2020-2021学年山西省太原市七年级上期末考试数学试题含答案
太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案 一、选择题 1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.﹣3的相反数是( )A .13- B .13 C .3- D .33.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯4.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 8.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.若523m xy +与2n x y 的和仍为单项式,则n m =__________. 16.﹣213的倒数为_____,﹣213的相反数是_____. 17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________18.计算:()222a -=____;()2323x x ⋅-=_____.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.A 学校有m 个学生,其中女生占45%,则男生人数为________.23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.24.若523m x y +与2n x y 的和仍为单项式,则n m =__________.三、解答题25.当x 取何值时,式子13x -的值比x+12的值大﹣1? 26.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E .(1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.27.已知,,,A B C D 四点如图所示,请按要求画图.(1)画直线AB ;(2)若所画直线AB 表示一条河流,点,C D 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB 上确定点P ,使得在点P 处开渠到两块稻田,C D 的距离之和最短,并说明理由.28.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.29.解方程:4x+2(x ﹣2)=12﹣(x+4)30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.33.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =, 12BC AB =,28AB x∴==.故答案为:C.【点睛】本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.5.A解析:A【解析】【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.【详解】解:延长CD 交直线a 于E .∵a ∥b ,∴∠AED =∠DCF ,∵AB ∥CD ,∴∠DCF =∠ABC =70°,∴∠AED =70°∵∠ADC =∠AED +∠DAE ,∴∠ADC >70°,故选A .【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.17.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.三、解答题25.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得: x 11x 132-⎛⎫-+=- ⎪⎝⎭ ,即 x 11x 132---=- , 去分母得到:2(x ﹣1)﹣6x ﹣3=﹣6,去括号得:2x ﹣2﹣6x ﹣3=﹣6,移项合并得:﹣4x =﹣1,解得:x=0.25 ,则x=0.25时,13x -的值比12x + 的值大﹣1. 【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.26.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠, ∴1302AOE AOD ∠=∠=∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.27.(1)作图见解析;(2)作图见解析,理由:两点之间,线段最短.【解析】【分析】(1)根据直线的意义,画出直线AB 即可.(2)根据两点之间线段最短,连接CD,与直线AB 的交点即为所求.【详解】(1)直线AB 为所求.(2)画线段CD 交直线AB 于点P ,则点P 为所求.理由:两点之间,线段最短.【点睛】本题考查了直线的画法和线段公理即两点之间线段最短,解决本题的关键是正确理解题意,熟练掌握线段公理.28.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】解:(1)设这件商品的成本价为x 元,由题意得,x(1+50%)×80%=180.解得:x=150,答:这件商品的成本价是150元;(2)利润率=180150150-×100%=20%.答:此件商品的利润率是20%.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.29.x=12 7【解析】【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【详解】去括号得:4x+2x﹣4=12﹣x﹣4,移项合并得:7x=12,解得:x=127.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.30.()1(42-8x)元,(28-4x)元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x)元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x元,则爱心气球的单价是(14-3x)元,根据题意得第②束气球的总价格是:x+3(14-3x)=x+42-9x=42-8x(元);第③束气球的总价格是:2x+2(14-3x)=2x+28-6x=28-4x(元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.33.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t +1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.。
山西省2020-2021学年七年级上学期期末数学试题

A.7.42x10 B.7.42x10 C.7.42x10 D.7.42x10
4.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是( )
14.在一张长方形纸片上剪去个小长方形得到如图所示的纸片(阴影部分),当 时,阴影部分的周长是__________.
15.如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).
A. B.
C. D.
5.实数 、 在数轴上的位置如图所示,下列结论正确的是( )
A. B.
C. D.
6.下列等式成立的是()
A. B.
C. D.
7.用一副三角尺可以画出许多不同的角度,以下角度不能用三角尺画出的是()
A. B. C. D.
8.数线上有 、 、 、 四点,各点位置与各点所表示的数如图所示.若数线上有一点 , 点所表示的数为 ,且 ,则关于 点的位置,下列叙述何者正确?( )
2.A
【分析】
先过点C作CD∥a,根据平行于同一直线的两条直线互相平行,即可得CD∥a∥b,根据两直线平行,内错角相等,即可求得∠ACB的度数.
【详解】
如图,过点C作CD∥a.
∵a∥b,∴CD∥a∥b,∴∠ACD=∠1=40°,∠BCD=∠2=60°,∴∠ACB=∠ACD+∠BCD=100°.
2020年太原市初一数学上期末试题(含答案)

解:设这件商品的成本价为x元,则这件商品的标价是(1+40%)x元,
∴(1+40%)x×80% x=15,
∴1.4x×80% x=15,
整理,可得:0.12x=15,
解得:x=125;
∴这件商品的成本价为125元.
∴这件商品的实际售价为: 元;
故答案为:140.
【点睛】
此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
【详解】
解:∵∠AOB=∠COD=90°,∠AOD=125°,
∴∠BOD=∠AOD-∠AOB=125°-90°=35°,
∴∠BOC=∠COD-∠BOD=90°-35°=55°.
故答案为C.
【点睛】
本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.
2.D
解析:D
【解析】
【分析】
直接利用绝对值的性质以及相反数的定义分别分析得出答案.
