垂直轴风力发电机研究报告

合集下载

5kW垂直轴风力机气动性能研究的开题报告

5kW垂直轴风力机气动性能研究的开题报告

5kW垂直轴风力机气动性能研究的开题报告一、研究背景及意义随着全球能源问题的日益严重,可再生能源的利用成为人们关注的焦点。

而风力发电作为一种成熟的可再生能源技术,已经广泛应用于世界各地。

垂直轴风力机特别适合于城市和工业区域,由于该类型风力机具有结构简单、低噪声、可靠性高等优点,也得到了关注。

然而,垂直轴风力机在气动性能方面还存在着一些问题,需要进一步了解和研究。

本研究拟对一台5kW垂直轴风力机进行气动性能研究,旨在探究该型风力机的风叶结构、转速控制、地形环境等条件下的输出特性,进一步完善该型风力机的结构设计和性能优化,提高其发电效率,推动可再生能源技术的发展。

二、研究内容及方法1. 研究对象:5kW垂直轴风力机。

2. 研究目标:探究该型风力机在不同转速、不同环境条件下的气动性能,分析其输出特性。

3. 研究内容:(1)风叶结构设计与优化:根据垂直轴风力机特点,设计合理的风叶结构,优化其气动性能。

(2)转速控制技术研究:分析不同转速下的发电效率和稳定性,研究转速控制技术,提高其输出效率。

(3)环境条件对性能的影响:分析地形环境、气候等对风力机性能的影响。

4. 研究方法:(1)数值模拟:采用计算流体力学(CFD)等方法对风叶结构、气动性能进行数值模拟分析。

(2)试验研究:通过实验验证数值模拟结果,得到实际运行中的数据,分析不同转速、不同环境条件下的性能和输出特性。

三、研究进度计划1. 第一阶段(2个月):(1)调研相关文献,了解目前垂直轴风力机气动性能研究的现状和发展趋势。

(2)制定研究方案和进度计划。

2. 第二阶段(3个月):(1)对5kW垂直轴风力机的风叶结构进行建模和计算流体力学模拟分析,得到风叶结构和气动性能的初步设计。

(2)设计转速控制方案,并进行实验验证,分析不同转速下的性能和输出特性。

3. 第三阶段(3个月):(1)在实验室内部署5kW垂直轴风力机原型,进行性能测试。

(2)分析不同地形环境和气候条件对5kW垂直轴风力机性能的影响,探究优化方案。

垂直轴风力发电机研究报告

垂直轴风力发电机研究报告

垂直轴风力发电机研究报告
摘要:
本报告对垂直轴风力发电机进行了深入研究。

首先,介绍了风力发电
的背景和发展现状,然后详细论述了垂直轴风力发电机的原理和工作方式。

接着,我们分析了垂直轴风力发电机的优点和缺点,并与传统的水平轴风
力发电机进行了比较。

最后,我们探讨了垂直轴风力发电机在未来的发展
趋势和应用前景。

1.引言
1.1背景
1.2目的和意义
2.风力发电的现状和发展
2.1全球风力资源分布
2.2风力发电的优势和限制
2.3风力发电行业的发展现状
3.垂直轴风力发电机的原理和工作方式
3.1垂直轴风力发电机的结构
3.2垂直轴风力发电机的工作原理
4.垂直轴风力发电机的优点和缺点
4.1优点
4.2缺点
5.垂直轴风力发电机与水平轴风力发电机的比较
5.1结构比较
5.2性能比较
5.3经济性比较
6.垂直轴风力发电机的发展趋势和应用前景
6.1技术改进和创新
6.2垂直轴风力发电机在城市环境中的应用
6.3垂直轴风力发电机在离网场景中的应用
7.结论
本报告将详细介绍垂直轴风力发电机的原理和工作方式,分析其优缺点并与传统的水平轴风力发电机进行比较。

