地质参数确定方法
水文地质参数求取的试验方法

水文地质参数求取的试验方法水文地质试验(hydrogeological test)供水水文地质勘察中在现场测定水文地质参数和了解地下水运动特征及其规律的各种试验工作。
包括抽水、注水、压水、渗水、管井回灌、连通和弥散试验,以及流向和流速测定。
抽水试验从钻孔、井或泉中抽取地下水,测定出水量与水位下降历时变化的试验。
通过抽水试验,可以确定出水量与水位下降的关系和该抽水点的最大出水量与降落漏斗半径;判定地下水运动的性质和地下水与地表水或不同含水层间的水力联系;利用抽水试验资料可计算水文地质参数。
抽水试验按地下水的稳定状态可分为稳定流抽水试验和非稳定流抽水试验;按有无观测孔可分为单孔抽水试验和带观测孔的抽水试验;按试验段揭露含水层的程度可分为完整井抽水试验和非完整井抽水试验;按抽水井与多层含水层的关系可分为分层抽水试验和混合抽水试验;按试验目的可分为干扰孔抽水试验和开采抽水试验。
试验开始前要测量静水位,以确定地下水的初始状态;停止抽水后要观测恢复水位,根据恢复水位可大致判断出水量是否超过补给量,并能计算水文地质参数。
为保证抽出的水不渗回试验地段,影响试验质量,抽出的水需排至影响范围以外。
稳定流抽水试验要求水位和出水量都达到稳定的抽水试验。
确定的标准是,出水量和水位(单孔抽水为抽水孔水位,带观测孔的抽水为观测孔水位)都在一定范围内波动,且无持续上升或下降的趋势。
抽水孔的水位最大降深,承压水一般不超过压力水头,潜水一般不超过含水层厚度的1/2。
抽水的稳定延续时间一般为8~24h。
试验过程中,要及时绘制出水量与水位降深的历时曲线,即Q–t和S–t历时曲线(图1);出水量与水位降深关系曲线,即Q–S曲线(图2);单位出水量与水位降深关系曲线,即q–S曲线(图3)。
非稳定流抽水试验保持出水量(或水位)稳定,观测水位(或出水量)随时间变化的抽水试验。
当抽水区域内不能得到足够补给水量时,抽水势必引起水位降落漏斗的逐渐扩大,直至达到补给边界;只有当增加补给量或减少排泄量,使补给量与包括出水量在内的排泄量达到动态平衡后,漏斗才趋于稳定。
地质参数确定方法

水文地质参数确定方法水文地质参数,反映含水层或透水层水文地质性能的指标。
如渗透系数、导水系数、水位传导系数、压力传导系数、给水度、释水系数、越流系数等,都是基本的水文地质参数。
水文地质参数是进行各种水文地质计算时不可缺少的数据。
一般是通过勘探试验测求水文地质参数。
表征岩石(土)的水文地质性能的数量指标。
是供水水文地质勘察中进行水文地质计算和地下水资源评价的数据。
表征岩土储存、释出和输运水、溶质或热的特性的定量指标。
水文地质参数主要包括渗透系数、导水系数、释水系数、压力传导系数、越流系数、降水入渗系数、给水度、影响半径和弥散系数等。
常用的水文地质参数有下列各种:1、渗透系数,又称水力传导系数,是水力坡度为 1 时,地下水在介质中的渗透速度。
为表征介质导水能力的重要水文地质参数。
渗透系数不仅与介质性质有关,还与在介质中运动的地下水的粘滞系数、比重及温度等物理性质有关。
根据达西定律:V=- KH T I式中,V为渗透速度;H为地下水水头;I为渗透距离;K为介质的渗透系数,量纲为(L/T)。
其与渗透率的关系为K=r?k/卩(K为渗透系数;k为渗透率;r为地下水的比重;□为地下水动力粘滞系数)。
从关系式中可知渗透系数与水的粘滞系数成反比,而后者随温度的升高而减小,因此,渗透系数随温度的升高而增大。
在地下水温度变化较大时,应作相应的换算。
在地下水矿化度显著增高时,水的比重和粘滞系数均增大,渗透系数则随之而变化。
在这种情况下,一般采用与液体性质无关的渗透率较为方便。
渗透系数是水力坡度为1 时,水在介质中的渗透速度(以m/d 表示)。
是描述地下水在岩石(土)中导水性能的重要参数。
又称水力传导系数。
渗透系数的大小由岩石(土)中连通的孑L 隙大小决定。