解:3x=﹣4,系数化为1,得x=﹣ ,故选项A错误;
5=2﹣x,移项,得x=2﹣5,故选项B错误;
由 ,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;
由3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D正确,
故选:D.
【点睛】
本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.
15.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.
16.若 与 互为相反数,则a=________.
2021 2021学年山西省太原市七年级(上)期末数学试卷北师大版数学

2021 2021学年山西省太原市七年级(上)期末数学试卷北师大版数学2021-2021学年山西省太原市七年级(上)期末数学试卷北师大版数学2022-2022学年,山西省太原市七年级(一年级)数学期末试卷一、选择题(共10小题,每小题2分,共20分)下列各题给出的四个选项中,只有一项符合题目要求的。
1.(2点)5的绝对值等于()a.5bc.5d。
2.(2分)方程5x=83x的解是()a.x=1b.x=4c.x=1d、 x=43.(2分)如图,2021年12月13日16时,嫦娥二号卫星成功飞越距地球月700万公里的小行星“战神”,700万公里用科学记数法表示为()a、7×104kmb.7×105kmc.7×106kmd.7×简化5(2x3)+4(32x)为107km4的结果。
(2点)为()a.8x+3b.2x3c、 12x3d.18x+275.(2分)如图是由五个相同的正方形组成的平面图形,再添一个相同的正方形后就是正方体的一个平面展开图,如图中添加的正方形正确的是()a、不列颠哥伦比亚省。
6.(2分)要调查下面的问题,必须采用的普查方式是()a.了解我市七年级学生的视力情况b.了解一沓钞票中是否有假币c.了解一批台灯的使用寿命d.了解我市中学生课外阅读的情况7.(2点)如果一个多边形的每个顶点只有6条对角线,则该多边形是()a.六边形B.八角形C.九边形D.十边形第1页(共22页)8.(2点)已知关于X的方程2x+A9=0的解是X=2,那么a的值是()a.2b.3c、四,d.59.(2点)如图所示,已知C点为线段AB的上点,m点和N点分别为线段AC和BC的中点,则Mn=AB。
小明进一步探讨了这个问题,并得出了相应的结论:(1)如果C点是线段AB延长线上的点,且其他条件不变,然后Mn=AB;(2)如果C点是AB段反向延长线上的一点,且其他条件保持不变,则Mn=AB。
太原市七年级上册数学期末试题及答案解答

太原市七年级上册数学期末试题及答案解答一、选择题1.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9 B .327-C .3-D .(3)--2.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个3.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 4.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 5.下列各数中,绝对值最大的是( ) A .2B .﹣1C .0D .﹣36.点()5,3M 在第( )象限. A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.下列各数中,有理数是( )A .2B .πC .3.14D .37 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .11.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.把53°30′用度表示为_____.14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 16.﹣30×(1223-+45)=_____. 17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.若a 、b 是互为倒数,则2ab ﹣5=_____. 20.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.21.若α与β互为补角,且α=50°,则β的度数是_____. 22.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 23.计算7a 2b ﹣5ba 2=_____.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.29.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?30.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B正确;C. 3-=3,故排除C;--=3,故排除D.D. (3)故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.2.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.3.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.6.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.7.C解析:C 【解析】 【分析】根据有理数及无理数的概念逐一进行分析即可得. 【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D. 故选C. 【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.9.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.10.D解析:D 【解析】 【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.12.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.二、填空题13.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.14.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.16.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 17.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.22.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.23.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 24.46°【解析】【分析】根据∠2=180°-∠COE -∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、压轴题25.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.27.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a =11或7;当a =7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意; 当972a-++=1,则a =4或10.∴a =11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.28.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+;故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 29.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.30.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm .故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
2020-2021太原五中七年级数学上期末试题(含答案)

考点:一元一次方程的应用.
12.A
解析:A
【解析】
找规律发现(a+b)3的第三项系数为3=1+2;
(a+b)4的第三项系数为6=1+2+3;
(a+b)5的第三项系数为10=1+2+3+4;
不难发现(a+b)n的第三项系数为1+2+3+…+(n−2)+(n−1),
∴(a+b)64第三项系数为1+2+3+…+63=2016,
②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
直接利用绝对值的性质以及相反数的定义分别分析得出答案.
【详解】
A.有理数的绝对值一定大于等于0,故此选项错误;
【详解】
解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,
这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.
