巧解排列组合的19种模型
排列组合问题的20种解法

排列组合问题的20种解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
复习巩固分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在1第2类办法中有m种不同的方法,…,在第n类办法中有n m种不同2的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做1第2步有m种不同的方法,…,做第n步有n m种不同的方法,那么2完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,占了这两个位置.先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
专题10-1 排列组合20种模型方法归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题10-1 排列组合20种模型方法归类目录【题型一】基础:相邻与不相邻 (2)【题型二】球放盒子:先分组后排列 (2)【题型三】平均分配:医生与护士型 (3)【题型四】特殊元素(位置)优先排 (3)【题型五】模型1:下电梯型 (4)【题型六】模型2:公交车模型 (4)【题型七】模型3:排课表 (5)【题型八】模型4:节假日值班 (6)【题型九】模型5:书架插书型(不改变顺序) (7)【题型十】模型6:地图染色 (7)【题型十一】模型7:几何体染色 (8)【题型十二】模型8:相同元素 (9)【题型十三】模型9:停车位、空座位(相同元素) (9)【题型十四】模型10:走路口(相同元素) (10)【题型十五】模型11:上台阶(相同元素) (11)【题型十六】模型12:“波浪数”型(高低站位) (12)【题型十七】模型13:配对型 (13)【题型十八】模型14:电路图型 (13)【题型十九】模型15:机器人跳动型 (14)【题型二十】难点:多重限制与分类讨论 (15)真题再现 (16)模拟检测 (17)【题型一】基础:相邻与不相邻【典例分析】阳春三月,草长莺飞;丝绦拂堤,尽飘香玉.三个家庭的3位妈妈带着3名女宝和2名男宝共8人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,三位母亲互不相邻照顾孩子;3名女宝相邻且不排最前面也不排最后面;为了防止2名男宝打闹,2人不相邻,且不排最前面也不排最后面.则不同的排法种数共有()A.144种B.216种C.288种D.432种1.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A.72种B.108种C.36种D.144种2.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.723.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为A.12B.24C.48D.60【题型二】球放盒子:先分组后排列【典例分析】我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有A.300种B.150种C.120种D.90种【变式演练】1.我们想把9张写着1~9的卡片放入三个不同盒子中,满足每个盒子中都有3张卡片,且存在两个盒子中卡片的数字之和相等,则不同的放法有___________种.2.将5个不同的小球全部放入编号为1,2,3,4的四个盒子中,若每个盒子中所放的球的个数不大于其编号数,则共有_________种不同的放法.3.某小区因疫情需求,物业把招募的5名志原者中分配到3处核酸采样点,每处采样点至少分配一名,则不同的分配方法共有()A.150 种B.180 种C.200 种D.280 种【题型三】平均分配:医生与护士型【典例分析】某医院分配3名医生6名护士紧急前往三个小区协助社区做核酸检测.要求每个小区至少一名医生和至少一名护士.问共有多少种分配方案?()A.3180B.3240C.3600D.3660【变式演练】1.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为()A.12344812161040C C C CC⋅⋅⋅B.2134481216240C C C CC⋅⋅⋅C.21144812161040C C C CC⋅⋅⋅D.13424812161040C C C CC⋅⋅⋅2.某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为A.4680B.4770C.5040D.52003.将6名志愿者分配到3个社区进行核酸检测志愿服务,若志愿者甲和乙必须在一起,且每个社区至少有一名志愿者,则不同的分配方案共有()A.150种B.180种C.360种D.540种【题型四】特殊元素(位置)优先排【典例分析】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为A.600B.812C.1200D.1632【变式演练】1.学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,1.女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.2.从6名短跑运动员中选4人参加4×100米接力,如果其中甲不能跑第一棒,乙不能跑第四棒,则共有____________多少种参赛方法(用数字作答).【题型五】模型1:下电梯型【典例分析】电梯有6位乘客,在5层楼房的每一层停留,如果有两位乘客从同一层出去,另两位在同一层出去,最后两人各从不同的楼层出去,则不同的下楼方法的种类数是()A.1600B.2700C.5400D.10800【变式演练】1.有3人同时从底楼进入同一电梯,他们各自随机在第2至第7楼的任一楼走出电梯.如果电梯正常运行,那么恰有两人在第4楼走出电梯的概率是()A.172B.112C.572D.52162.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有A.210种B.252种C.343种D.336种3.某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为14,用ξ表示5位乘客在第20层下电梯的人数,则P(ξ=4)=________.【题型六】模型2:公交车模型【典例分析】北京公交101路是北京最早的无轨电车之一,最早可追溯至1957年.