岩石(土)中的孔隙大,则其渗透系数也大。
同时渗透系数还与地下水在岩石(土)中运动时所溶物质、粘滞度、密度和温度等物理性质有关。
由于地下水的密度和粘滞度等变化极小,对这些因素的变化常忽略不计。
试验方法确定水文地质参数

3. 现场降水试验
现场成井施工,共完成了 2 眼抽水井和 6 眼水位观测井。现场试验分为 2 类水文地质试验,即 Slug Test(也称微水试验)与承压水抽水试验。各抽水井与观测井结构参数详见表 1。各抽水井与观 测井的平面剖面布置如图 2 所示
试验 类别
Slug Test
承压水 抽水试 验
孔号
K2 G5、G6 K1 G1、G2、G3 G4
孔径 (mm) 650
550 650 550 650
表 1 井结构参数表
井径 孔 深 滤管位置
mm m
m
273
34
30-33
219 34 273 24 219 21 273 21
30-33 17-23 17-20 17-20
井管长 m
30 30 17 17 17
填砾位 置m
28-34 28-34 14-24 14-21 14-21
作者简介:韩传梅(1982-),女(回族),新疆塔城人,硕士研究生。
-5-
本文以上海轨道交通七号线新村路站深基坑降水为例,详细论述了在第四纪巨厚沉积层地区含 水层结构,由于基坑维护连续墙未达到含水层底板,深基坑非完整井降水存在三维地下水流场。本 文在建立上海地铁七号线新村路站深基坑水文地质概念模型的基础上,为地下施工提供了科学决策 依据 [1] 。
2. 研究区概况
拟建上海轨道交通 7 号线一期工程,北起外环路站,南至东安路零陵路站,线路总长约 20 ㎞。 新村路车站位于新村路与岚皋路相交处,车站主体位于岚皋路。车站长度为 168.90 米,标准段宽度 19.70m,开挖深度约 15.30m,端头井开挖深度约 16.90m。车站主体采用二层二跨现浇钢筋混凝土结 构,采用地下连续墙作围护结构,设计初定标准段地墙深度为 29.0m,端头井地墙为 31.0m,明挖顺 作法施工,基坑等级为一级。
曲线拟合法和数值模拟法反演求水文地质参数

曲线拟合法和数值模拟法反演求水文地质参数水文地质参数是描述水文地质系统的重要指标,不同参数的取值可以影响地下水运移方向、速度、水质等方面的变化。
然而,在实际应用中,如何准确地确定水文地质参数却是一个复杂的问题。
本文将介绍两种主流的计算水文地质参数的方法:曲线拟合法和数值模拟法反演。
一、曲线拟合法曲线拟合法是利用统计学理论来拟合实际观测数据与预设函数之间的函数关系,从而推算出水文地质参数。
曲线拟合法的基本流程如下:1. 收集实验数据和背景信息,确定适当的预设函数,并进行数据预处理。
2. 通过求解函数拟合的误差最小的原则,拟合得到水文地质参数取值。
3. 分析参数取值的合理性,对拟合结果进行调整和优化。
曲线拟合法的优点在于可以利用较少的样本数据对水文地质参数进行求解,尤其适用于数据质量较差的情况。
不过,曲线拟合法也存在一些缺陷,比如无法考虑地质体非均质性、边界条件等因素对参数求解的影响,因此实际应用时需要结合具体问题来确定其可行性。
二、数值模拟法反演数值模拟法反演是建立一个数学模型,通过模型与实际数据匹配得到参数取值的方法。
数值模拟法反演的基本流程如下:1. 建立数学模型并确定模型中需要反演的水文地质参数。
2. 构建反演算法,并将观测数据与数学模型相结合,寻求与实际数据最接近的参数取值。
3. 对反演结果进行分析及验证,对不合理之处进行修正。
数值模拟法反演与曲线拟合法相比,可以更好地考虑地质体的非均质性、边界条件等较为复杂的影响因素。
但是由于数值模型本身的复杂性,需要对数据处理和反演算法等方面进行大量的计算和优化,所需的数据量和计算量较大,实现难度较高。
总之,曲线拟合法和数值模拟法反演都是计算水文地质参数的重要方法,而选择何种方法,取决于具体问题的性质和数据的可获得程度。