由题意得
A、7x=63,解得:x=9,能求得这7个数;
B、7x=70,解得:x=10,能求得这7个数;
C、7x=96,解得:x= ,不能求得这7个数;
B.正有理数的相反数一定比0小,故原说法错误;
C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;
山西省太原市2020版七年级上学期数学期末考试试卷(II)卷
山西省太原市2020版七年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) -2的相反数是()A .B .C . -2D . 22. (1分)若2x2my3与﹣5xy2n是同类项,则|m﹣n|的值是()A . 0B . 1C . 7D . -13. (1分) (2018七上·酒泉期末) 现在的时间是9点30分,时钟面上的时针与分针的夹角度数是()A .B .C .D .4. (1分)(2020·如皋模拟) 据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A . 0.3×105B . 3×105C . 0.3×106D . 3×1065. (1分) (2017七上·辽阳期中) 如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A . 70B . 80C . 90D . 1006. (1分)已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A . – 6B . –3C . – 4D . –57. (1分) (2015八上·宜昌期中) 已知2x﹣y=10,则4x﹣2y+1的值为()A . 10B . 21C . ﹣10D . ﹣218. (1分)(2020·哈尔滨模拟) 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排m名工人生产螺钉,则下面所列方程正确的是()A . 2×1000(26-m)=800mB . 1000×(13-m)=800mC . 1000×(26-m)=2×800mD . 1000×(26-m)=800m9. (1分)几个同学在日历竖列上圈出了三个数,算出它们的和,一定不可能是()A . 28B . 33C . 45D . 5710. (1分)下列说法中正确的个数是()①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补:⑤如果互补的两个角相等,那么这两个角都是90°.A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分) (2018七上·海港期中) 气温上升5℃记做+5℃,那么﹣5℃表示________.12. (1分) (2016七下·砚山期中) 张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=________.13. (1分) (2015九下·嘉峪关期中) 一块手表的售价是120元,利润率是20%,则这块手表的进价是________元.14. (1分)(2018·平顶山模拟) 如图,在矩形ABCD中,AB=6,E,H分别为AD、CD的中点,沿BE将△ABE 折叠,若点A恰好落在BH上的F处,则AD=________15. (1分)有一列数,按一定规律排列成1,-3,9,-27,81,-243,其中某三个相邻数的和是-1701,那么这三个数中最小的数是________.16. (1分) (2018七上·嵩县期末) 图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是________.17. (1分) (2019七上·江阴期末) 已知直线l上有A、B、C三点,且AB=8cm,BC=3cm,则线段AC=________cm.18. (1分)如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第n个图形中花盆的个数为________.三、解答题 (共7题;共15分)19. (2分) (2017七上·新乡期中) 我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b=a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣)⊗(﹣)]﹣(34⊗43)÷(﹣68).20. (2分)(2019·惠民模拟) 设A=(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);.….解关于x的方程=f(4)+f(5).21. (1分)已知M=2x2﹣5xy+6y2 , N=7y2+4xy+4x2 ,求M﹣2N,并求当x=﹣1,y=2时,M﹣2N的值.22. (2分)已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.23. (3分) (2018七上·玉田期中) 已知线段AB=8cm,BC=3cm.(1)线段AC的长度能否确定?(直接回答“能”或“不能”);(2)是否存在使A、C之间的距离最短的情形?若存在,请求出此时AC的长度;若不存在,说明理由.(3)能比较BA+BC与AC的大小吗?为什么?24. (3分) (2019七上·松滋期末) 某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.25. (2分) (2017七上·济源期中) 已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________(2) a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共15分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
2020-2021学年太原市七年级上学期期末数学试卷(附答案解析)