游客甲与乙同时从红庙路口西站上了开往百万庄西口站方向的101路公交车,甲将在朝阳门外站之前的任意一站下车,乙将在神路街站之前的任意一站下车,他们都至少坐一站再下车,则甲比乙后下车的概率为( )A .720 B .25 C .920 D .12【变式演练】1.车上有6名乘客,沿途有3个车站,每名乘客可任选1个车站下车,则乘客不同的下车方法数为( )A .36B .63C .36AD .36C2.有四位朋友于七夕那天乘坐高铁G 77从武汉出发(G 77只会在长沙、广州、深圳停),分别在每个停的站点至少下一个人,则不同的下车方案有( )A .24种B .36种C .81种D .256种3.某公交线路某区间内共设置四个站点(如图),分别记为0123,,,A A A A ,现有甲、乙两人同时从0A 站点上车,且他们中的每个人在站点()0,1,2,3i A i =下车是等可能的.则甲、乙两人不在同一站点下车的概率为( )A .23 B .34C .35D .12【题型七】模型3:排课表【典例分析】某校高二年级一班星期一上午有4节课,现从语文、数学、英语、物理、历史和体育这6门学科中任选4门排在上午的课表中,若前2节只能排语文、数学和英语,数学课不能排在第4节,体育只能排在第4节,则不同的排法种数为( )A .18B .48C .50D .54【变式演练】1.某学校为高一年级排周一上午的课表,共5节课,需排语文、数学、英语、生物、地理各一节,要求语文、英语之间恰排1门其它学科,则不同的排法数是()A.18B.26C.36D.482.某教师一天上3个班级的课,每班上1节,如果一天共8节课,上午5节,下午3节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有()A.312种B.300种C.52种D.50种3.大庆实验中学安排某班级某天上午五节课课表,语文、数学、外语、物理、化学各一节,现要求数学和物理不相邻,且都不排在第一节,则课表排法的种数为()A.24B.36C.72D.144【题型八】模型4:节假日值班【典例分析】甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A.13B.25C.1130D.310【变式演练】1.2021年7月20日郑州特大暴雨引发洪灾,各地志愿者积极赴郑州救灾.某志愿小组共5人,随机分配4人去值班,每人只需值班一天,若前两天每天1人,第三天2人,且其中的甲、乙两人不同在第三天值班,则满足条件的排法共有()A.72种B.60种C.54种D.48种2.某校安排甲、乙、丙三位老师担任五月一日至五月五日的值班工作,每天1人值班,每人不能连续两天值班,且每人都参与值班,则不同的安排方法共有()种A.14B.16C.42D.483.某单位从6男4女共10名员工中,选出3男2女共5名员工,安排在周一到周五的5个夜晚值班,每名员工值一个夜班且不重复值班,其中女员工甲不能安排在星期一、星期二值班,男员工乙不能安排在星期二值班,其中男员工丙必须被选且必须安排在星期五值班,则()A.甲乙都不选的方案共有432种B.选甲不选乙的方案共有216种C.甲乙都选的方案共有96种D.这个单位安排夜晚值班的方案共有1440种【题型九】模型5:书架插书型(不改变顺序)【典例分析】书架上某一层有5本不同的书,新买了3本不同的书插进去,要保持原来5本书的顺序不变,则不同的插法种数为( ).A .60B .120C .336D .504【变式演练】1.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有( ).A .210种B .252种C .504种D .505种2.10名同学进行队列训练,站成前排3人后排7人,现体育教师要从后排7人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数为( )A .2575C AB .2275C A C .2273C AD .2274C A3.某同学计划用他姓名的首字母,T X ,身份证的后4位数字(4位数字都不同)以及3个符号,,αβθ设置一个六位的密码.若,T X 必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为( )A .864B .1009C .1225D .1441【题型十】模型6:地图染色【典例分析】在如图所示的5个区域内种植花卉,每个区域种植1种花卉,且相邻区域种植的花卉不同,若有6种不同的花卉可供选择,则不同的种植方法种数是( )A .1440B .720C .1920D .960比如,以下这俩图,就是“拓扑”一致的结构【变式演练】1.如图,用五种不同的颜色给图中的O,A,B,C,D,E六个点涂色(五种颜色不一定用完),要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂法种数是()A.480B.720C.1080D.12002.如图,用四种不同的颜色给图中的A,B,C,D,E,F,G七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A.192B.336C.600D.以上答案均不对3.用五种不同的颜色给图中ABCDEF六个小长方形区域涂色,要求颜色齐全且有公共边的区域颜色不同,则共有涂色方法A.720种B.840种C.960种D.1080种【题型十一】模型7:几何体染色【典例分析】ABC A B C的六个顶点涂色,要求每个顶点涂一种颜色,且每条棱的两个顶点涂用五种不同颜色给三棱柱111不同颜色,则不同的涂法有()A.840种B.1200种C.1800种D.1920种【提分秘籍】基本规律立体型结构,可以“拍扁了”,“拓扑”为平面型染色,这是几何体染色的一个小技巧【变式演练】1.正方体六个面上分别标有A、B、C、D、E、F六个字母,现用5种不同的颜色给此正方体六个面染色,要求有公共棱的面不能染同一种颜色,则不同的染色方案有()种.A.420B.600C.720D.7802.过三棱柱中任意两个顶点连线作直线,在所有这些直线连线中构成异面直线的对数为()A.18B.30C.36D.543.给正方体的八个顶点涂色,要求同一条棱的两个端点不同色,现有三种颜色可供选择,不同的涂色方法有________种.【题型十二】模型8:相同元素【典例分析】将1个参加青少年科技创新大赛的名额分配给3个学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为()A.96B.114C.128D.136【变式演练】1.