抽水试验确定水文地质参数的方法

在进行水 资源 分析工作时 ,常常使 用到地质水文参数 ,
目前 ,对 于 地 质 水 文 参 数 的推 求 方 法 有 很 多 种 ,其 中利 用抽
1 、观 6 ) ,其 中主 孔及 观 测 孔各 项 指 标 详 见 表 1 。
表 1 测 井 基 本 情 况 表
水实验来 确定地下水文参数是其 中之一 ,本文主要探 求通过
三 、各 项 参 数 计 算
域 内主要为粉砂一 粘土结构 ,该类结构岩性单一 ,层 次划 分较
为 明显 。 以主 孔 岩 性 可 知 ,0 - 5 . 7 m 为粉 砂 、 5 . 7  ̄ 7 . 6 m 为
依据实验区域的实际水文地质特点 , 其地下水为浅层地下 水 ,抽水底板是一层较厚的粘土层 ,因此是完全井观测。其中 对各项参数 的计算一般使 用以下 4中方法 ,即稳定流计算法 、 降深一 距离配线法、漏斗疏干法及直线解析法等方法 。
数据 的记 录 ,及做好安全保 障工作 ,抽 水结束要观测水位恢 复情况并做好记录工作 。
抽 水 过 程 中使 用 1 9 5柴 油 机 两 台 ,3台 自吸 泵 ,在 抽 水
参数 。该抽水试验实例首先进行非稳定流单 孔抽水 ,然后详细 的记录实验时各阶段 的信息 , 最后以这些资料信息来计算该 区 域的水文地质参数,本文详细的罗列了实验中应该收集的数据 及资料 ,并且详细的阐述 了如何计算水文地质参数 的方法 。
对 静 水 水 位 的观 测 ,准 备 需 要 使 用 的测 具 ,调 试 机 械 设 备 , 预 抽 及 对 观 测 人 员 的 培 训 等 ,抽 水 过 程 中 ,主 要 包 括 对 各 项
握某河流某段地质水文特点 ,因此选取了某河流流域某段抽水
泥石流灾害防治工程勘查规范的工程地质参数测定方法

泥石流灾害防治工程勘查规范的工程地质参数测定方法泥石流灾害是一种常见的自然灾害,在山区地区发生频率较高。
为了有效防治泥石流灾害,对于泥石流灾害防治工程的勘查十分重要。
其中,工程地质参数的准确测定对于泥石流灾害防治工程的设计和施工起着至关重要的作用。
本文将介绍泥石流灾害防治工程勘查规范中工程地质参数的测定方法。
首先,对于泥石流灾害防治工程的勘查,应该进行详细的地质调查。
通过地质调查,可以获得地质构造、地层岩性、地下水位等相关信息。
根据地质调查结果,确定勘测点位,并进行工程地质参数的测定。
1.土壤颗粒分析泥石流灾害防治工程的勘测中,土壤颗粒分析是非常重要的一项工作。
通过对土壤颗粒分析,可以确定土壤的颗粒组成、含量和粒径分布,对于泥石流流动性和侵蚀性的研究具有重要意义。
常用的土壤颗粒分析方法包括湿筛分析、悬浮液法和沉降法等。
2.土壤液化特性测试液化是泥石流灾害的一个重要特性,对于泥石流灾害防治工程的设计和施工具有重要的影响。
因此,对土壤的液化特性进行准确的测定是十分重要的。
常用的土壤液化特性测试方法包括标准贯入试验、剪切试验和共振柱试验等。
3.土壤剪切参数测试土壤剪切参数是泥石流灾害防治工程设计的重要依据。
通过对土壤的剪切参数进行准确的测定,可以更好地评估土壤的稳定性和抗剪强度。
常用的土壤剪切参数测试方法包括直剪试验、剪切框架试验和压缩剪切试验等。
4.地下水位观测与分析地下水位的观测和分析对于泥石流灾害防治工程的设计和施工非常重要。
通过地下水位的观测,可以了解地下水的变化规律和对泥石流灾害的影响。
常用的地下水位观测与分析方法包括孔隙水位测定和水文地质分析等。
5.岩土参数测定在泥石流灾害防治工程的勘测中,岩土参数的测定是至关重要的。
岩土参数的准确测定是工程设计和施工的基础,对于泥石流灾害的防治起到至关重要的作用。
常用的岩土参数测定方法包括三轴试验、压缩试验和剪切试验等。
综上所述,泥石流灾害防治工程勘查规范中的工程地质参数测定方法对于泥石流灾害防治工程的设计和施工具有重要意义。
确定矿区地表岩层移动参数的方法

Q .