2020-2021学年太原市七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列说法正确的是()A. −|a|一定是负数B. 近似数2.400万精确到千分位C. 0.5与2是互为相反数D. 任何一个有理数都可以用数轴上的点表示2.下列调查中,最适合采用普查方式的是()A. 对全国观看《厉害了我的国》情况的调查B. 对500米口径球面射电望远镜“中国天眼”的零部件质量情况的调查C. 对重庆市民知晓“中国梦”内涵情况的调查D. 对华为手机市场占有率的调查3.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.4.下列计算正确的是()A. x−(y−z)=x−y一zB. −(x−y+z)=−x−y−zC. x+3y−3z=x−3(z+y)D. −(a−b)−(−c−d)=−a+c+d+b5.下列各数中,最小的数是()A. 2B. −3C. −27D. 06.三峡工程在宜昌.三峡电站2009年发电798.5亿千瓦时,数据798.5亿用科学记数法表示为()A. 798.5×100亿B. 79.85×101亿C. 7.985×102亿D. 0.7985×103亿7.下列说法中正确的有()①由两条射线所组成的图形叫做角;②两点之间,线段最短:③两个数比较大小,绝对值大的反而小:④单项式和多项式都是整式.A. 1个B. 2个C. 3个D. 4个8. 2.下列等式一定成立的是.A. B. C. D.9.如图,下列说法正确的是()A. 步行人数最少只为90人B. 步行人数为50人C. 坐公共汽车的人数占总数的50%D. 步行与骑自行车的人数和比坐公共汽车的人数要少10.一项工程,甲单独做需要5天完成,乙单独做需要8天完成.若甲先做1天,然后由甲、乙合作完成此项工程.求甲一共做了多少天?若设甲一共做了x天,则所列方程为()A. x5+x+18=1 B. x5+x−18=1 C. x5−x+18=1 D. x5−x−18=1二、填空题(本大题共5小题,共10.0分)11.已知x=3是关于x的方程4x−3(a−x)=6−7(a−x)的解,那么a的值为______ .12.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了________的道理.13.为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过10吨,每吨水收费2元;如果每户每月用水超过10吨,则超过部分每吨水收费4元.小明家10月的水费为36元,则该月他家用水______吨.14.一组数:−112,235,−3510,4717,−5926,61137,…,根据这个规律,第n个数是______ (n为正整数).(用含n的代数式表示)15.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为______三、计算题(本大题共3小题,共26.0分)16.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.6℃,已知山脚的温度是25℃,山顶的温度是−5℃.(1)求山脚与山顶的温度差.(2)求这座山的高度.(3)从山顶往下走500米,求这时的温度.17.某位同学做一道题:已知两个多项式、,求的值。
2021-2022学年山西省太原市七年级(上)期末数学试卷(含答案解析)
2021-2022学年山西省太原市七年级(上)期末数学试卷1.−2的绝对值是( )A. 12B. −2 C. 2 D. −122.下列调查中,适宜采用抽样调查的是( )A. 调查一批从疫情中高风险地区来并人员的核酸检测结果B. 调查奥运会马拉松比赛运动员兴奋剂的使用情况C. 调查某批中性笔的使用寿命D. 调查神舟十三号载人飞船各零部件的质量3.如图所示的几何体是由5个完全相同的小正方体搭成的,从它的左面看得到的平面图形是( )A. B. C. D.4.下列运算结果正确的是( )A. 3a+2b=5abB. x2y−3x2y=−2x2yC. a2+a4=a6D. 2a+5a=7a25.如图所示的网格是正方形网格,则∠AOB与∠MPN的关系是( )A. ∠AOB>∠MPNB. ∠AOB<∠MPNC. ∠AOB=∠MPND. ∠AOB=2∠MPN6.近年来,国家持续加大对铁路行业尤其是对高速铁路的投资力度,《中长期铁路网规划》提出,到2025年,铁路网规模达到17.5万公里左右,其中高速铁路3.8万公里左右,数据3.8万公里用科学记数法表示为( )A. 3.8×106米B. 3.8×107米C. 3.8×108米D. 0.38×108米7.根据下列语句画相应的几何图形,正确的是( )A. 点O在直线AB上B. 直线AB与CD都经过点OC. 在∠ABC内部画射线BPD. 延长BA到点C,使BC=2AB8.如图是一张边长为5cm的正方形纸片,将其四个角都剪去一个边长为xcm的正方形,沿虚线折成一个无盖的长方体盒子,这个盒子的容积(单位:cm3)为( )A. (5−2x)2B. x(5−x)2C. 5x2D. x(5−2x)29.“鸡兔同笼”是中国古代数学名题之一,记载于《孙子算经》之中,叙述为“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”其意思为“若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中鸡和兔各有多少只?”若设鸡有x只,则x满足的方程为( )A. 2x+4(35−x)=94B. 4x+2(35−x)=94C. x+35−x=35D. 94−2x=35−x10.移动5G通信网络将推动我国数字经济发展迈上新台阶.据预测,2020年到2025年中国5G直接经济产出和间接经济产出的情况如图所示,根据图中提供的信息,下列推断不正确的是( )A. 2020年到2025年,5G间接经济产出和直接经济产出都呈增长趋势B. 2022年,5G间接经济产出是直接经济产出的2倍C. 2024年到2025年,5G间接经济产出和直接经济产出的增长率相同D. 2025年,5G间接经济产出比直接经济产出多3万亿元11.计算−1−2的结果是______ .12.如图,射线OC平分∠AOB,∠AOB=40∘36′,则∠AOC的度数为______.13.观察下列等式:12−02=1,22−12=3,32−22=5,…第1个等式第2个等式第3个等式…按此规律,则第n个等式为______.14.苏女士在某微商服务平台经营服装销售,一款服装的进价为300元/件,若她想按标价的八折销售,仍可获利20%,则这款服装的标价应为______元/件.15.如图,∠AOC=∠BOD=90∘,OB在∠AOC的内部,OC在∠BOD的内部,OE是∠AOB的一条三等分线.请从A,B两题中任选一题作答.我选择______题.A.当∠BOC=30∘时,∠EOD的度数为______.B.当∠BOC=α∘时,∠EOD的度数为______(用含α的代数式表示).16.计算或求值:(1)(−2)2−2÷13+6×(−112);(2)化简并求值:2(x2−3xy)−(x2+xy),其中x=3,y=−1.17.解下列方程:(1)5x−2=2x+1;(2)3−x=2+5(x−1).18.下面是小乐同学解一元一次方程的过程,请认真阅读并解答问题.解方程:3x2−x+24=2.解:去分母,得6x−(x+2)=8.…第一步去括号,得6x−x−2=8.…第二步移项,得6x−x=−8+2.