高考数学导数题型归纳
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。
()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。
②若2e k = 则()()()02222>-+='-ee x e x F x 。
()2->x 。
所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。
③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。
综上所述。
k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。
高考数学导数题型归纳

导数题型归纳例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;(Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.例7、已知函数321()22f x ax x x c =+-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;(2)若21()2g x bx x d =-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。
高中数学导数题型分类非常全

导数1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v-= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 2.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
导数八大题型汇总

导数八大题型汇总
以下是导数的八大题型汇总:
1. 基本函数的导数:包括常数函数、幂函数、指数函数、对数函数、三角函数等基本函数的导数。
2. 和、差、积的导数:给定两个或多个函数,求其和、差、积的导数。
3. 商的导数:给定两个函数,求其商的导数。
4. 复合函数的导数:给定一个函数和另一个函数的复合,求复合函数的导数。
5. 反函数的导数:给定一个函数和其反函数,求反函数的导数。
6. 参数方程的导数:给定一个参数方程,求其对应的函数的导数。
7. 隐函数的导数:给定一个隐函数关系式,求导数。
8. 极限的导数:给定一个函数的极限,求其导数。
这些题型涵盖了导数的常见应用场景,掌握这些题型可以更好地理解和运用导数的概念和计算方法。
高三导数压轴题题型归纳

-导数压轴题题型1. 高考命题回忆例1函数f(*)=e *-ln(*+m).〔2013全国新课标Ⅱ卷〕(1)设*=0是f(*)的极值点,求m ,并讨论f(*)的单调性; (2)当m≤2时,证明f(*)>0.(1)解 f (*)=e *-ln(*+m )⇒f ′(*)=e *-1*+m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{*|*>-1},f ′(*)=e *-1*+m =e **+1-1*+1,显然f (*)在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (*)=e *-ln(*+2),则g ′(*)=e *-1*+2(*>-2).h (*)=g ′(*)=e *-1*+2(*>-2)⇒h ′(*)=e *+1*+22>0,所以h (*)是增函数,h (*)=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (*)=g ′(*)=0的唯一实根在区间⎝ ⎛⎭⎪⎫-12,0,设g ′(*)=0的根为t ,则有g ′(t )=e t -1t +2=0⎝ ⎛⎭⎪⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t , 当*∈(-2,t )时,g ′(*)<g ′(t )=0,g (*)单调递减;当*∈(t ,+∞)时,g ′(*)>g ′(t )=0,g (*)单调递增;所以g (*)min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(*+m )≤ln(*+2),所以f (*)=e *-ln(*+m )≥e *-ln(*+2)=g (*)≥g (*)min >0. 例2函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-〔2012全国新课标〕 (1)求)(x f 的解析式及单调区间; (2)假设b ax x x f ++≥221)(,求b a )1(+的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数题型归纳
例1:设函数()y f x =在区间D上的导数为()f x ',()f x '在区间D上的导数为()g x ,若在区间D上,
()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432
3()1262
x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m的取值范围;
(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.
例2:设函数),10(323
1)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;
(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a的取值范围.
例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,
326()(1)3(0)2t g x x x t x t -=+-++>
(Ⅰ)求,a b 的值;
(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;
(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
例4:已知R a ∈,函数x a x a x x f )14(2
1121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;
(Ⅱ)如果函数)(x f 是),
(∞+-∞上的单调函数,求a 的取值范围.
例5、已知函数3211()(2)(1)(0).32
f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;
(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想
例6、已知函数232
)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;
(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.
例7、已知函数321()22
f x ax x x c =+-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;
(2)若21()2
g x bx x d =
-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。
例8、已知函数32()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),
求:(1)()f x 的解析式;
(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围。
例9、
例10、已知函数232
13)(x x a x f +=,)0,(≠∈a R a (1)求)(x f 的单调区间;
(2)令()g x =
14
x4+f(x )(x∈R)有且仅有3个极值点,求a 的取值范围.
其它例题:
1、(最值问题与主元变更法的例子).
已知定义在R 上的函数32
()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;
(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.
2、(根分布与线性规划例子) 已知函数322()3
f x x ax bx c =+++ (Ⅰ) 若函数()f x 在1=x 时有极值且在函数图象上的点(0,1)处的切线与直线30x y +=平行,求)(x f 的解析式;
(Ⅱ) 当()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值时, 设点(2,1)M b a -+所在平面区域为S, 经过原点的直线L 将S 分为面积比为1:3的两部分, 求直线L 的方程.
3、(根的个数问题)
已知函数32f(x)ax bx (c 3a 2b)x d (a 0)=++--+>的图象如图所示。
(Ⅰ)求c d 、的值;
(Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y 110+-=,求函数f
( x )的解析式;
(Ⅲ)若0x 5,=方程f(x)8a =有三个不同的根,求实数a 的取值范围。
4、(根的个数问题) 已知函数321()1()3f x x ax x a R =--+∈ (1)若函数()f x 在12,x x x x ==处取得极值,且122x x -=,求a 的值及()f x 的单调区间;
(2)若12a <,讨论曲线()f x 与215()(21)(21)26g x x a x x =-++-≤≤的交点个数.。