C i aNe e h oo isa d P o u t hn w T c n lge n rd cs
工 业 技 术
确 定矿区地表岩层移 动参数 的方法
王 立 强 ຫໍສະໝຸດ ( 宝清县煤炭 管理局行管科 , 黑龙 江 宝清 1 50 ) 5 6 0
摘 要: 本文对 观测 站布 置 的方 法、 观测 方 法进行 了详 细 的分析 介 绍 ; 地表 移动 观测 资料 的分 析方 法进 行 了总结 。 文对如 何确 定 对 本 适合 本矿 区岩层 移 动参 数提 供 了思路 。 关键 词 : 测站 布置 ; 测方 法 ; 移 动观 测资料 分析 观 观 地表 5 2高程测量 动角 ‘向上作斜线 , p 分别交 地表于 b和 a 二点 , 岚峰矿区是一 个地质构造 ,地形条件十分 线段 a 即为倾 向观测线 的长度 。 b 其长度 也可按 观测站各 观测点 的高程采用水准测量方法 来确定 。 每条观测线的水准测量 , 测定转点 应先 复杂 的地 区,不能直接引用其 它矿区 已有 的地 下式计算 : 表移动成果 ,为 了取得该地 区的地表岩层移 动 的高差 , 按顺 序依次 测定 中 再 a=ht  ̄H -)g )H -)g/L oc ( 一个观 测点 ) b2c q- 1h t1+ 2h t ̄ cst 某 g ( c( ( 3 c (+ ) 式 中 p , 别 为下 山移 动角和上 山移 动 间点 的高差 , 而后再一次测定转点 的高差 , 并将 参数 , 护该矿区井上 、 保 下建筑物等 免受开采 的 有害影响 ,通过实地观测测得 了本 矿区 的岩层 角; 其两次 测定 的高差进行 比较 , 其差 , 三等水准不 移动参数 , 了其移动规律 。 掌握 现把确定 矿区地 Hl 2 , —分 别为采 区下边界 和上边 界 的采 应 大于 2 m, H m 四等水准不应 大于 3 m a r 。当地表 深; 表岩层移动参数 的方法介绍如下 : 破坏 较大 , 或两点 间倾 角超过 20 0, 于进行 不便 1观测线位置 的确定 L —采 区的倾 斜长度 。 水准测量 时 ,可以采用三角高程方法测 定各观 测点 的高程 。 观测线设置在移 动盆地的主断面上 ,且不 2 . 2走向观测线长度的确定 受邻 近采 区开采 的影 响。 主断面的位置, 用本矿 在走 向主断 面图上 , 由停采 线 、 切眼 , 开 分 5 . 3点问距丈量 区现有 的角度 参数和 已知 的地质采矿条 件以做 别按 8 向上作斜线 ,与基岩和松散 层的界面 角 控制点到观测点及观测点到 观测点的点间 图的方 法来 确定。主断面与地表 的交线 就是观 相交 ,再 由交 点在松 散层 中按松 散层移动角 ‘ 距 , p 采用经过 比长 的钢 尺往返丈量 。丈量时 , 对 分 和 二点 , 段 c 钢尺施 以标准拉力 , 线 d 并测记温度。 每次丈量读数 测线 的位置 。 观测线位置 的确定 , 是在观测站设 向上作斜线 , 别交地表于 c d 计 图上进行的 。 即为倾 向观测线 的长度 。其长度也 可按 下式计 三次 , 互差不超过 2 m 符合要求后取平均值作 m , 1 . 1确定倾 向观测线 的位置 算: 为丈量结果 。相邻两 观测点问的改正后 的水平 倾 向观测线的位置 的确定 。倾 向观测线的 往返 限差 , 点间距 小于 1m时 为 2 m, 间距 5 a r 点 a=ht  ̄H1 t H=2l g )J b2 c q- — H 一 [+ 1 g ( ts I 位置 ,在观测站 的平 面图和走 向主断面 图上来 式 中 B , 别为下 山移动角 和上山移动 大于 1 m时为 3 m 5 a r 。 确定 。 在观测站 的平面 图上 , 做采区走向的中分 角; 5 . 4巡视测量 线, 此中分线即是 倾向观测 线的位 置。 在平面图 川 ,2 H —分别为采 区下 边界 和上边界 的采 在工作面开始 回采 以后 ,在采 区开切 眼上 上 ,按 比例尺量取 由中分线 到采区 的停采 线和 深 : 方的走 向观 测线上选择 几个观 测点 ,每 隔 3 开切眼 的水平距离 D1 D 。当最后确定 的中 和 2 L—采 区的走 向长度 。 l 天进行一次水准测量 ,当其 中某 一观测点 累计 分线 的位置满 足条件 时 , 中分线 即是倾 向观 此 3观测点点位 的确定 下沉量达到 lm O m时 , 为地表 已开始移 动 , 即认 测线的位置。 