21种排列组合模型
人教A版数学选修2-31.2排列组合之二十一种模型习题课件

二、二十一种模型
11.定位问题优先法 例11.有1名老师和4名获奖同学排成一
排照相留念,若老师不站两端则有不 同的排法有多少种?
答案:
A31 A44 72
二、二十一种模型
12.多排问题单排法
例12.(1)6个不同的元素排成前后两 排,每排3个元素,那么不同的排法种 数是( )
成没有重复数字的六位数,其中个位数 字小于十位数字的共有( )种. A.210 B.300 C.464 D.600
答案: B.300
二、二十一种模型
9.多元问题分类法: 例9. (2)从1,2,3…,100这100个
数中,任取两个数,使它们的乘积能 被7整除,这两个数的取法(不计顺序) 共有多少种?
排列组合 之二十一种模型
内容提要
一、理论基础 二、二十一种模型 三、小结
一、理论基础
分类计数 加法原理 分步计数 乘法原理 排列数 组合数
内容提要
一、理论基础 二、二十一种模型 三、小结
二、二十一种模型
1.相邻问题捆绑法: 例1. A、B、C、D、E五人并排站成一排,
如果A、B必须相邻且B在A的右边,那么 不同的排法种数有( )
A.6种 B.9种 C.11种 D.23种 答案:
B.9种
二、二十一种模型
5.有序分配问题逐分法 例5.(1)有甲乙丙三项任务,甲需2
人承担,乙丙各需一人承担,从10人 中选出4人承担这三项任务,不同的选 法种数是( )
A.1260 B.2025 C.2520 D.5040 答案:
C.2520
二、二十一种模型
A.60种 B.48种 C.36种 D.24种 答案:
排列组合典型模型及解法

四、定序问题缩倍、空位等策略
【例4】7人排队,其中甲、乙、丙3人顺序一定,共有多少种不同的排法?
分析:缩倍法:可以先将所有的元素排好,再除以这几个元素的全排列。空位法:设想有7个位置,先让其他的人坐好,再让甲、乙、丙坐。
分析:3个女同学可以看成一个整体,再与4个男同学排队。
解:先把3个女同学排好,有 ,然后把女同学看成一个元素和男同学排队,有 。由分步计数原理,有 不同排法。
三、不相邻问题插空策略
【例3】4个男同学、3个女同学站成一排,任何2个女同学彼此不相邻,有多少种不同的排法?
分析:女同学不相邻,可以插到男同学中间。
A.20B.12C.6D.4
36、某小组有四位男性和两位女性,六人围成一圈跳集体舞,不同的排列方法有多少种?D
A.720 B.60 C.480 D.120
37、5个小朋友站成一圈,一共有多少种不同的站法?D
A. 120B. 60C. 30D. 24
38、某展览馆计划4月上旬10天接待5个单位来参观,其中2个单位人较多,分别连续参观3天和2天,其他单位只参观1天,且每天最多只接待1个单位。问:参观的时间安排共( )种。C
A.60B.20C.36 D.45
17、用数字0,1,2,3,4,5组成没有重复数字的四位数,可组成多少个不同的四位数?A
A .300 B.360 C.120 D.240
18、10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?B
A.45B.36C.9 D.30
19、六人站成一排,求甲不在排头,乙不在排尾的排列数?D
从n个不同的元素中取出 个元素的所有组合的个数叫做从n个不同的元素中取出m个元素的组合数,用符号 表示
排列组合解题策略大全(十九种模型)

排列组合解题策略大全一、合理分类与分步1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种?分析:由題意可先安排甲,并按其分类讨论:D若甲在束尾,剩下四人可自由排,有At种排法;2)若甲在第二,三,四位上,则有AMM.5种排法,由分类计數原理,排法共有+ (种)解法二(排除法):甲在排头:乙在排尾:甲在排头且乙在排尾:故符合题意的不同的排法为:+ .注:甲在排头和乙在排尾都包合甲在排头的同时乙在排位,所以多城了要补回来.2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照爱否含有甲乙来分类,有以下四种悄况:① 若甲乙都不参加,则有派遣方案农种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A方法,所以共有3兀;③若乙参加而甲不参加同理也有3況④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有V种,共有7公方法. 所以共有不同的派遣方法总数∕⅛+3∕⅛+3∕V+7况=4088 (种)二、特殊元素和特殊位置优先法1、0, 1, 2, 3, 4, 5可以组成多少个没有重复数字的五位奇数?分析:特殊元素:0, 1, 3, 5;待殊位盪:首位和来位先排柬位:C;,再排首位:C],晟后排中间三位:Aj 共有:C;C〔A卜2882、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?先种这两种特殊的花在除中间和两端外剩余的3个位昼:A:;再在其余5个位置种剩余的5种花:A;;总共:Aj A>144O三、排列组合混合问题先选后排法1、4个不同小球放入编号为1, 2, 3, 4的四个盒中,恰有一空盒的方法有多少种?分析:因恰有一空盒,枚必有一盒于放两球。
1)选:从四个球中选2个有Ci种,从4个盒中选3个盒有C:种;2)排:把选出的2个球香作一个元亲与其余2球共3个元亲,对选出的3盒作全排列有种,故所求放法有144 种。
排列组合常见模型及解题技巧

