平衡二叉树的概念
二叉树知识点总结

二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
平衡二叉树10.3.2

11
28
96 98
25
(1) LL型调整 型调整 p A 1 2
调整方法: 调整方法: 单向右旋平衡,即将 的左孩子 单向右旋平衡,即将A的左孩子 B 向右上旋转代替 成为根结点, 向右上旋转代替A成为根结点 成为根结点, 结点向右下旋转成为B的右 将A结点向右下旋转成为 的右 结点向右下旋转成为 子树的根结点, 子树的根结点,而B的原右子树 的原右子树 则作为A结点的左子树 结点的左子树. 则作为 结点的左子树. h d e B
1 38 -1 24 88
0 -1 -2
0
11
28 1
96
0
-1 0
25
0
98
1,平衡二叉树插入结点的调整方法
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 首先从根结点到该新插入结点的路径之逆向根结点方向找第一个失去平 衡的结点, 衡的结点,然后以该失衡结点和它相邻的刚查找过的两个结点构成调整 子树(最小不平衡子树 即调整子树是指以离插入结点最近,且平衡因子 最小不平衡子树), 子树 最小不平衡子树 ,即调整子树是指以离插入结点最近 且平衡因子 绝对值大于1的结点为根结点的子树 使之成为新的平衡子树. 的结点为根结点的子树,使之成为新的平衡子树 绝对值大于 的结点为根结点的子树 使之成为新的平衡子树. 38 24 88 -2
(2)RR型调整 型调整 p A -1 -2
调整方法: 调整方法: 单向左旋平衡:即将 的右孩子 的右孩子B向 单向左旋平衡:即将A的右孩子 向 左上旋转代替A成为根结点 成为根结点, 左上旋转代替 成为根结点,将A结 结 点向左下旋转成为B的左子树的根 点向左下旋转成为 的左子树的根 结点, 的原左子树则作为A结点 结点,而B的原左子树则作为 结点 的原左子树则作为 的右子树. 的右子树. B
详解平衡二叉树

一、平衡二叉树的概念平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:(1)左右子树深度之差的绝对值不超过1;(2)左右子树仍然为平衡二叉树.平衡因子BF=左子树深度-右子树深度.平衡二叉树每个结点的平衡因子只能是1,0,-1。
若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:二、平衡二叉树算法思想若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。
首先要找出插入新结点后失去平衡的最小子树根结点的指针。
然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。
当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。
假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
1)LL型平衡旋转法由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行一次顺时针旋转操作。
即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。
而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。
故需进行一次逆时针旋转操作。
即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。
而原来C的左子树则变成A的右子树。
(3)LR型平衡旋转法由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行两次旋转操作(先逆时针,后顺时针)。
即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。
平衡二叉树

2 -1 0 0 0
-1
-2 0 0 1
0 0
1
(b) 不平衡二叉树 图9.6 平衡与不平衡二叉树及结点的平衡因子
平衡二叉树是二叉排序树的另一种形式. 平衡二叉树 我们希望由任何初始序列构成的二叉排序 树都是平衡二叉树 平衡二叉树.因为平衡二叉树 平衡二叉树上任 平衡二叉树 平衡二叉树 1 何结点的左右子树的深度之差都不超过1, 则可以证明它的深度和logN是同数量级的 (其中N是结点的个数).由此,它的平 均查找长度也和logN同数量级.
typedef structBSTNode { ElemType data; int bf; //结点的平衡因子 结点的平衡因子 struct BSTNode *lchild, *rchild; //左,右孩子指针 左 } BSTNode, * BSTree;
算法9.7如下: 算法 如下: 如下 void R_Rotate (BSTree &p) { //对以 为根的二叉排序树作右旋处理,处理之后p指向新的树根结点, 对以*p为根的二叉排序树作右旋处理,处理之后 指向新的树根结点, 对以 为根的二叉排序树作右旋处理 指向新的树根结点 //即旋转处理之前的左子树的根结点 即旋转处理之前的左子树的根结点 lc = p->lchild; //lc指向的 的左子树根结点 指向的*p的左子树根结点 - 指向的 p->lchild = lc->rchild; //lc的右子树挂接为 的左子树 的右子树挂接为*p的左子树 - - 的右子树挂接为 lc->rchild = p; - p = lc; //p指向新的根结点 指向新的根结点 } // R_Rotate
平衡二叉树