观 测点均 匀设 置在观测线 的全长上 。观测 此 时间作 为地 表移动开始的时间。 1 - 2确定走 向观测线 的位置 线 两端向外还要设置控 制点 。观测线每一 端一 当地下工作面加 回采结束后 , 在采 区停 采线上 走向观测线的位置 ,可 以根据平面 图和倾 般 应设 置两个控制点 。如果 观测线是半 条的或 方走向观测线上选择几个 观测点 ,每隔 13 ~ 个 向主断面图来 确定 。 在倾向主断面图上 , 区 由于地 形限制不能在观 测线两端 同时设 置控制 月进 行一次水准测量 ,直到观测点 在 6 由采 个月 内 中点作 一水平线 , 并按最大下沉 角 0 作一斜线 , 点 时 , 在可设 置控制点 的一端 向外设置 三个 累计 下沉值小于 3m 应 0 m时 ,即认 为地 表移动结 交地表于 0 ,此 0 点 点即是走 向观 测线与倾 向 控制点 。 束 ,以最后一 次观测 的时间作为地表移 动稳定 主断面的交| 。将此 0 点投影到平 面图的倾 向 观 测点之 间的距 离可 以根据采 区的平 均开 的时间。 观测线 上 , 过此投影点作采 区走 向点平行线 , 采深度来确定 。 制点 与控制 点之间 , 并 控 控制点与 6地 表移动 观测 资料 的分析 此 平行线 即为走 向观测线 的位置 。 为 了求 得带有 普遍性 的地表移 动规律 , 就 相邻 观测 点 之间 的距离 可 5—0 m范 围 内选 0 10 2观测线长 度的确 定 定。 必须对大 量的实地观测资料进行综合分 析 。综 在观测线 的位置确定之后 ,即可确 定它们 4地表移动观测站 的标设 合分析 的步骤和方法如下 。 6 . 1收集和归 纳资料 在工 作面开始 回采 以前 , 或 工作 面虽 然已经开始 回采 , 但岩 为 了进 行地表 移动观测 资料 的综 合分 析 , f 层 的移动 尚未 波及 到拟 设站 的 应根据综合分析 的 目的和要求 , 大量 的实地 将 § 1: 地表时 , 将观 测站按照设 计标设 观测资料收集和归纳起来。 在收集过程 中, 注 要 目 到实地上 。 在确定观测站标设到 意资料 的可靠性 和准 确性。地质采矿条件 的数 1 、 具 体时间 时 , 充分考虑 到观测 值 , 应 如煤层 厚度 、 倾角 和采 区尺寸 等 , 煤层 应收 / 站 的标设 , 点和观测点 的固 集 回采后 的实测值 。 控制 结, 以及确定观 测点移动前 的点 6 . 2综合分析 的一般方法 J 位等 工作所需要的时间 。 观测点 在地表与岩层移动过程 中,影响的 因素很 的标 定工 作与 其他 工程 的标 定 多 , 在综合 分析时 , 不可能 同时考 虑全 部因素 , T作方法相 同。 即先根据设计解 只能考虑其 中最重要 的 , 在某 一特定条件下 , 或 算 }标定 的数据 , H 再到现场 实地 与移动过程有关 的其 他主要影 响因素。 标设 。 综 合分析 中得 出的移动参 数及数学表达式 的长度。观测线的长度应保证 观钡 线的两端稍 J t 5地 表移动观测站的观测方法 与实测结果进行 比较 , 一般都存在偏差 。 产生偏 微超过地表移动盆地边缘一段 距离 ,以便能较 5 . 1全面观测 差 的原 因很多 , 如 , 合分析 中 , 究方 例 在综 为研 可靠地确 定移 动盆地边界及有关参数 。观测线 在采动前 , 测点埋设 1-5 观 0 1 天后 , 以一级 便 , 常采用简化条 件或设定条件 的办法 , 如把大 的长度 可以在 观测站设计 图上 图解求 得 ,也可 导线测量精度 对控制点 , 观测点 独立观测两 次 , 致相 同的岩 当作完全相 同,煤层倾 角和采厚 用计算方法确定 。 时 间间 隔不超 过 5 天 。两次观测 的结果进行 般都采用平 均值 , 但实际上有差异 , 就掩 这样 2 倾 向观测线长度 的确定 . 1 比较 ,如 果 同一 个 观 测 点 的 高 程 差 不 大 于 盖 了者 眭 、 厚度和倾角 实际存在 的不 同。其次 , 在倾 向主断面 图上 , 由采 区上 、 下边界 点 , 1r 同一个 点间距 之差不 大于 4 m, 0 m, a a r 同一个 在综合分析 中 , 的是 主要因素 , 因素未 考虑 次要 分别按 .和 角 向上作斜线 , y 与基岩 和松散层 观测点 的支距差 不大于 3rm时 , 两次观测 加考虑 , 0 a 取 然而实 际上 次要 因素的影 响是存 在的 。 的界面相交 ,再 由交点在松 散层中按松散层 移 结 果的平均筐 怍为观测点的原始数
