件,设每件纪念衫的标价是y元,根据题意得:40y﹣3200+60y+20×80%y﹣7200≥3520,解得:y≥120,则每件纪念衫的标价至少是120元.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.21.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,联立方程组,求出点B的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A(1,2),C(4,0)代入y=kx+b,得,解得:,∴直线AC的解析式为y=﹣x+,将A(1,2)代入y=(x>0),得m=2,∴双曲线的解析式为y=(x>0);(2)∵直线AC的解析式为y=﹣x+与y轴交点D,∴点D的坐标为(0,),∵直线AC:y=﹣x+与双曲线:y=(x>0)相交于A(1,2),B两点,∴,∴,,∴点B的坐标为(3,),∴△AOB的面积=4×﹣4×﹣×1=;(3)观察图象,∵A(1,2),B(3,),∴当x>0时,关于x的不等式kx+b>的解集是1<x<3.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积等;解题时着重使用一次函数,体现了方程思想,综合性较强.22.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.【解答】解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.【点评】本题是二次函数综合题,考查了二次函数的图象及其性质,二次函数图象上点的坐标特征,平移的性质等知识,熟练利用数形结合的解题方法是解决本题的关键.23.【分析】(1)利用等边三角形的性质解决问题即可;(2)证明△FAB≌△DAC(SAS),推出BF=CD,∠ABF=∠ACD=60°,再证明△EFB 是等边三角形,可得结论;(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.利用相似三角形的性质,等高模型解决问题.【解答】解:(1)∵△ABC,△ADF都是等边三角形,∴EF=AB=CD,∠ADC=∠FED,∴EF∥CD,故答案为:CD=EF,CD∥EF;(2)结论成立.理由:如图2中,连接BF.∵△ABC,△ADF都是等边三角形,∴∠FAD=∠BAC,AF=AD,AB=AC,∴∠FAB=∠DAC,∴△FAB≌△DAC(SAS),∴BF=CD,∠ABF=∠ACD=60°,∵AE=BD,AB=BC,∴BE=CD=BF,∴△EFB是等边三角形,∴EF=BF=CD,∠FEB=∠ABC=60°∴EF∥CD;证法二:先证△CAE≌△ABD,得到CE=AD=DF,再证明CE∥DF,即可得四边形CDFE是平行四边形,即可得出结论平行且相等.(3)当点D是BC的中点时,四边形EFDC的面积是△ABC的面积的一半.此时四边形BDEF是菱形.理由:如图3中,连接DF.由(2)可知,△BEF是等边三角形,BE=CD,∵BD=CD,∴BE=CB,∵△BEF∽△ABC,∴=()2=,∵EF∥CD,EF=CD,∴四边形EFDC是平行四边形,=2S△EFB,∴S平行四边形EFDC∴=.连接DE.∵BE=BD,∠EBD=60°,∴△BDE是等边三角形,∵△BEF是等边三角形,∴四边形BDEF是菱形.【点评】本题属于四边形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题。

广州市2023年中考数学试卷含答案

广州市2023年中考数学试卷含答案

广州市2023年中考数学试卷含答案一、选择题(每题2分,共10题)1. 一本书的原价是150元,打8折后的价格是多少?A. 120元B. 125元C. 130元D. 135元2. 已知直线l1与直线l2互相垂直,直线l1的斜率为4/5,则直线l2的斜率为多少?A. -5/4B. -4/5C. 4/5D. 5/43. 某数的6倍减去4得到56,这个数是多少?A. 4B. 8C. 12D. 164. 若图中正方形ABCD的边长为4cm,点E为边AB上的一点,且(图略)A. 3cm²B. 4cm²C. 5cm²D. 6cm²5. 高度为4cm的正方体A、B、C组成的长方体如图所示,则长方体的体积是多少?(图略)A. 12cm³B. 16cm³C. 20cm³D. 24cm³二、填空题(每空2分,共8空)1. 一个数的4倍减去2得到14,这个数是_______。

2. 若直线l1的斜率为3/2,直线l2过点A(2, 4)且与l1平行,则直线l2的方程为_______。

3. 在△ABC中,∠B=90°,AB=3cm,BC=4cm,则AC的长度是_______。

4. 半径为5cm的圆的周长是_______cm。

三、计算题(每题10分,共2题)1. 用两个算式表示:539人共坐了15排靠窗和走道座位的飞机,且每排有40个座位。

解:设靠窗的座位数为x,则走道座位数为15-x。

靠窗座位数x乘以靠窗后座位价格fi加上走道座位数(15-x)乘以走道后座位价格di,等于总收入。

得到以下方程组:40x*fi + 40(15-x)*di = 539fi + 539di (1)x + 15-x = 15 (2)方程组(1)求得fi + di = 40方程组(2)求得40x = 15解此方程组,得靠窗座位价格fi = 5元,走道座位价格di = 35元。