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出不同的四位数个数为A.78B.102C.114D.1202.由1,1,2,2,3,3,4,4可组成不同的四位数的个数为__________.3.把a,a,a,b,b,α,β排成一排,要求三个“a”两两不相邻,且两个“b”也不相邻,则这样的排法共有______种.【题型十三】模型9:停车位、空座位(相同元素)【典例分析】某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A.514B.1528C.914D.67【变式演练】1.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有_________种.2..某校共有7个车位,现要停放3辆不同的汽车,若要求4个空位必须都相邻,则不同的停放方法共有( )A .16种B .18种C .24种D .32种3.某电影院第一排共有9个座位,现有3名观众前来就座,若他们每两人都不能相邻,且要求每人左右至多两个空位,则不同的坐法共有A .36种B .42种C .48种D .96种【题型十四】模型10:走路口(相同元素)【典例分析】如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处,今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止,则下列说法错误的是( )A .甲从M 必须经过2A 到达N 处的方法有9种B .甲、乙两人相遇的概率为81100C .甲乙两人在2A 处相遇的概率为81400D .甲从M 到达N 处的方法有20种【变式演练】1.夏老师从家到学校,可以选择走锦绣路、杨高路、张杨路或者浦东大道,由于夏老师不知道杨高路有一段在修路导致第一天上班就迟到了,所以夏老师决定以后要绕开那段维修的路,如图,假设夏老师家在M处,学校在N处,AB段正在修路要绕开,则夏老师从家到学校的最短路径有()条.A.23B.24C.25D.262.如图,小明从街道的A处出发,选择最短路径到达B处参加志愿者活动,在小明从A处到达B处的过程中,途径C处的概率为()A.1063B.3063C.635D.18353.如图,一次移动是指:从某一格开始只能移动到邻近的一格,并且总是向右或右上或右下移动,而一条移动路线由若干次移动构成,如1→3→4→5→6→7就是一条移动路线,则从数字“1”到“7”,漏掉两个数字的移动路线条数为()A.5B.6C.7D.8【题型十五】模型11:上台阶(相同元素)【典例分析】有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.【变式演练】1.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种2.共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完台阶的方法种数是()A.30B.90C.75D.603.某人从上一层到二层需跨10级台阶. 他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步. 从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶. 则他从一层到二层可能的不同过程共有()种.A.6B.8C.10D.12【题型十六】模型12:“波浪数”型(高低站位)【典例分析】在给某小区的花园绿化时,绿化工人需要将6棵高矮不同的小树在花园中栽成前后两排,每排3棵,则后排的每棵小树都对应比它前排每棵小树高的概率是()A.13B.16C.18D.1121.因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有()种.A.181B.109C.84D.962.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是()A.120B.112C.110D.163.几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九棵树枝从高到低不同的顺序共有()A.23B.24C.32D.33【题型十七】模型13:配对型【典例分析】新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是()A.310B.13C.1130D.25【变式演练】1..由5双不同的鞋中任取4只,其中至少有两只配成一双的取法共有()A.130种B.140种C.250种D.205种2.柜子里有3双不同的鞋,随机地取出2只,取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是()A.25B.35C.45D.143.—对夫妇带着他们的两个小孩一起去坐缆车,他们随机地坐在了一排且连在一起的4个座位上(一人一座).为安全起见,管理方要求每个小孩旁边要有家长相邻陪坐,则他们4人的坐法符合安全规定的概率是()A.13B.12C.23D.56【题型十八】模型14:电路图型【典例分析】如图,电路中共有7个电阻与一个电灯A,若灯A不亮,则因电阻断路的可能性的种数为()A.12B.28C.54D.63【变式演练】1.如图,电路中共有7个电阻与一个电灯A,若灯A不亮,则因电阻断路的可能性的种数为()A.12B.28C.54D.632.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,则焊接点脱落的不通情况有()种.A.9B.11C.13D.153.如图,在由开关组A与B组成的电路中,闭合开关使灯发光的方法有()种A.6B.5C.18D.21【题型十九】模型15:机器人跳动型【典例分析】一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有种.A.105B.95C.85D.75【变式演练】1.一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?A.5B.25C.55D.75⨯=个边长为1个单位的小正方形组成一个大正方形.某机器人从C点出发,沿若小正方形2.如图,由6636的边走到D点,每次可以向右走一个单位或者向上走一个单位.如果要求机器人不能接触到线段AB,那么不同的走法共有______种.3.