…第三步合并同类项,得5x=−6,…第四步方程两边同除以5,得x=−65.…第五步(1)以上求解过程中,第一步的依据是______;(2)从第______步开始出现错误,具体的错误是______;(3)该方程正确的解为______.19.如图,已知不在同一直线上的三点A,B,C.(1)按下面的要求用尺规作图:连接AB,AC,作射线BC;在射线BC上取一点D,使CD=AB.(2)用刻度尺在(1)的图中画出BC的中点M.若BC=6,AB=8,求MD的长.20.第24届冬季奥林匹克运动会,即2022年北京冬季奥运会,于2022年2月4日开幕,共设7个大项,15个分项,109个小项.学校从七年级同学中随机抽取若干名,组织了奥运知识竞答活动,将他们的成绩进行整理,得到如下不完整的频数分布表、频数分布直方图与扇形统计图.(满分为100分,将抽取的成绩分成A,B,C,D四组,每组含最大值不含最小值)分组频数A:60∼704B:70∼8012C:80∼9016D:90∼100△(1)本次知识竞答共抽取七年级同学______名,D组成绩在扇形统计图中对应的圆心角为______∘;(2)请将频数分布直方图与扇形统计图补充完整;(3)学校将此次竞答活动的D组成绩记为优秀,已知该校初、高中共有学生2400名,小敏想根据七年级竞答活动的结果,估计全校学生中奥运知识掌握情况达到优秀等级的人数.请你判断她这样估计是否合理并说明理由.21.2021年9月19日,太原城中“远去”的钟声,今又响起,随着钟楼街上钟楼的复建,承载着一代代太原人记忆的这条老街,经过17个月的修整,盛装迎客.小亮和同学在钟楼街的一家店铺购买了2杯奶茶和3杯橙汁,一共花了29元,已知一杯奶茶比一杯橙汁贵2元,求奶茶和橙汁的单价.22.阅读材料,解答下列问题:幻方历史悠久,传说最早出现在夏禹时代的“洛书”,如图1.把图1的洛书用今天的数学符号翻译出来,就是一个三阶幻方,如图2,它的每行、每列、每条对角线上的三个数的和都和等.(1)在图2中,每行、每列、每条对角线上三个数的和为______;(2)设图3所示的三阶幻方中间的数为x(x为整数),请用含x的代数式将图3幻方补充完整;(3)从A,B两题中任选一题作答.我选择______题.A.将−2,−1,0,1,2,3,4,5,6这9个数中除−1,2,5外的6个数填入图4中其余的方格中,使其成为一个三阶幻方.B.如图5是一个三阶幻方,按方格中已给的信息,x的值为______,4x上方的方格中的数为______.23.问题情境:太原市已建成的汾河健身智慧步道,从长风桥到胜利桥共8000米,步道上铺有保护膝盖的松软塑胶,吸引了广大市民前来健身,周日,小明和小亮相约去该步道建身,如图,小明从步道的长风桥端(记为点A)出发向胜利桥端(记为点B)方向行走,速度为150米/分,同时小亮从距离A点500米处的步道上一点C出发向点B行走,速度为100米/分,设他们行走的时间为x分钟.请解答下列问题.数学思考:(1)在上述行走过程中,小明离开A点的距离为______米,小亮离A点的距离为______米(均用含x的式子表示);问题解决:(2)求小明追上小亮时x的值;(3)请从A,B两题中任选一题作答,我选择______题.如图,步道上点E处是一个出口,它到起点A的距离为3500米,因有其他事情,小明到达E 点后立即按原速度返回,到C点停止行走;小亮到达E点也停止了行走.A.求小明返回途中与小亮相距250米时x的值.B.求小明返回途中与小亮之间的距离恰好是小亮到点E距离的一半时x的值.答案和解析1.【答案】C【解析】解:|−2|=2.故选:C.负数的绝对值是它的相反数.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】C【解析】解:A.调查一批从疫情中高风险地区来并人员的核酸检测结果,适合全面调查,故本选项不符合题意;B.调查奥运会马拉松比赛运动员兴奋剂的使用情况,适合全面调查,故本选项不符合题意;C.调查某批中性笔的使用寿命,适宜采用抽样调查,故本选项符合题意;D.调查神舟十三号载人飞船各零部件的质量,适合全面调查,故本选项不符合题意.故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】A【解析】解:从左边看,底层是两个正方形,上层的左边是一个正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置.4.【答案】B【解析】解:A、3a与2b不是同类项,不能合并计算,故此选项不符合题意;B、原式=−2x2y,故此选项符合题意;C、a2与a4不是同类项,不能合并计算,故此选项不符合题意;D、原式=7a,故此选项不符合题意;故选:B.根据合并同类项运算法则进行计算,从而作出判断.本题考查整式的加减运算,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.5.【答案】C【解析】解:如图,根据网格的特征以及角的表示可知,∠MPN=∠COD,而∠COD=∠AOB,因此∠MPN=∠AOB,故选:C.根据正方形网格的特征,利用叠合法可以作出判断.本题考查角的大小比较,理解角的意义和正方形网格特征是正确判断的前提.6.【答案】B【解析】解:3.8万公里=38000000米=3.8×107米.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,正确确定a的值以及n的值是解决问题的关键.7.【答案】B【解析】解:A.点O在直线AB外,故错误,不符合题意;B.直线AB与CD交于点O,故正确,符合题意;C.射线BP在∠ABC的外部,故错误,不符合题意;D.图形是延长AB到C,故错误,不符合题意.故选:B.根据对几何语言的理解和图形的分析可得答案.本题考查图形的初步认识,掌握直线、射线的性质是解题关键.8.【答案】D【解析】解:由题可得,无盖的长方体盒子的底面是边长为(5−2x)cm的正方形,高为x cm,∴这个盒子的容积为x(5−2x)2cm3,故选:D.依据边长为5cm的正方形纸片,将其四个角都剪去一个边长为x cm的正方形,沿虚线折成一个无盖的长方体盒子,即可得到无盖的长方体盒子的底边为(5−2x)cm的正方形,高为x cm,即可得到这个盒子的容积.本题主要考查了展开图折叠成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.9.【答案】A【解析】解:设鸡有x只,根据题意可得:2x+4(35−x)=94.故选:A.设笼中有x只鸡,则有(35−x)只兔,根据下有94只脚,即可得出关于x的一元一次方程,即可得出结论.此题主要考查了由实际问题抽象出一元一次方程,正确表示出兔的数量是解题关键.10.