同时,对垂直轴风力发电机在未来的发展趋势和应用前景进行探讨。

2024年垂直轴风力发电机市场调查报告

2024年垂直轴风力发电机市场调查报告
2024
1.
垂直轴风力发电机是一种利用风能将其转换为电能的装置。相较于传统的水平轴风力发电机,垂直轴风力发电机具有更多的优势,例如易于维护、适用于多种风向、更小的外形尺寸等。本报告旨在对垂直轴风力发电机市场进行调查,分析市场规模、市场趋势以及关键厂商等方面的情况。
2.
根据市场调研机构的数据显示,垂直轴风力发电机市场在过去几年中呈现出稳定增长的态势。预计到2025年,全球垂直轴风力发电机市场规模将达到XX亿美元,复合年增长率将达到X%。这一增长主要受到对可再生能源的不断需求和对清洁能源的关注推动。
3.
3.1
各国政府对可再生能源的支持力度不断增加,通过出台各种政策鼓励相关产业的发展,垂直轴风力发电机作为其中重要的一部分,市场前景十分广阔。例如,一些国家对可再生能源发电给予补贴,并设立配额制度来推动其发展。这些政策的出台为垂直轴风力发电机市场提供了良好的发展环境。
3.2
垂直轴风力发电机的技术不断创新,主要体现在提高效率和减少成本方面。许多降低制造成本。这些技术创新不仅提高了产品的竞争力,也促进了市场的发展。
4.3
厂商C是新兴的垂直轴风力发电机制造商,其产品在性价比方面具有明显优势。该公司注重产品的研发和市场拓展,并在一些新兴市场上取得了良好的销售成绩。
5.
垂直轴风力发电机市场在可再生能源的推动下呈现出良好的发展态势。随着技术的不断创新和市场竞争的加剧,市场将迎来更多的机遇和挑战。关键厂商在市场中扮演着重要的角色,其技术创新和市场拓展将推动整个行业的发展。未来,垂直轴风力发电机市场将继续保持稳定增长,并为减少碳排放和保护环境做出重要贡献。
4.1
厂商A作为市场上领先的垂直轴风力发电机制造商之一,具有先进的技术和丰富的经验。该公司的产品以其高效率和可靠性而闻名,得到了广泛的市场认可。

垂直轴风力发电机报告

垂直轴风力发电机报告

垂直轴风力发电机报告标题:垂直轴风力发电机的发展与应用,技术报告摘要:本报告介绍了垂直轴风力发电机的发展历程、工作原理以及其在可再生能源领域的应用。

首先,我们回顾了垂直轴风力发电机的起源和发展过程;接着,我们详细解释了垂直轴风力发电机的工作原理和方案;最后,我们探讨了垂直轴风力发电机在城市、农村和离岸等不同场景中的应用前景。

通过本报告的阅读,读者将对垂直轴风力发电机有更深入的了解,并认识到其在可再生能源行业中的潜力。

一、引言风力发电是现代可再生能源行业的重要组成部分之一、传统的水平轴风力发电机在市场上占据主导地位,但近年来,垂直轴风力发电机作为一种新型的发电设备逐渐崭露头角。

