九年级数学第二十一章二次根式测试题
九年级数学上册( 第章 二次根式)练习题试题

轧东卡州北占业市传业学校 房山区店九年级数学上册< 第21章 二次根式>练习题一、填空题〔每空2分,共24分〕1. 4的平方根________ 81的算术平方根是_________2、一个正方体的蓄水池能放1200立方米的水,请问这个水池的深是_______米3、计算:4、数0、7、-18、〔-5〕2中,有平方根的有 _______个。
5.2+1的倒数________ 2-3的相反数__________6、最简二次根式712与-a 是同类二次根式,那么a= .7、当x>5时,化简2816x x +-= . 8、当a________时,12=a a ;当a________时,12-=aa 。
9、将x 2– 13 在实数范围内因式分解:__________ 二、 选择题:〔每题3分,共33分〕1.以下各式中,是最简二次根式的是〔 〕。
(A)18 (B)b a 2 (C)22b a + (D)32 2.如果321,32-=+=b a ,那么〔 〕。
(A)a >b (B)a=b (C)a <b (D)a=b1 3.以下计算中错误的选项是〔 〕。
(A)x b a x b x a )(+=+ (B)9432712+=+ (C)y x y x --=+-11 (D)12211+=--.____0133=+--4.以下各组的两个根式,是同类二次根式的是〔 〕。
(B)ab ab 283和 (C)5120-和 (D)ab a 和(A) 5.以下二次根式有意义的范围为x ≥3的是〔 〕。
(A)3+x (B)3-x (C)31+x (D)31-x 6、以下说法正确的选项是〔 〕A 、-8是64的平方根,即864-=B 、8是()28-的算术平方根,即()882=-C 、±5是25的平方根,即±525=D 、±5是25的平方根,即525±=7、以下计算正确的选项是〔 〕A 、451691=B 、212214=C 、05.025.0=D 、525=--8、.16的平方根和立方根的分别为( )A.±4,316 B.±2,±34 C. 2,34 D.±2,349、.下面说法中,正确的选项是( )A.无限不循环小数都是无理数 B.带根号的数都是无理数C.无理数是带根号的数 D.无限小数都是无理数10.以下四个等式中,对于任意实数b总成立的式子的个数是( )〔1〕|b-1|=b-1; 〔2〕b2=|b|; 〔3〕b·b=b; 〔4〕〔1-b〕2=〔b-1〕2A.4个 B.3个 C.2个 D.1 11.:xy=2,x-y=52-1,那么〔x+1〕〔y-1〕的值为〔 〕. A.62-2 B.-42 C.62 D.无法确定xy xy 211和三、 解答题:〔计算题每题5分,共30分〕1. 计算:① 212+418-348 ②6)35278(⋅- ③2)336(-+332- ④)632)(632(--+-⑤01)20101999()31(2318-+---- ⑥〔3〕(5+- 四、提高题:〔共15分,〔〔1〕题7分,〔2〕题6分〕〔122(3)0,32b a b c -+=+-求的值;〔2〕25y x y =+已知求。
2022-2023学年华东师大版九年级数学上册《第21章二次根式》同步提升练习题(附答案)

2022-2023学年华东师大版九年级数学上册《第21章二次根式》同步练习题(附答案)一.选择题1.下列计算:①;②;③;④.其中结果正确的个数为()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.B.C.D.3.下列二次根式中,与是同类二次根式的是()A.B.C.D.4.a的取值范围如数轴所示,化简﹣1的结果是()A.a﹣2B.2﹣a C.a D.﹣a5.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.56.化简得()A.B.C.D.7.已知:m=+1,n=﹣1,则=()A.±3B.﹣3C.3D.8.下列二次根式中,最简二次根式的是()A.B.C.D.9.式子有意义,则实数a的取值范围是()A.a≥1B.a≠2C.a≥﹣1 且a≠2D.a>210.若代数式有意义,则x的取值范围是()A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣3 11.化简|a﹣3|+()2的结果为()A.﹣2B.2C.2a﹣4D.4﹣2a12.式子成立的条件是()A.x≥3B.x≤1C.1≤x≤3D.1<x≤313.化简2﹣+的结果是()A.B.﹣C.D.﹣14.(﹣)2的值为()A.a B.﹣a C.D.﹣15.把式子m中根号外的m移到根号内,得()A.﹣B.C.﹣D.﹣16.化简二次根式的正确结果是()A.a B.a C.﹣a D.﹣a二.填空题17.若,则xy=.18.实数a、b在数轴上对应点的位置如图所示,化简:=.19.如图,从一个大正方形中截去面积分别为x2和y2的两个小正方形,若x=5+2,y =5﹣2,则图中留下来的阴影部分的面积为.20.