【答案】C【解析】解:由题图可以看出,2020年到2025年,5G间接经济产出和直接经济产出都呈增长趋势,故选项A不合题意;2022年,5G间接经济产是4万亿元,直接经济产出是2万亿元,所以5G间接经济产出是直接经济产出的2倍,故选项B不合题意;2024年到2025年,5G间接经济产出的增长率为:(6.3−6)÷6=5%,直接经济产出的增长率为:(3.3−3)÷3=10%,故选项C符合题意;2025年,5G间接经济产出比直接经济产出多3万亿元,故选项D不合题意.故选:C.观察折线统计图并得到有用信息,并通过计算经济产出和增长率得结论.本题考查的是折线统计图.读懂统计图并从统计图中得到必要的信息是解决问题的关键.11.【答案】−3【解析】【分析】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.根据有理数的减法运算法则进行计算即可得解.【解答】解:−1−2=−3.故答案为−3.12.【答案】20∘18′【解析】解:∵OC平分∠AOB,∠AOB=40∘36′,∴∠AOC=12∠AOB=20∘18′,故答案为:20∘18′.首先根据角平分线定义可得∠AOC=12∠AOB,再根据角的和差关系可得到∠COD的度数.此题主要考查了角平分线定义,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.13.【答案】n2−(n−1)2=2n−1【解析】解:第n个是式子为:n2−(n−1)2=2n−1,故答案为:n2−(n−1)2=2n−1.观察所给的式子发现,式子左边是两个相邻数的平方差,式子右边结果是奇数,由此可得第n个式子.本题考查数字的变化规律,通过所给的式子,找到各数之间的关系从而得到一般规律是解题的关键.14.【答案】450【解析】解:设这款服装的标价应为x元/件,依题意得:80%x−300=300×20%,解得:x=450.故答案为:450.设这款服装的标价应为x元/件,利用利润=销售价格-进价,即可得出关于x的一元一次方程,解之即可得出这款服装的标价.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.【答案】A130∘或110∘150∘−23α∘或120∘−13α∘【解析】解:A、如图,∵∠AOC=90∘,∠BOC=30∘,∴∠AOB=90∘−30∘=60∘,∵OE是∠AOB的一条三等分线,∴①当∠AOE=13∠AOB=20∘,∴∠BOE=40∘,∵∠BOD=90∘,∴∠EOD=∠BOD+∠BOE=130∘,②当∠BOE′=13∠AOB=20∘,∴∠DOE′=90∘+20∘=110∘,综上所述,∠EOD的度数为130∘或110∘,故答案为:130∘或110∘;B、∵∠AOC=90∘,∠BOC=α∘,∴∠AOB=90∘−α∘,∵OE是∠AOB的一条三等分线,∴①当∠AOE=13∠AOB=30∘−13α∘,∴∠BOE=90∘−α−(30−13α)∘=60∘−23α∘,∵∠BOD=90∘,∴∠EOD=∠BOD+∠BOE=150∘−23α∘,②当∠BOE′=13∠AOB=30∘−13α∘,∴∠DOE′=90∘+30∘−13α∘=120∘−13α∘,综上所述,∠EOD的度数为150∘−23α∘或120∘−13α∘,故答案为:150∘−23α∘或120∘−13α∘;A、根据角的和差得到∠AOB=90∘−30∘=60∘,根据OE是∠AOB的一条三等分线,分类讨论,当∠AOE=13∠AOB=20∘,②当∠BOE′=13∠AOB=20∘,根据角的和差即可得到结论;B、根据角的和差得到∠AOB,根据OE是∠AOB的一条三等分线,分类讨论,当∠AOE=13∠AOB,②当∠BOE′=13∠AOB,根据角的和差即可得到结论.本题考查了余角和补角的定义,角的倍分,熟练掌握余角和补角的性质是解题的关键.16.【答案】解:(1)原式=4−2×3−6×112=4−6−1 2=−52;(2)原式=2x2−6xy−x2−xy =x2−7xy,当x=3,y=−1时,原式=32−7×3×(−1)=9+21=30.【解析】(1)先算乘方,然后算乘除,最后算加减;(2)原式去括号,合并同类项进行化简,然后代入求值.本题考查有理数的混合运算,整式的加减-化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题关键.17.【答案】解:(1)移项,可得:5x−2x=1+2,合并同类项,可得:3x=3,系数化为1,可得:x=1.(2)去括号,可得:3−x=2+5x−5,移项,可得:−x−5x=2−5−3,合并同类项,可得:−6x=−6,系数化为1,可得:x=1.【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.【答案】等式的性质2 三8没有移项,变为−8x=2【解析】解:(1)以上求解过程中,第一步的依据等式的性质2;故答案为:等式的性质2;(2)从第三步开始出错错误,具体的错误是8没有移项,变为−8;故答案为:8没有移项,变为−8;(3)解:去分母,得6x−(x+2)=8,去括号,得6x−x−2=8,移项,得6x−x=8+2,合并同类项,得5x=10,方程两边同除以5,得x=2.故答案为:x=2.(1)利用等式的性质判断即可;(2)观察解方程过程,找出出错的步骤,分析具体错误即可;(3)求出正确的解即可.此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.19.【答案】解:(1)如图,点D即为所求;(2)∵M是BC的中点.∴CM=12BC=3,∵CD=AB=8,∴MD=CM+CD=3+8=11.【解析】(1)根据线段、射线定义即可完成作图;(2)根据线段中点定义可得CM=3,进而可得MD的长.本题考查的是作图-复杂作图,直线、射线、线段,两点间的距离,解决此题关键是掌握基本作图方法.20.【答案】解:(1)本次知识竞答共抽取七年级同学12÷30%=40(名),则D组的人数为40−(4+12+16)=8(名),∴D组成绩在扇形统计图中对应的圆心角为360∘×840=72∘,故答案为:40、72;(2)A组人数所占百分比为440×100%=10%,D组人数所占百分比为840×100%=20%,补全图形如下:(3)不合理,因为初、高中学生对奥运知识的掌握程度不同,该校七年级学生对奥运知识掌握的程度不能代表全校学生,所以根据七年级竞答活动的结果,估计全校学生中奥运知识掌握情况达到优秀等级的人数不合理.【解析】(1)由B组人数及其所占百分比可得七年级学生的总人数,根据四个分组人数之和等于总人数求出D组人数,用360∘乘以D组人数所占比例即可;(2)先求出A、D组人数占被调查的学生人数所占比例即可;(3)根据样本估计总体时样本需要具有代表性求解即可.本题主要考查了统计数据的处理,计算时注意,扇形圆心角的度数=部分占总体的百分比×360∘.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.