排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。
尤其在中考、高考中,排列组合模型非常常见。
因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。
### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。
2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。
3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。
4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。
5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。
### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。
因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。
2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。
3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。
在计算之前一定要仔细地去理解问题,以免出错。
4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。
因此,对于常用的公式一定要牢记于心,并能够准确地使用。
### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。
排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。
巧解排列组合的21种模型

巧解排列组合的21种模型排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易把握.实践证明,把握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看成一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,若是,A B 必需相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,那么此题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离〔即不相邻〕问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两头.例2.七人并排站成一行,若是甲乙两个必需不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必需维持必然的顺序,可用缩小倍数的方式.例3.,,,,A B C D E 五人并排站成一排,若是B 必需站在A 的右边〔,A B 能够不相邻〕那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左侧排法数一样,因此题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,那么每一个方格的标号与所填数字均不一样的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方式,第二步把被填入方格的对应数字填入其它三个方格,又有三种方式;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分派问题逐分法:有序分派问题指把元素分成假设干组,可用慢慢下量分组法.例5.〔1〕有甲乙丙三项任务,甲需2人承当,乙丙各需一人承当,从10人当选出4人承当这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人当选出2人承当甲项任务,再从剩下的8人当选1人承当乙项任务,第三步从另外的7人当选1人承当丙项任务,不同的选法共有21110872520C C C =种,选C . 〔2〕12名同窗别离到三个不同的路口进展流量的调查,假设每一个路口4人,那么不同的分派方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分派问题分组法:例6.〔1〕4名优秀学生全数保送到3所学校去,每所学校至少去一名,那么不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方式,再把三组学生分派到三所学校有33A 种,故共有234336C A =种方式.说明:分派的元素多于对象且每一对象都有元素分派时经常使用先分组再分派.〔2〕5本不同的书,全局部给4个学生,每一个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分派问题隔板法:例7.10个三勤学生名额分到7个班级,每一个班级至少一个名额,有多少种不同分派方案? 解析:10个名额分到7个班级,确实是把10个名额看成10个一样的小球分成7堆,每堆至少一个,能够在10个小球的9个空位中插入6块木板,每一种插法对应着一种分派方案,故共有不同的分派方案为6984C =种.8.限制条件的分派问题分类法:例8.某高校从某系的10名优秀毕业生当选4人别离到西部四城市参加中国西部经济开发成立,其中甲同窗不到银川,乙不到西宁,共有多少种不同调派方案?解析:因为甲乙有限制条件,因此依照是不是含有甲乙来分类,有以下四种情形:①假设甲乙都不参加,那么有调派方案48A 种;②假设甲参加而乙不参加,先安排甲有3种方式,然后安排其余学生有38A 方式,因此共有383A ;③假设乙参加而甲不参加同理也有383A 种;④假设甲乙都参加,那么先安排甲乙,有7种方式,然后再安排其余8人到另外两个城市有28A 种,共有287A 方式.因此共有不同的调派方式总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,掏出的情形也多种,可按结果要求分成不相容的几类情形别离计数,最后共计.例9.〔1〕由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情形,别离有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,归并共计300个,选B .〔2〕从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法〔不计顺序〕共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能够被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.〔3〕从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法〔不计顺序〕有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;另外其它取法都不符合要求;因此符合要求的取法共有211225252525C C C C ++种.10.穿插问题集合法:某些排列组合问题几局部之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运发动当选出4人参加4×100米接力赛,若是甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},依照求集合元素个数的公式得参赛方式共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合21种方法