本报告旨在介绍垂直轴风力发电机的发展历程、工作原理和应用前景。

二、垂直轴风力发电机的发展历程垂直轴风力发电机最早在古希腊时期就有了雏形。

随着工业革命的发展,风力发电开始发展为一个产业,并引入了水平轴风力发电机。

然而,水平轴风力发电机存在一些问题,例如受风向影响较大、噪音较大等。

为了克服这些问题,垂直轴风力发电机逐渐成为研究重点。

三、垂直轴风力发电机的工作原理垂直轴风力发电机的工作原理与水平轴风力发电机有所不同。

水平轴风力发电机通过风车叶片转动发电,而垂直轴风力发电机则通过风力对转子产生的扭矩直接转动发电。

转子通常由多个垂直排列的叶片组成,利用风力使其旋转。

此外,垂直轴风力发电机的叶片通常具有对流式设计,以增强其效率。

四、垂直轴风力发电机的应用前景垂直轴风力发电机在城市、农村和离岸等不同场景中都有广阔的应用前景。

在城市中,垂直轴风力发电机可安装在高楼大厦或公共设施上,利用城市中的空气流动发电。

在农村中,垂直轴风力发电机可以解决偏远地区电力供应问题。

而在离岸领域,垂直轴风力发电机可以利用海上的强劲风力进行发电,为离岸油田等设施提供清洁能源。

五、结论通过本报告的介绍,我们了解到垂直轴风力发电机的发展历程、工作原理和应用前景。

垂直轴风力发电机作为一种新型的发电设备,具有设计灵活性强、受风向影响小等优势,在可再生能源行业具有广阔的应用前景。

垂直轴风力发电机市场研究与分析报告

垂直轴风力发电机市场研究与分析报告

垂直轴风力发电机市场研究与分析报告Title: Market Research and Analysis Report on Vertical Axis Wind TurbinesAbstract:This report aims to provide a comprehensive analysis of the market for vertical axis wind turbines (VAWTs). By examining the current trends, challenges, and opportunities in the VAWT industry, this report aims to shed light on the potential growth and development of this renewable energy technology.Introduction:The global demand for clean and renewable energy sources has been on the rise in recent years. As a result, the wind energy sector has experienced significant growth, with horizontal axis wind turbines (HAWTs) dominating the market. However, vertical axis wind turbines have gained attention due to their unique design and potential advantages. This report will explore the market for VAWTs and analyze the factors driving their adoption.Market Overview:The VAWT market is expected to witness substantial growth inthe coming years. The increasing focus on sustainable energy sources and the need for decentralized power generation are major factors driving the demand for VAWTs. Additionally, the ability of VAWTs to operate in turbulent wind conditions and their smaller footprint make them suitable for urban and residential applications.Key Market Players:Several key players dominate the VAWT market, including ABB Ltd., Wind Harvest International, and Urban Green Energy. These companies have invested heavily in research and development to improve the efficiency and performance of VAWTs. Collaborations with government bodies and renewable energy associations have also played a crucial role in advancing VAWT technology.Market Challenges:Despite the potential advantages, VAWTs face certain challenges that hinder their widespread adoption. One significant challenge is the lower efficiency compared to HAWTs. VAWTs have a lower power output per unit compared to their horizontal counterparts. Additionally, the high initial investment cost and limited availability of skilled technicians for maintenance areobstacles to the growth of the VAWT market.Opportunities and Future Outlook:The VAWT market presents several opportunities for growth and development. Technological advancements, such as the use of advanced materials and improved aerodynamics, can enhance the efficiency and performance of VAWTs. Moreover, government initiatives and favorable policies promoting renewable energy can create a conducive environment for VAWT adoption. The increasing demand for off-grid power solutions and the rising popularity of small-scale wind turbines also provide opportunities for VAWT market expansion.Conclusion:The market for vertical axis wind turbines is projected to grow significantly in the coming years. Despite the challenges, the unique design and advantages of VAWTs make them an attractive option for renewable energy generation. With continued research and development efforts, along with supportive government policies, the VAWT market has the potential to contribute significantly to the global clean energy transition.标题:垂直轴风力发电机市场研究与分析报告摘要:本报告旨在对垂直轴风力发电机(VAWTs)市场进行全面分析。