【答案】解:设橙汁的单价为x元/杯,则奶茶的单价为(x+2)元/杯,依题意得:2(x+2)+3x=29,解得:x=5,∴x+2=5+2=7.答:奶茶的单价为7元/杯,橙汁的单价为5元/杯.【解析】设橙汁的单价为x元/杯,则奶茶的单价为(x+2)元/杯,利用总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出橙汁的单价,再将其代入(x+2)中即可求出奶茶的单价.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.【答案】15 A 3 1【解析】解:(1)在图2中,每行、每列、每条对角线上三个数的和为4+9+2=15,故答案为:15;(2)补全图3如下:(3)从A,B两题中任选一题作答.我选择A题.故答案为:A.A.补全图4如上图所示;B.由题意知x+7+4x=x+19,解得x=3,设4x上方的数为m,∵x+7=10、4x=12,∴10+3=12+m,解得m=1,即4x上方的方格中的数为1,故答案为:3、1;(1)任取一列或一行或对角线三个数相加即可;(2)根据每行、每列、每条对角线上的三个数的和都和等求解即可;(3)A.根据9个数的和为18知每行、每列、每条对角线上的三个数的和为6,据此求解即可;B.根据规则知x+7+4x=x+19,据此求解可得x的值,再设4x上方的数为m,根据第2列与第3行的数的和相等列出方程求解即可.本题考查一元一次方程的应用,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.23.【答案】150x(500+100x)A、B【解析】解:(1)∵小明的速度为150米/分,小亮从距离A点500米处的步道上一点C出发向点B 行走,速度为100米/分,他们行走的时间为x分钟,∴小明离开A点的距离为150x米,小亮离A点的距离为(500+100x)米;故答案为:150x,(500+100x);(2)根据题意得,150x=500+100x,解答:x=10,答:小明追上小亮时x的值为10;(3)A、根据题意得,500+100x+250+(150x−3500)=3500或500+100x−250+150x−3500=3500,解得:x=25或x=27,答:小明返回途中与小亮相距250米时x的值为25或27;(3500−100x−B、根据题意得,500+100x+2(150x−3500)=3500或3500−100x−500+12500)=150x−3500,,解得:x=25或803.答:小明返回途中与小亮之间的距离恰好是小亮到点E距离的一半时x的值25或803故答案为:A、B.(1)根据明从步道的长风桥端(记为点A)出发向胜利桥端(记为点B)方向行走,速度为150米/分,同时小亮从距离A点500米处的步道上一点C出发向点B行走,速度为100米/分列出代数式即可;(2)根据小明追上小亮列方程即可得到结论;(3)A、根据小明返回途中与小亮相距250米列方程即可得到结论;B、根据小明返回途中与小亮之间的距离恰好是小亮到点E距离的一半列方程即可得到结论.本题考查了一元一次方程的应用,正确地理解题意列出一元一次方程是解题的关键.。
山西省太原市2020年(春秋版)七年级上学期数学期末考试试卷(II)卷
山西省太原市2020年(春秋版)七年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共11分)1. (1分)下列各数中,大于-小于的负数是()A . -B . -C .D . 02. (1分) (2017七上·杭州期中) 下列说法正确的是()A . 单项式的系数是-3B . 单项式的次数是4C . 多项式是四次三项式D . 多项式的项分别是、、33. (1分) (2020七上·三门峡期末) 方程2y﹣= y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣.这个常数应是()A . 1B . 2C . 3D . 44. (1分) (2020七上·海曙期末) 一个角是这个角的余角的2倍,则这个角的度数是()A . 30°B . 45°C . 60°D . 75°5. (1分)按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是()A . 1022.01(精确到0.01)B . 1022(精确到个位)C . 1022.00(精确到0.1)D . 1022.010(精确到千分位)6. (1分) (2019八上·武威月考) 已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A . -1B . 1C . 2D . -27. (1分)如右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的“着”相对的面上的汉字是()A . 冷B . 静C . 应D . 考8. (1分)厦深铁路起点厦门北站,终点深圳北站.汕尾鲘门站、深圳坪山站在其沿线上,它们之间有惠东站、惠州南站,那么在鲘门站和坪山站之间需准备火车票的种数为(任何两站之间,往返两种车票)()A . 8种B . 10种C . 12种D . 14种9. (1分) (2017七上·温岭期末) 如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“ ”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为()A . 2a-3bB . 2a-4bC . 4a-10bD . 4a-8b10. (1分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A . y=-2x+24(0<x<12)B . y=- x+12(0<x<24)C . y=2x-24(0<x<12)D . y= x-12(0<x<24)11. (1分) (2017八下·北海期末) 如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为()A . 140°B . 150°C . 160°D . 170°二、填空题 (共6题;共6分)12. (1分)(2019·广东模拟) 舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50 000 000吨,把50 000 000用科学记数法表示为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原市2017—2018 学年第一学期七年级期末考试
数学试卷
一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.