2023年广东省中考数学真题及答案解析

2023年广东省中考数学真题及答案解析

2023年广东省中考数学真题及答案解析2023年广东省中考数学真题及答案解析想数学有好成绩,通过互相补充,互相提示,互相激励,学生的思维之间产生了碰撞,激发了对数学内容的深化理解,同时思维得到了扩展。

下面是小编为大家整理的2023年广东省中考数学真题,希望对您有所帮助!2023年广东省中考数学真题2023年广东省中考数学答案数学学好的方法是什么1.数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。

2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。

3.数学公式一定要记熟,并且还要会推导,能举一反三。

4.数学重在理解,在开始学习知识的时候,一定要弄懂。

所以上课要认真听讲,看看老师是怎样讲解的。

5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。

7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。

8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

提高数学成绩的窍门找漏洞、补漏洞。

复习的核心功能就是补漏,多做题不等于提高分数,只有多补漏洞,才能提高分数。

纠一个错、补一个漏胜过上十节课。

做题是为了掌握、巩固知识点,如果已经掌握了,就没有必要再做了。

同学们应该把时间放在补漏洞上。

错题是个宝。

要深刻认识错题的真正价值,用好错题。

对于错题,如果教师讲评一遍,学生更正一遍就了事,这种态度是不正确的。

正确的做法是一错三练,避免再错。

同学们,“错题是个宝,天天少不了,每天都在找,积累为大考。

”落实的关键是检测和重复。

落实就是硬道理,自己补漏洞的效果如何,最好的方式就是检测,经过多次检测没有问题了,这个漏洞就补上了。

补漏洞不是一次、两次就能解决,需要一定的重复。

如何提升学生的数学思维能力一要培养兴趣,让学生迸发思维。

2023年广东中考数学模拟试题(含答案)

2023年广东中考数学模拟试题(含答案)

2023年广东中考数学模拟试题(含答案)第一部分:选择题1. 下列选项中,哪一组数互为倒数?- A. 2和1/2- B. 3和1/3- C. 4和5/4- D. 5和5/6答案:A2. 若a+b=1,a-b=3,则a的值是多少?- A. 2- B. 3/2- C. 1/2- D. 1/3答案:C3. 求方程5x - 7 = 23的解。

- A. x = 6- B. x = 7- C. x = 8- D. x = 9答案:D4. 若甲数是乙数的30%,且甲数是12,求乙数。

- A. 36- B. 48- C. 40- D. 32答案:B5. 下列选项中,哪个是一个负整数?- A. 0- B. 1- C. -1- D. 2答案:C第二部分:填空题6. 两数的和是25,差是5,求这两个数分别是多少。

答案:15, 107. 若二次项系数为1,x^2 - 5x + k = 0的一个根是x = 2,则k 的值是多少?答案:68. 若平行四边形ABCD的边长分别是a, b, c, d,则它的周长是多少?答案:a + b + c + d9. 甲数是乙数的2倍,乙数是丙数的3倍,已知丙数是12,求甲数。

答案:7210. a:b = 3:5,b:c = 4:7,求a:b:c的比值。

答案:12:20:35第三部分:解答题11. 某奶茶店周末一共卖出20杯奶茶,卖出的奶茶中有大杯的和小杯的,大杯奶茶的价格是小杯奶茶的2倍,收入一共是110元,求大杯和小杯奶茶各卖出多少杯。

答案:大杯奶茶卖出10杯,小杯奶茶卖出10杯。

12. 有一个矩形花坛,长和宽的比是3:2,已知花坛的周长是40米,求花坛的面积是多大。

答案:花坛的面积是72平方米。

13. 已知三角形的两个边长分别是5cm和7cm,两边夹角是60°,求该三角形的面积。

答案:该三角形的面积是10.39平方厘米。

14. 有一根高16米的旗杆,旗杆的下底边与地面的夹角是30°,求旗杆到地面的距离。

2023年广州市中考数学试题及答案

2023年广州市中考数学试题及答案

2023年广州市中考数学试题及答案
一、选择题
1. 设函数 f(x) = 2x + 3,求 f(5) 的值。

A) 7 B) 8 C) 10 D) 13
2. 若 a:b = 3:5,且 a + b = 64,求 a 和 b 的值。

A) 15和49 B) 18和46 C) 20和44 D) 24和40
3. 已知一个正方形的边长为 6cm,求其对角线的长度。

A) 6 B) 3√2 C) 6√2 D) 12
二、填空题
1. 根据等差数列的通项公式,若 a1 = 2,an = 17,公差为 3,求 n 的值,使得 an = 17。