构造二叉平衡(查找)树的方法是:
在插入过程中,采用平衡旋转技术。
例如:依次插入的关键字为5, 4, 2, 8, 6, 9
5 4 2
向右旋转 一次
4 2 5 8 2
4 6 5
先向右旋转 再向左旋转
8
6
向左旋转一次
4 2 5 6 8 9 4 6 8 5 9
继续插入关键字 9
2
④平衡调整 假设由于在二叉排序树上插入结点而失去平衡的最小子树 根结点的指针为a(即a是离插入结点最近,且平衡因子绝对值 超过1的祖先结点),则失去平衡后进行调整的规律可归纳为下 列4种情况: 1.单向右旋平衡处理: 由于在*a的左子树根结点的左子树上插入结点,*a的平衡 因子由1增至2,致使以*a为根的子树失去平衡,则需进行一次 向右的顺时针旋转操作。如图9.6(a)所示。
0 C
RL
0 A AL CL CR
-1 B BR
插入结点
⑤插入算法 算法思想: 在平衡二叉排序树BBST上插入一个新的数据元素e的递归算法 可描述如下: 1.若BBST为空树,则插入一个数据元素为e的新结点作为 BBST的根结 点,树的深度增1; 2.若e的关键字和BBST的根结点的关键字相等,则不进行插入; 3.若e的关键字小于BBST的根结点的关键字,而且在BBST的 左子树中不存在和e有相同关键字的结点,则将e插入在BBST的 左子树上,并且当插入之后的左子树深度增加(+1)时,分别 就下列不同情况处理之:
p
lc
算法9.10如下:
#define #define #define
LH EH RH
+1 0 -1
//左高 //等高 //右高
Status InsertAVL (BSTree &T, ElemType e, Boolean &taller) { //若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入 //一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二 //叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高 //与否。
平衡二叉树最少结点公式

平衡二叉树最少节点公式1.什么是平衡二叉树平衡二叉树(AV L树)是一种特殊的二叉搜索树,它的每个节点的左右子树的高度差不超过1。
这种特性使得平衡二叉树在进行插入、删除等操作时能够保持较好的平衡性,提高了搜索效率。
2.平衡二叉树的基本性质平衡二叉树有以下几个基本性质:-每个节点的左子树和右子树的高度差不超过1。
-每个节点的左子树和右子树都是平衡二叉树。
-平衡二叉树的左子树和右子树的高度差的绝对值不超过1。
3.平衡二叉树的最少节点公式平衡二叉树的节点数量与树的高度有关,高度越小,节点数量越少。
为了获得平衡二叉树的最少节点数量,我们需要确定平衡二叉树的最小高度。
根据平衡二叉树的性质,左子树和右子树的高度差不超过1,我们可以得出以下关系式:h=lo g2(n+1)其中,h表示平衡二叉树的高度,n表示平衡二叉树的节点数量。
为了最小化节点数量,我们可以通过求解上述公式来确定最小高度。
根据公式,我们可以推导出最少节点数量的计算公式:n=2^h-14.示例以平衡二叉树高度为2的情况为例,根据公式,我们可以计算出节点数量:n=2^2-1=3所以,平衡二叉树高度为2时,最少需要3个节点。
同样地,当平衡二叉树的高度为3时,最少需要7个节点;高度为4时,最少需要15个节点;高度为5时,最少需要31个节点;以此类推。
5.总结平衡二叉树是一种具有良好平衡性的二叉搜索树,它的左右子树的高度差不超过1,能够提高搜索效率。
为了获得最少的节点数量,我们可以使用公式`n=2^h-1`来计算平衡二叉树的最少节点数量,其中h表示树的高度。
通过掌握平衡二叉树的最少节点公式,我们可以更好地理解和应用平衡二叉树的特性,从而更好地进行相关算法和数据结构的设计与实现。
平衡二叉树的实现c语言