水文地质参数求取的试验方法探讨

水文地质参数求取的试验方法探讨本文结合实例对承压水采用抽水试验确定含水层水文地质参数的方法进行分析,探讨定流量(单孔或多孔)抽水试验确定含水层参数的可行性,具有较强的意义和价值。
标签:抽水试验水文地质参数试验方法地下水资源评价工作中,水文地质参数的计算十分重要,其值确定的合理与否,直接影响到计算成果的可靠程度,进而关系到水资源评价的科学性。
本文通过实测抽水试验数据分析了承压水水文地质参数的求取方法及可靠性。
1单井抽水试验配线法推求水文地质参数(1)方法原理承压完整井非稳定流抽水的泰斯公式为:(2)实例分析以某化工集团地下水水源地抽水试验为例,水源地内建有深水井4眼,其中3#、1#、2#井孔呈西向东排列,3#、1#井间距215.6m,1#、2#井间距197.7m,4#井孔在2#井孔南422m,3#、2#井间距414m,1#、4#井间距466m,3#、4#井间距600m。
根据试验条件共进行了2组单孔抽水试验,第一组抽水孔为1#,观测孔为2#、3#,抽水历时5d,水位恢复观测2d;第二组抽水孔为3#,观测孔为2#、1#,抽水历时3d。
步骤如下:①抽水前准备就绪后,同时量测取水孔与观测孔的静水位(精确至0.01m),校正好测绳、钢卷尺、秒表等;开启抽水电泵各井孔并同时计时,约定在开机后第1,2,5,10,20,30,45,60,90,120,…,1 440,…,分钟,持续观测取水孔与观测孔水位降深St,通过安装在取水电泵上的流量计读取各取水时间段的抽水量,得到抽水试验过程相应的稳定抽水流量、取水t时刻取水孔与观测孔的对应水位降深St等数据;②用校正好的测绳测量各观测孔距取水井孔的距离r1、r2,测量各井孔基准点高程;③抽水结束停机时,以同样的时距观测取水孔与观测孔的对应水位降深St,得到取水孔和观测孔水位恢复的试验资料;④根据试验资料采用图解分析法分析计算本次试验得到的含水层参数。
2组单孔抽水试验结束后,根据获得的数据,利用图解分析法分析计算得2#和1#井孔各参数(表1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水文地质参数确定方法水文地质参数,反映含水层或透水层水文地质性能的指标。
如渗透系数、导水系数、水位传导系数、压力传导系数、给水度、释水系数、越流系数等,都是基本的水文地质参数。
水文地质参数是进行各种水文地质计算时不可缺少的数据。
一般是通过勘探试验测求水文地质参数。
表征岩石(土)的水文地质性能的数量指标。
是供水水文地质勘察中进行水文地质计算和地下水资源评价的数据。
表征岩土储存、释出和输运水、溶质或热的特性的定量指标。
水文地质参数主要包括渗透系数、导水系数、释水系数、压力传导系数、越流系数、降水入渗系数、给水度、影响半径和弥散系数等。
常用的水文地质参数有下列各种:1、渗透系数,又称水力传导系数,是水力坡度为1时,地下水在介质中的渗透速度。
为表征介质导水能力的重要水文地质参数。
渗透系数不仅与介质性质有关,还与在介质中运动的地下水的粘滞系数、比重及温度等物理性质有关。
根据达西定律:V=-KH/I式中,V为渗透速度;H为地下水水头;I为渗透距离;K为介质的渗透系数,量纲为(L/T)。
其与渗透率的关系为K=r?k/μ(K为渗透系数;k为渗透率;r为地下水的比重;μ为地下水动力粘滞系数)。
从关系式中可知渗透系数与水的粘滞系数成反比,而后者随温度的升高而减小,因此,渗透系数随温度的升高而增大。
在地下水温度变化较大时,应作相应的换算。
在地下水矿化度显著增高时,水的比重和粘滞系数均增大,渗透系数则随之而变化。
在这种情况下,一般采用与液体性质无关的渗透率较为方便。
渗透系数是水力坡度为1时,水在介质中的渗透速度(以m/d表示)。
是描述地下水在岩石(土)中导水性能的重要参数。
又称水力传导系数。
渗透系数的大小由岩石(土)中连通的孑L隙大小决定。
岩石(土)中的孔隙大,则其渗透系数也大。
同时渗透系数还与地下水在岩石(土)中运动时所溶物质、粘滞度、密度和温度等物理性质有关。
由于地下水的密度和粘滞度等变化极小,对这些因素的变化常忽略不计。