动点M位于数轴上的原点处,M每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M在数轴上可能位置的个数为()A.7B.9C.11D.13【题型二十】难点:多重限制与分类讨论【典例分析】小林同学喜欢吃4种坚果:核桃、腰果、杏仁、榛子,他有5种颜色的“每日坚果”袋.每个袋子中至少装1种坚果,至多装4种坚果.小林同学希望五个袋子中所装坚果种类各不相同,且每一种坚果在袋子中出现的总次数均为偶数,那么不同的方案数为()A.20160B.20220C.20280D.20340【变式演练】1.“迎冬奥,跨新年,向未来”,水球中学将开展自由式滑雪接力赛.自由式滑雪接力赛设有空中技巧、雪上技巧和雪上芭蕾三个项目,参赛选手每人展示其中一个项目.现安排两名男生和两名女生组队参赛,若要求相邻出场选手展示不同项目,女生中至少一人展示雪上芭蕾项目,且三个项目均有所展示,则共有___种出场顺序与项目展示方案.(用数字作答)2.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字其中“Ⅰ”需要1根火柴,“Ⅰ”与“X”需要2根火柴,若为0,则用空位表示. (如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为( )A .87B .95C .100D .1033.某学校要安排2位数学老师、2位英语老师和1位化学老师分别担任高三年级中5个不同班级的班主任,每个班级安排1个班主任.由于某种原因,数学老师不担任A 班的班主任,英语老师不担任B 班的班主任,化学老师不担C 班和D 班的班主任,则共有__________种不同的安排方法.(用数字作答).1.(辽宁·高考真题)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A.46801010100C C C ⋅ B .64801010100C C C ⋅ C .46802010100C C C ⋅ D .64802010100C C C ⋅2.(全国·高考真题(文))将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填 )A .6种B .12种C .24种D .48种3.(北京·高考真题(文))某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( )A .6B .12C .15D .304.(·全国·高考真题(文))2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )A .6种B .12种C .18种D .24种5.(全国·高考真题(文))元旦来临之际,某寝室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡不同的分配方式有( )A .6种B .9种C .11种D .23种6.(2022·全国·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种7.(·全国·高考真题(文))5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同报名方法有()A.10种B.20种C.25种D.32种8.(·全国·高考真题)某小组共有10名学生,其中女生3名,现选举2名代表,则至少有1名女生当选的不同的选法有()A.27种B.48种C.21种D.24种9.(山东·高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A.12B.120C.1440D.1728010.(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种11.(2021·全国·高考真题(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.812.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种13.(2019·全国·高考真题(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11161.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A.25种B.50种C.300种D.150种2.编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位,每个座位坐一位学生,则三位学生所坐的座位号与学生的编号恰好都不同的概率是()A.23B.13C.16D.563.某地为遏制新冠肺炎病毒传播,要安排3个核酸采样队到2个中风险小区做核酸采样,每个核酸采样队只能选择去一个中风险小区,每个中风险小区里至少有一个核酸采样队,则不同的安排方法共有()A.2种B.3种C.6种D.8种4.某班9名同学参加植树活动,若将9名同学分成挖土、植树、浇水3个小组,每组3人,则甲、乙、丙任何2人在不同小组的安排方法的种数为()A.90B.180C.540D.32405.有2个人在一座8层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则这2个人在不同层离开电梯的概率是()A.17B.67C.78D.186.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;7.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给1,2,3楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108B.36C.50D.868.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A.45B.12C.47D.389.某校高二年级共有10个班级,5位教学教师,每位教师教两个班级,其中姜老师一定教1班,张老师一定教3班,王老师一定教8班,秋老师至少教9班和10班中的一个班,曲老师不教2班和6班,王老师不教5班,则不同的排课方法种数______.10.若方程12348x x x x+++=,其中22x=,则方程的正整数解得个数为______.11.现安排甲、乙、丙、丁、戊5名同学参加某志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是________.12.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为______。