排列组合21种方法(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在1第2类办法中有m种不同的方法,…,在第n类办法中有n m种不同2种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做1第2步有m种不同的方法,…,做第n步有n m种不同的方法,那么2完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
(完整版)排列组合方法大全,推荐文档
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。
1_排列组合20种模型方法归类--一轮复习热点题型归纳(解析版)
排列组合20种模型方法归类1.目录【题型一】基础:相邻与不相邻【题型二】球放盒子:先分组后排列【题型三】平均分配:医生与护士型【题型四】特殊元素(位置)优先排【题型五】模型1:下电梯型【题型六】模型2:公交车模型【题型七】模型3:排课表【题型八】模型4:节假日值班【题型九】模型5:书架插书型(不改变顺序)【题型十】模型6:地图染色【题型十一】模型7:几何体染色【题型十二】模型8:相同元素【题型十三】模型9:停车位、空座位(相同元素)【题型十四】模型10:走路口(相同元素)【题型十五】模型11:上台阶(相同元素)【题型十六】模型12:“波浪数”型(高低站位)【题型十七】模型13:配对型【题型十八】模型14:电路图型【题型十九】模型15:机器人跳动型【题型二十】难点:多重限制与分类讨论真题再现模拟检测1.热点题型归纳题型一:基础:相邻与不相邻【典例分析】1阳春三月,草长莺飞;丝绦拂堤,尽飘香玉.三个家庭的3位妈妈带着3名女宝和2名男宝共8人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,三位母亲互不相邻照顾孩子;3名女宝相邻且不排最前面也不排最后面;为了防止2名男宝打闹,2人不相邻,且不排最前面也不排最后面.则不同的排法种数共有()A.144种B.216种C.288种D.432种【答案】C【分析】利用捆绑法和插空法进行求解.【详解】第一步:先将3名母亲全排,共有A33种排法;第二步:将3名女宝“捆绑”在一起,共有A33种排法;第三步:将“捆绑”在一起的3名女宝作为一个元素,在第一步形成的2个空中选择1个插入,有A12种排法;第四步:首先将2名男宝之中的一人,插入第三步后相邻的两个妈妈中间,然后将另一个男宝插入由女宝与妈妈形成的2个空中的其中1个,共有C12C12种排法.∴不同的排法种数有:A33A33A12C12C12=288种.故选:C.方法归纳【提分秘籍】基本规律相邻和不相邻排列:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;【变式演练】1三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A.72种B.108种C.36种D.144种【答案】D【分析】根据题意,利用捆绑法和插空法,再利用分布乘法原理,即可求出结果.【详解】解:先将男生甲与男生乙“捆绑”,有A22种方法,再与另一个男生排列,则有A22种方法,三名女生任选两名“捆绑”,有A23种方法,再将两组女生插空,插入男生3个空位中,则有A23种方法,利用分步乘法原理,共有A22A22A23A23=144种.故选:D.2在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.72【答案】C【分析】记事件A:2位男生连着出场,事件B:女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为A55-n A∪B=A55-n A +n B -n A∩B,再利用排列组合可求出答案.【详解】记事件A:2位男生连着出场,即将2位男生捆绑,与其他3位女生形成4个元素,所以,事件A的排法种数为n A=A22A44=48,记事件B:女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件B的排法种数为n B= A44=24,事件A∩B:女生甲排在第一位,且2位男生连着,那么只需考虑其他四个人,将2位男生与其他2个女生形成三个元素,所以,事件A∩B的排法种数为A22A33=12种,因此,出场顺序的排法种数A55-n A∪B=A55-n A +n B -n A∩B=120-48+24-12=60种,故选C.3现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为A.12B.24C.48D.60【答案】C【详解】先从四组两张连号票比如(1,2)(2,3)(3,4)(4,5)中取出一组,分给甲乙两人,共有C14A22=8种,其余的三张票随意分给剩余的三人,共有A33=6种方法,根据分步乘法原理可知,共有8×6=48种,故选C.题型二:球放盒子:先分组后排列【典例分析】1我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有A.300种B.150种C.120种D.90种【答案】B【详解】分析:根据题意,先选后排.①先选,将5名教师分成三组,有两种方式,即1,1,3与1,2,2,注意去除重复部分;②后排,将分好的三组全排列,即可得到答案.详解:根据题意:分两步计算(1)将5名教师分成三组,有两种方式即1,1,3与1,2,2;①分成1,1,3三组的方法有C15C14A22=10②分成1,2,2三组的方法有C15C24A22=15一共有10+15=25种的分组方法;(2)将分好的三组全排列有A33=6种方法.则不同的派出方法有25×6=150种.故选B.点睛:对于排列组合混合问题,可先选出元素,再排列.方法归纳【提分秘籍】基本规律“球放盒子”类型,要讨论“用了几个盒子”,放了几个球。
排列组合的21种例题
高考数学复习 解排列组合题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种 2.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 4.解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .3.解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 2.解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .1.解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?10.解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种; 9.解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.7.解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.8.答案:B .5.解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .6.答案:A .9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式11.解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B . 12.解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.13.解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
(完整版)排列组合的21种例题
高考数学复习 解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。