垂直风力发电可行性研究报告

垂直风力发电可行性研究报告

垂直风力发电可行性研究报告一、引言随着全球环境问题的日益严峻,清洁能源的开发和利用已经成为人类社会可持续发展的重要课题。

在各种可再生能源中,风能是一种资源丰富、分布广泛且高效的能源形式。

传统的水平轴风力发电机在风能利用过程中存在着一些问题,如需求更高的风速才能启动、噪音问题等。

垂直风力发电机是一种新型的风力发电技术,具有较高的启动效率和适应性,因此备受关注。

本报告将对垂直风力发电技术进行可行性研究,探讨其在可再生能源领域中的应用潜力和发展前景,为相关研究和实践提供参考。

二、垂直风力发电技术简介垂直风力发电技术是一种利用垂直方向风速差异来产生机械能转换成电能的新型风力发电技术。

其主要原理是通过一列垂直排列的叶片或帆布,利用风力的动能将转子带动旋转,从而产生电能。

垂直风力发电技术相比传统的水平轴风力发电技术具有启动风速低、噪音小、适应性强等优点,逐渐受到人们的重视和研究。

三、垂直风力发电技术的发展现状目前,垂直风力发电技术在全球范围内还处于发展初期阶段,但在一些发达国家已经开始了相关研究和实践。

如美国、欧洲等地区都有一些研究团队和企业致力于垂直风力发电技术的探索和应用。

同时,一些垂直风力发电机的生产商已经开始推出一些商用产品,并在实际应用中取得了一定的成效。

四、垂直风力发电技术的优势1. 启动风速低:垂直风力发电技术具有较低的启动风速要求,能够启动在较小的风速下工作,提高了利用率。

2. 噪音小:由于垂直风力发电技术采用了垂直排列的叶片或帆布,其运转过程中减少了部分噪音,有利于环境保护。

3. 适应性强:垂直风力发电技术适应性强,能够应对不同风速和风向的情况,减少了受风向限制的问题。

五、垂直风力发电技术的挑战1. 技术成熟度不高:相比传统的水平轴风力发电技术,垂直风力发电技术的成熟度相对较低,还需要进一步的研究和实践。

2. 成本较高:垂直风力发电技术相比传统技术的投资成本较高,需要更多的资金和资源来支持其研究和发展。

磁悬浮垂直轴风力发电机技术研究报告

磁悬浮垂直轴风力发电机技术研究报告

海上风电机组变桨控制技术研究报告共 28 页连云港杰瑞电子有限公司二O一O年十一月目次1 绪论 (1)1.1 项目研究背景和意义 (1)1.2 项目研究现状 (1)1.3 主要研究内容 (1)2 风力发电机组载荷的研究 (2)2.1 载荷的定义 (2)2.2 风轮空气动力载荷计算方法的研究 (3)2.2.1 致动圆盘模型 (4)2.2.2 尾流旋转 (5)2.2.3 叶素理论 (5)2.2.4 叶尖和轮毂损失模型 (6)2.2.5 风轮气动载荷计算公式 (7)2.2.6 风轮气动载荷计算方法 (7)2.3 风力发电机载荷计算模型的建立 (8)2.3.1 叶片模型 (8)2.3.2 风轮模型 (9)2.3.3 塔架模型 (9)2.3.4 风模型 (10)2.4 载荷计算结果 (12)2.5 本章小结 (13)3 独立变桨距控制技术研究 (13)3.1 独立变桨控制技术简介 (13)3.2 控制原理 (13)3.3 控制模型 (15)3.4 仿真分析 (17)3.5 本章小结 (19)4 交流伺服驱动技术及实现方法 (19)4.1 传动机构 (20)4.2 控制框图 (20)4.3 变频器接线电路 (20)4.4 电机驱动控制电路 (22)4.5 本章小结 (22)5 海上风机变桨环境适应性研究 (22)5.1 防腐研究 (23)5.2 除湿方式研究 (24)5.3 抗振研究 (24)5.4 本章小结 (25)6 结论 (25)1绪论1.1 项目研究背景和意义近年来,风电产业发展迅速,新增装机容量和总装机容量都在快速增长。

在风电装机容量快速增长的同时,风电技术也取得了长足进步,特别是风力发电机组本身,由20世纪90年代的定桨距、恒速技术,发展到今天被广泛应用的变桨距、变速技术,而且单机容量不断刷新记录。

海上风电技术逐渐成熟,全球海上风电装机容量已经超过1GW,有力地促进了特大型风机的研发。

风电设备制造企业一方面努力扩大产能,批量化生产现有产品,满足陆地风电市场需求;另一方面纷纷推出特大型风机,为未来海上风电市场竞争做准备。

垂直轴风力发电机组的设计与性能研究

垂直轴风力发电机组的设计与性能研究

垂直轴风力发电机组的设计与性能研究随着科技的不断发展和环保意识的提高,可再生能源逐渐受到人们的青睐。

风力发电机作为空气能转化成电能的重要装置之一,也在不断的研究和发展。

垂直轴风力发电机组在这个领域扮演着异军突起的角色,其独特的结构和性能优势吸引了国内外众多专家的目光。

一. 垂直轴风力发电机组的设计垂直轴风力发电机组是指风力发电设备中转子轴线竖直,叶片旋转面垂直于地面。

相对于传统的水平轴风力发电机,垂直轴风力发电机拥有更为广阔的应用领域。

其特点主要表现在以下几个方面:1.适应性强垂直轴风力发电机组可以被用于各种地形、各种气候条件下的风能资源利用,产生的振动和噪声较小,适合于城市和农村领域中的小型风电场。

2.高效性能垂直轴风力发电机组因为其结构上的特殊性,使得其在低风速条件下依然能够产生电能,相对于其他风力发电机而言,它的发电效率更高、更稳定。

3.运转安全垂直轴风力发电机组的机组不受方向和大小限制,转矩、重心、惯性力的平衡性也很好,可以在运转条件下减小结构疲劳损伤,从而提高设备的可靠性和使用寿命。

垂直轴风力发电机组的设计包含多个方面,其中重点考虑齿轮减速器、磨损与摩擦、自动转向等问题。

同时,风机的轴承材料、测量模型、风场起伏、大气压力等因素都将直接或间接影响垂轴风机的效率和性能。

二. 垂直轴风力发电机组的性能研究为了更好地发挥垂直轴风力发电机组的性能优势,优化其运行效率,研究者们也对其性能进行了深入探究,主要包括以下研究方向:1. 研究风机的动态特性风机在运行时,会出现转速的波动、能量的损失以及噪声的产生等问题,因此需要研究风机的动态特性。