渗透系数和渗透率渗透系数是表征在水力坡度作用下岩土输运地下水的能力的参数,又称水力传导系数(见达西定律)。
因此,其数值不仅取决于岩土的特性,同时也与通过岩土的地下水的物理性质有关,即式中K为渗透系数;k为岩土的渗透率;γ为地下水的重率;μ为地下水的动力粘滞系数。
渗透率也称渗透度,表征岩土本身输运流体能力而与流体的性质无关的参数,它仅仅取决于岩土的空隙性(空隙的大小、空隙率、空隙的形状和空隙的曲折性等)。
因此,对于同一种岩土,渗透率是个定值;渗透系数则随水的物理性质的差异而不同。
在各向同性的岩土中,渗透率与渗流方向无关;对于各向异性的岩土,渗透率则随渗流方向而变。
在非饱和岩土中,渗透系数K和渗透率k为含水率的函数,不是一个定值。
含水层导水系数含水层的渗透系数K与厚度M的乘积。
表征含水层的输水能力。
在水平二维流动中,当水力坡度 I=1时,含水层导水系数在数量上相当于单位宽度流量。
含水层压力传导系数岩土的渗透系数与比储水系数之比,即式中a为压力传导系数;K为渗透系数;SS为比储水系数。
对于水平二维承压运动,压力传导系数是含水层导水系数与储水系数之比,即式中 T为含水层导水系数;M为承压含水层厚度;S为承压含水层储水系数。
2、导水系数,表示含水层全部厚度导水能力的参数。
通常,可定义为水力坡度为1时,地下水通过单位含水层垂直断面的流量。
导水系数T等于含水层渗透系数K与含水层厚度m的乘积。
量纲为(L/T)。
导水系数描述整个含水层导水能力的参数(以m2/d表示)。
它等于渗透速度和含水层厚度的积,是非稳定流水文地质计算的主要参数。
3、压力传导系数,又称水力扩散系数,为导水系数与释水系数之比。
它表征在弹性动态条件下承压含水层中水头传递速度的参数。
压力传导系数a=T/s(T为导水系数;S为释水系数)。
量纲为(L2/T)。
4、水位传导系数,也称水力扩散系数。
它表征在弹性动态条件下潜水含水层中水位变化传播速度的参数。
水位传导系数aw=Kh/μ(K为渗透系数;h为潜水含水层平均厚度;μ为给水度)。
量纲为(L2/T)。
5、释水系数,又称贮水系数或弹性给水度。
水头下降一个单位时,从单位面积含水层全部厚度的柱体中,由于水的膨胀和岩层的压缩而释放出的水量;或者水头上升一个单位时,其所贮入的水量。
它是表征含水层(或弱透水层)全部厚度释水(贮水)能力的参数。
含水层释水系数S(对承压含水层常用μ表示)等于含水层厚度m与单位释水系数Ss的乘积,即S=mSs。
对潜水含水层总释水系数S=μ+hSs,μ为给水度;h为含水层厚度,Ss为潜水含水层单位释水系数,一般因式中 T为含水层导水系数;M为承压含水层厚度;S为承压含水层储水系数。
6、有效孔隙度,相互连通的孔隙体积与土或岩石总体积之比,一般用百分数表示。
有效孔隙体积不包括结合水和气体所占的体积,仅指地下水可以在其中流动的部分。
7、越流系数表征弱透水层垂直方向上传导越流水量能力的参数。
即当抽水含水层(主含水层)与上部(或下部)补给层之间的水头差为一个单位时,垂直渗透水流通过弱透水层与抽水含水层单位界面的流量。
换言之,是指含水层顶(底)板弱透水层的垂直渗透系数K′与其厚度m′之值,即K′/m′。
量纲为(1/T)。
越流系数表示抽水含水层和供给越流的非抽水含水层间水头差为一个单位时,单位面积上垂直渗入抽水含水层的水量。
又称漏水率。
它是描述水通过弱透水层垂直向含水层补给能力的参数,即弱透水层的垂直渗透系数与其厚度的比值,以1/d表示。
越流系数当抽水(或注水)含水层的顶板或(和)底板为弱透水层时,在垂向水头差作用下,相邻含水层或(和)顶底板弱透水层中的水就会流入抽水含水层(或者相反,由注水含水层流出),这一现象称为越流。
这种情况下,包括抽水(或注水)含水层、弱透水层和相邻含水层在内的含水层系,称为越流系统。
在天然条件下,只要越流系统中存在垂向水头差,就可以发生越流。
弱透水层的垂向渗透系数(K姟)与该层厚度(M 1)之比,称为越流系数。
若弱透水层的释水量可忽略不计,则越流系数在数值上相当于抽水(或注水)含水层与相邻含水层的水头差为1时的越流强度即单位时间通过抽水(或注水)含水层顶面和底面单位面积的水量。
8、降水入渗系数单位面积上由降水渗入补给地下水的量和降水量的比值(以小数表示)。
降水入渗系数的大小与地表的土层或含水层上覆地层的渗透性成正比。