n = ______
2. 计算:[√(8 + 3) + √(6 - 1)]²
______
三、解答题
1. 甲、乙两辆汽车同时从 A、B 两点相向而行,相遇在 C 点,
甲车到达 C 点比乙车用时 1 小时,已知甲车比乙车每小时行驶速度多 10 km,且车程为 300 km。

求两车的行驶速度分别是多少?
甲车的速度:______
乙车的速度:______
2. 设正方形 ABCD 的边长为 a cm,点 E、F 分别为 AB、BC
边上的点,且 AE:EB = 1:3,CF:FB = 2:1。

连接 DE、CF 交于点 G,连接 BG,使之和 AG 长度相等。

求 BG 的长度。

BG的长度:______
以上为2023年广州市中考数学试题及答案。

祝您取得优异的成绩!。

2024年广东茂名中考数学试题及答案

2024年广东茂名中考数学试题及答案
坐标为 1, 2 时,求 k 的值.
【深入探究】 (3)如图 3,把矩形 ABCD 沿 BD 折叠,点 C 的对应点为 E.当点 E,A 重合时,连接 AC 交 BD 于点 P.以点 O 为圆心, AC 长为半径作 O .若 OP 3 2 ,当 O 与 ABC 的边有交 点时,求 k 的取值范围.
答案第 1页,共 17页
5.D 【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算 法则是解题的关键. 【详解】解:A、 a2 a5 a7 ,原式计算错误,不符合题意; B、 a8 a2 a6 ,原式计算错误,不符合题意; C、 2a 5a 3a ,原式计算错误,不符合题意;
12.关于 x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是

13.若关于 x 的一元二次方程 x2 2x c 0 有两个相等的实数根,则 c

14.计算: a 3

a3 a3
15.如图,菱形 ABCD 的面积为 24,点 E 是 AB 的中点,点 F 是 BC 上的动点.若△BEF 的
【实践探索】 (1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明. (2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留 π ) 五、解答题(三):本大题共 2 小题,第 22 题 13 分,第 23 题 14 分,共 27 分. 22.【知识技能】 (1)如图 1,在 ABC 中, DE 是 ABC 的中位线.连接 CD ,将△ADC 绕点 D 按逆时针方 向旋转,得到 ADC .当点 E 的对应点 E 与点 A 重合时,求证: AB BC . 【数学理解】 (2)如图 2,在 ABC 中 (AB BC) , DE 是 ABC 的中位线.连接 CD ,将 △ADC 绕点 D 按逆时针方向旋转,得到 ADC ,连接 AB , C C ,作 ABD 的中线 DF .求证:

2024年广东省中考数学试题+答案详解

2024年广东省中考数学试题+答案详解

2024年广东省中考数学试题+答案详解(试题部分)满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A. 4⨯ D. 53.841038.410⨯3.8410⨯ C. 63.8410⨯ B. 5∠的度数为()4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACEA. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是()A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a −+=D. ()5210a a = 6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( ) A. 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >> 9. 方程233x x=−的解为( ) A. 3x = B. 9x =− C. 9x = D. 3x =−10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a −=−−_______. 15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233−⨯−+−. 17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法) (2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切. 18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm的圆形滤纸;②一只漏斗口直径与母线均为7cm的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC ''.当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '',连接A B ',C C ',作A BD '的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A . 【构建联系】(1)求证:函数k y x=的图象必经过点C . (2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC 交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.2024年广东省中考数学试题+答案详解(答案详解)满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A. 4⨯ D. 53.841038.410⨯3.8410⨯ C. 63.8410⨯ B. 5∠的度数为()4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACEA. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是()A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a −+=D. ()5210a a = 6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( ) A. 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >> 9. 方程233x x=−的解为( ) A. 3x = B. 9x =− C. 9x = D. 3x =−10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a −=−−_______. 15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233−⨯−+−. 17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法) (2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切. 18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm的圆形滤纸;②一只漏斗口直径与母线均为7cm的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC ''.当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '',连接A B ',C C ',作A BD '的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A . 【构建联系】(1)求证:函数k y x=的图象必经过点C . (2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC 交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机密★启用前
2023年广东省初中学业水平考试
数学
本试卷共4页, 23小题,满分120分.考试用时90分钟.
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应
位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴
处”.
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答
案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能
答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目
指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;
不准使用铅笔和涂改液.不按以上要求作答的答案无效.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作
A.-5元
B.0元
C.+5元
D.+10元
2.下列出版社的商标图案中,是轴对称图形的为
3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为
A.0.186×10⁵
B.1.86×10⁵
C.18.6×10⁴
D.186×10³
4.如题4图,街道AB与CD平行,拐角∠ABC=137°,
则拐角∠BCD=
A.43°
B.53°
C.107°
D.137
5.计算3
a
+2
a
的结果为
A. 1
a B.6
a2
C.5
a
D. 6
a
6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了
A.黄金分割数
B.平均数
C.众数
D.中位数
7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4 门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为
A.18
B. 16
C. 14
D. 12 8.一元一次不等式组 {x −2>1,x <4
的解集为 A.-1<x <4 B.x <4
C. x <3
D.3<x <4
9.如题9图,AB 是⊙O 的直径,∠BAC =50°,则∠D =
A.20°
B.40°
C.50°
D.80°
10.如题10图, 抛物线y=ax²+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则a 的值为
A.-1
B.-2
C.-3
D.-4
二、填空题:本大题共5小题,每小题3分,共15分.
11.因式分解: X ²-1= .
12.计算: √3×√12= .
13.某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A)与电阻R (单位:Ω)的函数表达式为 I =48R .当R =12Ω时, I 的值为 A.
14.某商品进价4元,标价5元出售,商家准备打折销售,但其
利润率不能少于10%,则最多可打 折.
15.边长分别为10,6,4的三个正方形拼接在一起,它们的底边
在同一直线上(如题15图),则图中阴影部分的面积为 .
三、解答题(一): 本大题共3小题, 第16题10分, 第17、 18题各7分, 共24分.
16.(1) 计算:√83+|−5| +(−1)2023.
(2)已知一次函数y =k X +b 的图象经过点(0,1)与点(2,5),求该一次函数的表达式.
17.某学校开展了社会实践活动,活动地点距离学校12km.甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min ,求乙同学骑自行车的速度. 18.2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如题18图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC = BC =10m,两臂夹角∠ACB =100°时,求A ,B 两点间的距离.(结果精确到0.1m,参考数据 sin50°≈0.766, cos50°≈0.643, tan 50°≈1.192)
根据以上信息解答下列问题:
四、解答题(二):本大题共3小题,每小题9分,共27分.
19.如题19图,在
ABCD 中,∠DAB =30°.
(1)实践与操作:用尺规作图法过点D 作AB 边上的
高DE ; (保留作图痕迹,不要求写作法)
(2)应用与计算:在(1)的条件下,AD =4,
AB =6,求BE 的长.
20.综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如题20-1图,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去
四个角上的小正方形;
步骤2:如题20-2图,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A ₁B ₁C ₁的大小关系;
(2)证明(1)中你发现的结论.
21.小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,
第一周(5个工作日) 选择A 线路,第二周(5个工作日)选择B 线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)
数据统计表 数据折线统计图
(1) 填空: a = ; b = ; c = ;
(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.
五、解答题(三):本大题共2小题,每小题12分,共24分.
试验序号 1 2 3 4 5 6 7 8 9 10
A 线路所用时间 15 32 15 16 34 18 21 14 35 20
B 线路所用时间 25 29 23 25 27 26 31 28 30 24
平均数 中位数 众数 方差 A 线路所用时间
22 a 15 63.2 B 线路所用时间 b 26.5 c
6.36
22.综合探究
如题22-1图, 在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'. 连接AA'交BD于点E,连接CA'.
(1)求证: AA′⊥CA′;
(2)以点O为圆心,OE为半径作圆.
①如题22-2图,⊙O与CD相切,求证: AA′=√3CA′;
②如题22-3图,⊙O与CA'相切,AD=1,求⊙O的面积.
23.综合运用
如题23-1图,在平面直角坐标系中,正方形OABC的顶点A在X轴的正半轴上. 如题23-2图,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y= X于点E, BC交y轴于点F.
(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)
(2)若点A(4,3), 求FC的长;
(3)如题23-3图, 对角线AC交y轴于点M, 交直线y= X于点N,连接FN.将△OFN与△OCF的
面积分别记为S₁与S₂.设S=S₁-S₂, AN=n,求S关于n的函数表达式.。

相关文档
最新文档