平衡二叉树的实现c语言平衡二叉树(AVL树)是一种自平衡的二叉查找树,其中任何节点的两个子树的高度差最多为1。
下面是一个简单的AVL树的C语言实现:```cinclude <>include <>typedef struct AVLNode {int key;int height;struct AVLNode left, right;} AVLNode;typedef struct {AVLNode root;} AVLTree;int getHeight(AVLNode node) {if (node == NULL)return 0;return node->height;}int getBalance(AVLNode node) {if (node == NULL)return 0;return getHeight(node->left) - getHeight(node->right);}AVLNode rotateRight(AVLNode y) {AVLNode x = y->left;AVLNode T2 = x->right;x->right = y;y->left = T2;y->height = max(getHeight(y->left), getHeight(y->right)) + 1; x->height = max(getHeight(x->left), getHeight(x->right)) + 1; return x; // new root is x}AVLNode rotateLeft(AVLNode x) {AVLNode y = x->right;AVLNode T2 = y->left;y->left = x;x->right = T2;x->height = max(getHeight(x->left), getHeight(x->right)) + 1; y->height = max(getHeight(y->left), getHeight(y->right)) + 1; return y; // new root is y}AVLNode insert(AVLTree tree, int key) {AVLNode root = tree->root;if (root == NULL) { // tree is empty, create a new node as root. tree->root = (AVLNode)malloc(sizeof(AVLNode));root = tree->root;root->key = key;root->height = 1;return root;} else if (key < root->key) { // insert into left subtree.root->left = insert(root->left, key);} else if (key > root->key) { // insert into right subtree.root->right = insert(root->right, key);} else { // duplicate keys not allowed.return root; // don't insert duplicate key.}root->height = 1 + max(getHeight(root->left), getHeight(root->right)); // adjust height of current node.int balance = getBalance(root);if (balance > 1 && key < root->left->key) { // left left case.return rotateRight(root); // rotate right.} else if (balance < -1 && key > root->right->key) { // right right case.return rotateLeft(root); // rotate left.} else if (balance > 1 && key > root->left->key) { // left right case. root->left = rotateLeft(root->left); // rotate left first.return rotateRight(root); // then rotate right.} else if (balance < -1 && key < root->right->key) { // right left case.root->right = rotateRight(root->right); // rotate right first.return rotateLeft(root); // then rotate left.} // keep balance.return root; // already balanced.} ```。
高度平衡的二叉树

AVL( Addison-Velski and Landis )树 伸展树 红黑树
二叉搜索树性能分析
对于有 n 个关键码的集合,其关键码有 n! 种 不同排列,可构成不同二叉搜索树有 1 n C 2 n (棵)
n 1
{2, 1, 3} {1, 2, 3} {1, 3, 2} {2, 3, 1} {3, 1, 2} {3, 2, 1}
B
BRAຫໍສະໝຸດ AR中序序列:BL
B
BR
A
AR
注意:改组后
B
A
平衡度为 0
2)RR平衡旋转: 若在A的右子树的右子树上插入结点,使A的平衡
因子从-1增加至-2,需要进行一次逆时针旋转。
(以B为旋转轴)
A B A C
左单旋转 (RotateLeft )
+1
A
0
+2
A
+1
C C A
0
0
B h D h
(a)
C E
Double Rotations
Fig. 28-5 (a) Adding 70 to the tree in Fig. 28-2c destroys its balance; to restore the balance, perform both (b) a right rotation and (c) a left rotation.
h
B
E
h D h
(b)
E
h + 1
B
h
D h + h 1
(c)
如果在子树E中插入一个新结点,该子树高度增1导致 结点A的平衡因子变成+2,出现不平衡。 沿插入路径检查三个结点A、C和E。它们处于一条方 向为“\”的直线上,需要做左单旋转。 以结点C为旋转轴,让结点A反时针旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平衡二叉树的概念
平衡二叉树(Balanced Binary Tree),又称为AVL树,是一种特殊的二叉搜索树(Binary Search Tree)结构。
平衡二叉树的定义是:对于任意节点,其左子树和右子树的高度之差不超过1,并且左子树和右子树也都是平衡二叉树。
平衡二叉树的设计目的是为了解决普通二叉搜索树在插入、删除等操作时产生不平衡的问题,导致树的高度过高,从而影响搜索的效率。
通过保持树的平衡,平衡二叉树能够保证在最坏情况下的平均时间复杂度为O(log n),其中n是树中节点的数量。
为了保持平衡,平衡二叉树中的每个节点存储了额外的信息,通常是节点的高度。
当在平衡二叉树中插入或删除节点时,需要通过旋转操作来调整树的结构,以满足平衡条件。
旋转操作包括左旋和右旋,通过交换节点的位置来调整树的平衡。
平衡二叉树的应用非常广泛,特别是在需要高效地进行搜索、插入和删除操作的场景中,例如数据库和搜索引擎的索引结构、红黑树等。
通过保持树的平衡,平衡二叉树能够在较小的时间复杂度内完成这些操作,提高了数据结构的效率和性能。