刘维庆教授团队。

研究了垂直轴风力发电机的动态仿真模型,通过数理模型和实验对其动态特性进行了评估和分析,为进一步优化风机的控制提供了基础。

2. 研究风机的叶片设计近年来,研究者们也在着力改进机组的叶片设计。

研究表明,对于垂直轴风力发电机,叶片的设计对于功率密度和发电效率有着重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂直轴风力发电机研究报告Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】垂直轴风力发电机研究报告1.垂直轴与水平轴对比垂直轴风力发电机与水平轴风力发电机相比,有其特有的优点:①水平轴风力发电机组的机舱放置在高高的塔顶,而且是一个可旋转360度的活动联接机构,这就造成机组重心高,不稳定,而且安装维护不便。

垂直轴风力发电机组的发电机,齿轮箱放置在底部,重心低,稳定,维护方便,并且降低了成本。

②风力发电机的客户越来越需要使用寿命长、可靠性高、维修方便的产品。

垂直轴风轮的翼片在旋转过程中由于惯性力与重力的方向恒定,因此疲劳寿命要长于水平轴风轮;垂直轴风力发电机的构造紧凑,活动部件少于水平轴风力机,可靠性较高;垂直轴系统的发电机可以放在风轮下部甚至地面上,因而便于维护。

③风力发电机由于高度限制和周围地貌引发的乱流,常常处于风向和风强变化剧烈的情况,垂直轴风力发电机有克服“对风损失”和“疲劳损耗”上有水平轴风力发电机不可比的优点,且理论风能利用率可达40%以上.因此在考虑了较小的启动风速和对风力机影响较大的“对风损失”之后,从而提高垂直轴风轮的风能实际利用率。

④水平轴风力发电机组机仓需360度旋转,达到迎风目的。

这个调节系统包含有旋转机构,风向检测,角位移发送,角位移跟踪等系统。

垂直轴风力机不要迎风调节系统,可以接受360度方位中任何方向来风,主轴永远向设计方向转动。

⑤水平轴风力发电机的翼片受到正面风载荷力,离心力,翼片结构相似悬臂梁。

翼片根部受到很大弯矩产生的应力。

而且翼片在旋转一周的过程中,受惯性力和重力的综合作用,惯性力的方向是随时变化的,而重力的方向始终不变,这样翼片所受的就是一个交变载荷,这就要求翼片有很高的的疲劳强度,因此大量事故都是翼片根部折断。

而垂直轴风机的翼片主要承受拉应力,不易折断,寿命长。

⑥水平轴风力发电机组翼片的尖速比高,一般在5~7左右,在这样的高速下翼片切割气流将产生很大的气动噪音,导致噪声污染。

垂直轴风力机翼片的尖速比较水平轴的要小的多,这样的低转速基本上不产生气动噪音,无噪音带来的好处是显而易见的,以前因为噪音问题不能应用风力发电机的场合(城市公共设施、民宅等),现在可以应用垂直轴风力发电机,因此,垂直轴风力发电机比水平轴有更广阔的应用领域。

2.垂直轴风机风轮设计风能空气的流动现象称为风,风是由于不同地方的空气受热不均匀,从一个地方向另一个地方运动的空气分子产生的,风的能量就是空气分子的动能,如图所示。

图1 空气流的动能风功率计算公式为联立以上各式得风能利用率C p风能利用系数C p 是表示风力机效率的重要参数,由于风通过风轮的风能不能完全转化为风轮机械能,其风能利用率C p 为其中P m 为风力机输出的机械功率;P w 为风力机输入的风能。