排列组合常见21种解题方法

排列组合常见21种解题方法排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标:1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题,提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略例1:由0、1、2、3、4、5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C(3,1)种方法,然后排首位共有C(4,1)种方法,最后排其它位置共有A(3,4)种方法,由分步计数原理得C(4,1)×C(3,1)×A(3,4)=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。
排列组合解题策略大全(十九种模型)

排列组合解题策略大全一、合理分类与分步1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种?分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有44A 种排法;2)若甲在第二,三,四位上,则有131333A A A 种排法,由分类计数原理,排法共有7813133344=+A A A A (种) 解法二(排除法):甲在排头:44A ,乙在排尾: 44A ,甲在排头且乙在排尾: 33A ,故符合题意的不同的排法为: 5443544378A A A A --+=.注: 甲在排头和乙在排尾都包含甲在排头的同时乙在排位,所以多减了要补回来.2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:① 若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数433288883374088A A A A +++=(种)二、特殊元素和特殊位置优先法1、0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数? 分析:特殊元素:0,1,3,5;特殊位置:首位和末位先排末位:13C ,再排首位:14C ,最后排中间三位:34A 共有:13C 14C 34A =2882、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?先种这两种特殊的花在除中间和两端外剩余的3个位置:24A ;再在其余5个位置种剩余的5种花:55A ;总共:24A 55A =1440三、排列组合混合问题先选后排法解决排列组合混合问题,先选后排是最基本的指导思想。
排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常见模型及解题技巧

排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。
尤其在中考、高考中,排列组合模型非常常见。
因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。
### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。
2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。
3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。
4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。
5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。
### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。
因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。
2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。
3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。
在计算之前一定要仔细地去理解问题,以免出错。
4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。
因此,对于常用的公式一定要牢记于心,并能够准确地使用。
### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。
排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。
排列与组合21种模型

七.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法. 解:第一步从5个球中选出2个组成复合元共 2 有C __ 5 种方法.再把5个元素(包含一个复合 4 元素)装入4个不同的盒内有_____ 种方法. A4
2 4 根据分步计数原理装球的方法共有_____ 5 A4
C
解决排列组合混合问题,先选后排是最基本 的指导思想.此法与相邻元素捆绑策略相似 吗?
练习题 一个班有6名战士,其中正副班长各1人, 现从中选4人完成四种不同的任务,每人 完成一种任务,且正、副班长有且只有 1人参加,则不同的选法有________ 种。
192 C C A
1 3 4 2 4 4
八.小集团问题先整体后局部策略
例9.用1,2,3,4,5组成没有重复数字的五 位数,其中在1,5两个奇数之间只有两 个偶数,这样的五位数有多少个? 解:把1,2, 4 ,5 当作一个小集团与3排队 2 A2 种排法;再排小集团内部共有 共有____ 2 2 A2 A2 种排法,由分步计数原理共有 _______ 2 2 2 A2 A2 A2 种排法. _______
练习题
1.从4名男生和3名女生中选出4人参加某个 座谈会,若这4人中必须既有男生,又有 女生,则不同的选法共有_______
C C 34 C C C C C C
4 7 4 4 3 3 1 4 2 3 2 4 1 3
3 4
2. 3成人2小孩乘船游玩,有三艘船,若1号船最多乘 3人 , 2号船最多乘2人,3号船只能乘1人,他 们任选2只船或3只船,但小孩不能单独乘 一只船,则这3人共有多少种乘船方法?