1.计算-3+1的结果是()
A. -4
B. -2
C. 2
D. 4
2. 下列计算正确的是()
A. 3a +2b =5ab
B. 4m2n -2mn2=2mn
C.5y2-3y2=2
D. -12x +7x =-5x
3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:
为了更清楚地描述上述数据,还可以选择()
A. 条形统计图
B. 扇形统计图
C.折线统计图或扇形统计图
D. 条形统计图或扇形统计图
4.下列几何图形与相应语言描述相符的个数有()
A. 1 个
B. 2 个
C. 3 个
D. 4 个
5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()
A.9.536⨯1010美元
B. 9.536⨯109美元
C. 95.36⨯1010美元
D. 9.536⨯1011美元
6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()
A.九边形
B.八边形
C.七边形
D.六边形
7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()
8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()
A.6 个
B.5 个
C.4 个
D.3 个
9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()
A.50°
B.20°
C.20°或50°
D.40°或50°
10. 请从A、B 两题中任选一题作答.
A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()
A.28 种
B.15 种
C.56 种
D.30 种
B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()
A.1
B.2
C.3
D.4
二、填空题(本大题含5 个小题,每小题3 分,共15 分)把结果直接填在横线上.
11. 若x=3 是关于x 的方程2x+a=4 的解,则a 的值为.
12. 当x=1
2
,y=10 时,代数式(3xy+5x)-3(xy+x)的值为.
13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.
14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|
a
为相对误差.现有一
零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.
15.已知线段AB=16,AM=1
3
BM,点P、Q 分别是AM、AB 的中点.
请从A、 B 两题中任选一题作答.
A.如图,当点M 在线段AB 上时,则PQ 的长为 .
B.当点M 在直线AB 上时,则PQ 的长为.
三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。
16.计算(每小题4 分,共8 分)
;(2)3(4a²-2ab³)-2(5a²-3ab³)
17.解方程(每小题4 分,共8 分)
(1)4x-3(5-x)=6
18. (本题6 分)
如图,OD 平分∠AOC,∠BOC=80°,∠BOD=20°。
求∠AOB 的度数。
19.(本题6 分)
某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据本校的实际情况,决定开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.规定每个学生必须参加一项活动.学校为了了解学生最喜欢哪一种项目,拟采用以下的方式进行调查.
方式一:调查该校七年级女生喜欢的运动项目
方式二:调查该校每个班级学号为 5 的倍数的学生喜欢的运动项目
方式三:调查该校书法小组的学生喜欢的运动项目
方式四:调查该校田径队的学生喜欢的运动项目
(1)上面的调查方式合适的是;
学校体育组采用了(1)中的方式,将调查的结果绘制成右侧两幅不完整的统计图.请你结合图中的信息解答下列问题:
(2)在扇形统计图中,B 项目对应的圆心角的度数为;
(3)请补全条形统计图;
(4)已知该校有3600 名学生,请根据调查结果估计全校学生最喜欢乒乓球的人数.
20.(本题6 分)
小明同学对平面图形进行了自主探究:图形的顶点数V,被分成的区域数F,线段数 E 三者之间是否存在确定的数量关系.如图是他在探究时画出的5 个图形:
(1)根据上图完成下表:
(2)猜想:一个平面图形中顶点数V,区域数F,线段数E 之间的数量关系是;
(3)计算:已知一个平面图形有24 条线段,被分成9 个区域,则这个平面图形的顶点有个;
21.(本题7 分)
用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.
(1)每个盒子需______个长方形,______个等边三角形;
(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).
现有相同规格的19 张正方形硬纸板,其中的x 张按方法一裁剪,剩余的按方法二裁剪.
①用含x 的代数式分别表示裁剪出的侧面个数,底面个数;
②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.
22.(本题7 分)
下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和10 名女生跑800米的成绩.
(1) 按规定,女生跑800 米的时间不超过3'24"就可以得满分.该校九年级学生有490 人,男生比女生少70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分?
(2) 假如男生1 号和男生10 号被分在同组测试,请分析他俩在400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.
23. (本题7 分)
某手机经销商购进甲,乙两种品牌手机共100 部.
(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了27 万元.把这两种手机全部售完后,经销商共获利多少元?
(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价40%作为标价.
从A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为42.5%.求甲,乙两种手机每部的进价.。