9、给水度表示饱和的岩石(土)在重力作用下能排出的水的体积和岩石(土)体积之比(无量纲)。
又称重力给水度。
在数量上接近有效孔隙率。
它是描述在潜水状态下岩石(土)给水能力的参数。
当潜水位下降一个单位时,单位水平面积自潜水面至地面的柱体中由于重力作用所排出的水的体积。
10、影响半径抽水时,水位下降漏斗在平面上投影的半径(以m表示)。
它表征地下水位下降的影响范围。
实际上,水位下降漏斗的周边并不是圆形,而是接近椭圆形。
在地下水上游方向下降漏斗的坡度较陡,影响半径较小;地下水下游方向下降漏斗的坡度较缓,影响半径较大。
影响半径的大小与含水层的透水层、水位降深、抽水延续时间等因素有关。
11、弥散系数机械弥散和分子扩散两种作用的综合参数。
即机械弥散系数与分子扩散系数之和等于弥散系数。
又称水动力弥散系数。
弥散是质点的化学能与流体的对流运动所引起的,它与水流速度、分子扩散和介质的特性有关。
在地下水流速较大的地区,机械弥散作用比分子扩散作用大,这时弥散系数接近于机械弥散系数,可用机械弥散系数描述多孔介质中渗透水流运动过程中的特征。
12、有效空隙率空隙率是指岩土的空隙体积与岩石体积(包括骨架和空隙体积)之比。
孔隙、裂隙和岩溶化岩层的空隙率,分别称为孔隙率、裂隙率和岩溶率(喀斯特率)。
然而,对于地下水的储存、释出和运动,并非全部空隙都起作用,因此提出有效空隙率的概念。
从不同角度赋予有效空隙率以不同涵义。
孤立空隙对于地下水的储存、释出和运动都是无效的;从这个角度出发,将岩土中相互连通的空隙体积与岩土体积之比称为有效空隙率。
有的文献将此种涵义的有效空隙率称为空隙率。
饱水岩土在重力作用下释水时,结合水和部分毛管水所占据的那部分空隙是不能释出水的。
因此,从释水角度,有效孔隙率是指重力作用下能够释水的那部分空隙体积与岩土体积之比。
对于重力地下水的运动来说,结合水所占据的那部分空隙基本不起作用。
这种情况下,有效空隙率是指重力地下水能够通过的那部分空隙体积(空隙体积减去结合水所占据的体积)与岩土体积之比。
13、含水率岩土中水的体积与岩土体积(包括固体、水和气体的体积)之比。
在工程地质学中,经常使用重量含水率(含水量),其定义是,岩土中水的重量与岩土重量之比。
14、饱和度岩土中水的体积与空隙体积之比。
15、持水度岩土的空隙率或饱和含水率与给水度之差。
16、储水系数承压含水层中,当水头下降(或上升)一个单位时,由于水和介质的变形,单位水平面积含水层柱体所释放(或储存)的水的体积,即S=Mγ (nβW+βS)式中S为承压含水层的储水系数,也称弹性给水度;M为承压含水层的厚度;γ为水的重率;n为空隙率;βW 为水的体积弹性压缩(或膨胀)系数;βS为岩土的体积弹性压缩(或膨胀)系数。
储水系数通常用于地下水水平二维承压流动问题的计算。
17、比储水系数当水头下降(或上升)一个单位时,由于水与介质的变形,含水层单位体积所释放(或储存)的水的体积。
也称比弹性给水度或储水率。
这个参数通常用于存在垂向分流速的地下水流动问题。
18、非饱和岩土的容水度非饱和岩土中水与空气的界面上的压强存在不连续性,这个压强差称为毛管压强。
毛管压强与水的重率之比称为毛管压力水头,简称毛管压头。
非饱和岩土的含水率随着毛管压头的增大而减小。
当毛管压头降低一个单位时,单位岩土体积所储存的水量的增量(即含水率的增量)称为非饱和岩土的容水度,也称非饱和岩土的比储水系数。
19、非饱和岩土的扩散系数非饱和岩土的渗透系数与非饱和岩土的容水度之比值。
20、水动力弥散系数和岩土弥散度岩土孔隙中水质点流动速度的大小和方向不等以及分子扩散作用,使得两种或多种组分流体(例如某种可溶于水的污染组分与地下水)在地下水流中浓度逐渐平均化,这种现象称水动力弥散。
水动力弥散系数是表征在浓度梯度作用下,某种组分通过岩土的能力的参数。
它的大小不仅与岩土的空隙几何特征有关,而且也取决于地下水的空隙平均流速和该组分的分子扩散系数。
弥散度是描述岩土固有的弥散能力的定量指标,其值只依赖于岩土的空隙几何特征。
21、岩土等效热容量岩土中液相、固相和气相具有不同的热容量。
若将岩土视为整体,则其整体的引用热容量称等效热容量。
对于饱和岩土,其表达式为对于非饱和多孔介质为式中Ce为岩土等效热容量;n为孔隙率;ρS为岩土固相的密度;CS为岩土固相的比热;SW为水相饱和度;ρW为水的密度;CW为水的比热;ρg为气相的密度;Cg为气相的比热。