目前大多数垂直轴风机风能利用率能达到左右。

如按的风能利用率来计算,风机功率为1000W ,则风能为W 25004.0/1000=。

根据上面公式可以求得400025.1/5000/225003==⨯=ρSv ,若满载额定风速为20m/s 的话,S=,显然设定的额定风速越低,S 将越大。

L r S ⨯⨯=2,S 为扫风的截面积,r 是翼片距轴的距离也是风轮的半径,L 为翼片的高。

如要达到1000W 的风机功率,则扫风截面积不能小于,则若r 取的话,L 为1m 。

可以采用目前天津工厂顶部风机形状。

风力机转矩:叶尖速比λ叶尖速比λ表示风轮在不同风速中的状态,用叶片的圆周速度和风速之比来衡量。

式中:n-风轮的转速,/r s;ω-风轮角速度,/rad s;R―风轮半径,m。

尖速比决定了风轮的功率,对于定桨距风轮,随风速的增加其转速也增加。

在这种情况下,输出功率(同风速的立方成正比)也增加。

但是输出功率增加并不意味着风能利用率也增加,一般而言,减速比和风能利用率曲线近似一条倒抛物线。

根据叶尖转速比λ与Cp 的关系及Cp与输出功率之间关系,我们可以知道在风速固定时,不同的转速即对应不同的叶尖转速比,也即对应不同的Cp值,也即对应不同的输出功率,这样如果设定不同的风速,就可以得到风力机在不同风速下输出功率与转速的关系,如下图所示:图2 风轮转速与输出功率及风速曲线图从上图可以看出在某一种风速下,风力机的输出机械功率随转速的不同而变化,其中有一个最佳的转速。

在该转速下,风力机输出最大的机械功率。

它与风速的关系是最佳叶尖速比关系。

在不同风速下均有一个最佳的转速使风力机输出最大机械功率。

从而得到一条最大输出机械功率曲线,处于这条曲线上的任何点,其转速与风速的关系均为最佳叶尖速比关系。

合理的选取最优尖速比可使风轮功率达到峰值。

一般垂直轴风机叶尖速比选择在4~8之间,建议选择6,越低噪音低,但是功率也比较难做大。

3 H型垂直轴风机翼片一般超过500W的垂直轴风机,都采用H型翼片或Ф型翼片。

图3 H型垂直轴风机图4 Ф型垂直轴翼片选型翼片是利用气流通过时产生的压力差使叶轮转动的部件,具有空气动力学特性,其设计质量对整个风力发电系统及其他零部件有这直接影响,因此翼片是风力机的重要部件。

翼片的设计目标主要有:1. 良好的空气动力外形;2. 可靠地结构强度;3. 合理的翼片刚度;4. 良好的结构动力学特性和启动稳定性;5. 耐腐蚀、方便维修;6. 满足以上目标前提下,尽可能减轻翼片重量,降低成本。

风力机的翼型多种多样,各有各的优缺点,应用较多的有NACA翼型系列、SERI翼型系列、NREL翼型系列、RISΦ翼型系列和FFA-W翼型系列等,其中NACA翼型是美国国家宇航局(NASA)的前身国家航空咨询委员会(NACA)提出设计的翼型系列,具有低阻力系数的特点,适合低速运行。

翼片实度风力机翼片的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度比(容积比),是风力机的一个参考数据。

垂直轴风力机的翼片实度计算公式为:升力型垂直轴风力机叶轮,C为翼片弦长,N为翼片个数,R为风轮半径,L为翼片长度,σ为实度比。

合理选取实度比的原则是在保证风轮气动特性的条件下,力求使制造翼片的费用最低。

为了最大限度提高动效率,翼型特性应具有下列要求:1. 升力系数斜度大;2. 阻力系数小;3. 阻力系数与零升角对称。

根据一些资料描述,NACA0012的阻力系数较小,选用较低阻力系数NACA0012对称翼型。

由于NACA0012是对称翼型,在下图左侧数据表中仅列出了单边的数据,表中c是弦长(弦长为);x是弦长坐标(单位是x/c);y是对应x位置的翼面与弦的距离(单位是y/c)。