高中数学轻松搞定排列组合难题二十一种方法(含答案)

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动好玩,但题型多样,思路敏捷,因此解决排列组合问题,首先要仔细审题,弄清晰是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采纳合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.驾驭解决排列组合问题的常用策略;能运用解题策略解决简洁的综合应用题。
提高学生解决问题分析问题的实力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类方法,在第1类方法中有m种不同的方法,在第2类方法1中有m种不同的方法,…,在第n类方法中有n m种不同的方法,那么完成这件2事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,须要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种1不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区分分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事务的一个阶段,不能完成整个事务.解决排列组合综合性问题的一般过程如下:1.仔细审题弄清要做什么事2.怎样做才能完成所要做的事,即实行分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必需驾驭一些常用的解题策略一.特别元素和特别位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特别要求,应当优先支配,位置.先排末位共有1C3然后排首位共有1C4最终排其它位置共有3A4434由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧解排列组合的19种模型
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有24
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是3600
3.定序问题消序法:在排列问题中限制某几个元素必须保持一定的顺序,可用消序的方法.
1.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是60
4映射错位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.
1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 9
总结:3个元素错位:2种. 4个元素错位:9种. 5个元素错位:44种。
公式[])2()1()(11
-+-=-n f n f n f C n (n 表示元素个数) 2.今有标号1,2,3,4,5的5封信,另有同样的标号的5个信封,现将5封信任意地装入5个信封,
每个信封装入1封信,至少有1封信配对的种数 129352515++∙+C C C .
3.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,有20 种不同的方法.
5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.
(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( C )A 、1260种 B 、2025种 C 、2520种 D 、5040种
解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7
人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .
(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有
A 、4
441284C C C 种 B 、4
4412843C C C 种 C 、4431283C C A 种 D 、444128433
C C C A 种 (A ) 6.全员分配问题分组法: 分配的元素多于对象且每一对象都有元素分配时: 先分组再分配
(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? 36
(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为
A 、480种
B 、240种
C 、120种
D 、96种 ( B )
7.名额分配问题隔板法:
1. 10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?6984C =
8.限制条件的分配问题分类法:
1.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 4088
解析:因为甲乙有限制条件,所以按照甲乙参不参加来分类,有以下四种情况:
9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.
(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有
A 、210种
B 、300种
C 、464种
D 、600种 ( B )
解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,
(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?
解析:能被7整除的数的集合记做{}7,14,21,
98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;21114
14861295C C C +=种 (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?
4n ,4n+1 ,4n+2 ,4n+3 211225252525
C C C C ++ 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式
()()()()n A B n A n B n A B =+-.
例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种
不同的参赛方案? ()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.
11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
1.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?72
2.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 48
12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.
(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是120
.
(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 5760
13.“至少”“至多”问题用间接排除法或分类法:抽取两类混合元素不能分步抽.要先分类
例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有 ( C ) A 、140种 B 、80种 C 、70种 D 、35种
14.选排问题先选后排:
(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种? 2344144C A =
(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?
解析:先取男女运动员各2名,有2254C C 种,混和双打练习有22A 中排法, 222542120C C A =
15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.
(1)以正方体的顶点为顶点的四面体共有481258C -=(减去6个表面和6个对角面)
(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有
A 、150种
B 、147种
C 、144种
D 、141种 44106436141C C ---=
16.圆排问题线排法: n 个元素的圆排列数有!n n
种 . 从n 个不同元素中取出m 个元素作圆形排列共有
1m n A m
种不同排法. 5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法? 5
242768⨯=
17.可重复的排列求幂法:一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.
例17.把6名实习生分配到7个车间实习共有多少种不同方法?67
18.复杂排列组合问题构造模型法:
(1).马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也
不能关掉两端的两盏,求满足条件的关灯方案有多少种? 35C (2)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?4
10C
(3)正方体8个顶点可连成多少对异面直线? 481258C -= 3×58=174对.
(4)一个质点从平面直角坐标系的原点O 出发,每次沿坐标轴正方向或负方向移动1个单位,若经过8次移动,质点落在点(1,5)处,则质点为的不同运动方式共用 224 种.
19.复杂的排列组合问题也可用分解与合成法:例20.(1)30030能被多少个不同偶数整除?
30030=2×3×5×7×11×13; 01234555555532C C C C C C +++++=个.。