图5 NACA0012翼型参数实度比选择在~范围内较好。

为此可以得出风轮翼片的弦长:可以采用的翼片弦长,数据只需将表中各数字适当缩放即可[5]。

翼片形状及材料翼片截面结构为主梁蒙皮式,表面材料为铝合金,主梁采用单向承载能力强的硬铝材料,O型主梁结构制造简单,各向受力均衡。

翼片空心处用聚氨酯泡沫材料填充,剖面形式如图所示。

图6 翼片剖面主梁可直接焊接与铝合金蒙皮上,待主梁与蒙皮连接完成后,在空腹结构内填入聚氨酯直接发泡填充成型。

由此,风力机的基本参数可以确定,如表所示。

表风力机参数4 电气设备及传动设计硅整流交流发电机硅整流交流发电机的结构硅整流交流发电机由一台三相同步交流发电机和硅二极管整流器。

发电机工作时产生的三相交流电通过整流器进行三相桥式全波整流后转变为直流电。

硅整流交流发电机是由转子、定子、整流器、端盖、风扇叶轮等。

图7 硅整流交流发电机转子用来在发电机工作时建立磁场。

它由压装在转子轴上的两块爪形磁极、两块磁极之间的励磁绕组和压装在转子轴上的两个滑环。

两个滑环彼此绝缘并与轴绝缘。

励磁绕组的两端分别焊接在两个滑环上。

定子用来在发电机工作时,与转子的磁场相互作用产生交流电压。

它由内圆带槽的硅钢片叠成的铁心和对称地安装在铁心上的三相定子绕组。

三相定子绕组按星形或按三角形接法连接。

按星形接法连接时,三相绕组的首端分别与整流器的硅二极管相连,三相绕组的尾端连在一起作为发电机的中性点。

按三角形接法连接时,将三相绕组中一相绕组的首端与另一相绕组的尾端相连,并将联接点接整流器的硅二极管。

整流器是由6个硅二极管?的三相桥式全波电路,在工作时将三相定子绕组中产生的转变为直流电。

在负极搭铁的发电机中,3个的壳体为负极,压装在与发电机机体绝缘的元件板上,并与发电机的输出端(正极)相连,其引线为二极管的正极,称为正极二极管;另外3个二极管的壳体为正极,压装在不与机体绝缘的元件板上,或直接压装在电刷端盖上,作为发电机的负极,其引线为负极,称为负极二极管。

驱动端盖和电刷端盖作为发电机的前后支撑。

电刷端盖上装有电刷架和两个彼此绝缘的电刷,并通过电刷弹簧,使电刷与转子轴上的两个滑环保持接触,电刷的引线分别与电刷端盖上的两个磁场相连(外搭铁式),或一个与磁场接线柱相连,另一个在发电机内部搭铁(内搭铁式交流发电机)。

发电机的整流器总成也安装在驱动端盖上,以有利于检修。

独立运行的小型风电机组的风力机叶片多数是固定桨距的,当风力变化时风机转速随之变化,与风机相连的发电机的转速也随之变化,因而发电机的出口电压也会产生波动,这将导致硅整流器输出的直流电压及发电机励磁电流的变化,并造成励磁磁场的变化,这样又造成发电机出口电压的波动。

这种连锁反应是的发电机的出口电压的波动范围不断增加。

显而易见,如果电压的波动得不到控制,在向负载供电的情况下,将会影响供电质量,甚至损坏用电设备。

此外独立运行的风力发电系统都带有储能电池组,电压的波动会导致电池组的过充电,从而降低电池组的使用寿命。

在工作过程中,发电机转速是不断变化的,要使发电机端电压保持不变,可以通过改变磁通的大小来进行调节,而磁通的大小是由励磁电流决定的。

因此,当发电机转速增高时,可以减小励磁电流使磁通减小,保持发电机的输出电压不变;反之,当发电机转速降低时,增大励磁电流。

因此电压调节器的作用就是在发电机转速变化时,自动改变励磁电流的大小,使发电机输出电压保持不变。

所以可以在发电机励磁回路中串联励磁调节器,实质是串入可切换电阻,改吧了励磁回路的阻抗特性,进而改变了励磁电流的大小。

电气系统电路设计如图所示,励磁调节器由电压继电器V1、电流继电器I1、逆流继电器I2及其所控制的动断触电V1、I1和动合触电I2以及电阻R2等组成。

图8 发电机励磁图励磁调节器的作用是使发电机能自动调节其励磁电流(即励磁磁通)的大小,来抵消因风速变化而导致的发电机转速变化对发电机端电压的影响。

当发电机转速较低,发电机端电压低于额定值时,电压继电器V1不动作,其动断触点V1闭合,硅整流器输出端电压直接施加在励磁绕组上,发电机属于正常励磁状态;当风速加大,发电机转速增高,发电机端电压高于额定电压时,动断触电V1断开,励磁回路中被串入了电阻R2,励磁电流及磁通随之减小,发电机输出端电压随之下降;当发电机电压降至额定值时,触点V1重新闭合,发电机恢复到正常励磁状态。

相关文档
最新文档