计算的结果是.21.若=x﹣4+6﹣x=2,则x的取值范围为.22.观察并分析下列数据:寻找规律,那么第10个数据应该是.23.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.24.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC 的面积为.25.分母有理化:(1)=;(2)=;(3)=.26.等式=﹣a成立的条件是.27.当x<0,化简=.28.已知最简二次根式与可以进行合并,则m的值等于.三.解答题29.计算:(1﹣π)0+|﹣|﹣+()﹣1.30.计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).31.计算:(1)(+)÷;(2)已知的值.32.我们将()、()称为一对“对偶式”,因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”再将其相乘可以有效的将(+)和(﹣)中的“”去掉于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小(用“>”、“<”或“=”填空);(2)已知x=,y=,求x2+y2的值;(3)计算:33.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.参考答案一.选择题1.解:,所以①正确;,所以②正确;③(﹣2)2=4×3=12,所以③正确;④()(﹣)=2﹣3=﹣1,所以④正确.故选:D.2.解:A、与不能合并,所以A选项错误;B、=3,所以B选项错误;C、÷==2,所以C选项正确;D、•==,所以,D选项错误.故选:C.3.解:=3,A选项,=,不符合题意;B选项,=3,不符合题意;C选项,=2,符合题意;D选项,=2.不符合题意;故选:C.4.解:观察数轴得:a<1,∴a﹣1<0,原式=﹣1=|a﹣1|﹣1=1﹣a﹣1=﹣a,故选:D.5.解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.6.解:==.故选:B.7.解:∵m=,n=,∴=8,mn=,∴==3,故选:C.8.解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数或因式,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.9.解:由题意得:a+1≥0,且a﹣2≠0,解得:a≥﹣1,且a≠2,故选:C.10.解:∵代数式有意义,∴3x﹣2≥0,|x|﹣3≠0,解得:x≥且x≠3.故选:C.11.解:∵有意义,∴1﹣a≥0,则a≤1,故|a﹣3|+()2=3﹣a+1﹣a=4﹣2a.故选:D.12.解:由二次根式的意义可知x﹣1>0,且3﹣x≥0,解得1<x≤3.故选:D.13.解:2﹣+=2﹣+4=.故选:A.14.解:∵有意义,∴a≤0,∴(﹣)2=﹣a.故选:B.15.解:∵有意义,∴m<0,∴m=﹣=﹣.故选:C.16.解:∵二次根式有意义,则﹣a3≥0,即a≤0,∴原式=,=﹣a.故选:C.二.填空题17.解:∵,∴,解得:x=,故y=1,则xy=×1=.故答案为:.18.解:∵由数轴可知:a<0<b,|a|<|b|,∴+﹣|a﹣b|=|a|+|a+b|﹣|a﹣b|=﹣a+(a+b)﹣(b﹣a)=﹣a+a+b﹣b+a=a.故答案为:a.19.解:∵截去的两个小正方形的面积是x2和y2,∴小正方形的两个边长分别是x和y,∴大正方形的面积是:(x+y)2,∴阴影部分面积是:(x+y)2﹣x2﹣y2=2xy,∵x=5+2,y=5﹣2,∴阴影部分面积是:2xy=2×(5+2)×(5﹣2)=2×[52﹣(2)2]=2×(25﹣12)=2×13=26.故答案为:26.20.解:原式=(2)2﹣(5)2=4×5﹣25×2=20﹣50=﹣30,故答案为:﹣30.21.解:∵=x﹣4+6﹣x=2,∴x﹣4≥0,x﹣6≤0,解得:4≤x≤6.故答案为:4≤x≤6.22.解:1=,2=,2=,4=,4=,8=.则第10个数据是:=16.故答案是:16.23.解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.24.解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.25.解:(1)==,(2)==,(3)==,故答案为:;;.26.解:∵=﹣a,∴a≤0,b≥0,故答案为:a≤0,b≥0.27.解:∵x<0,∴=﹣x.故答案为:﹣x.28.解:∵最简二次根式与可以进行合并,∴2m=15﹣m2,解得m1=﹣5,m2=3.∵当m1=﹣5时,15﹣m2=﹣10<0,不合题意舍去,∴m=3.故答案为:3.三.解答题29.解:原式=1+.30.解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.31.(1)解:(+)÷,=+,=+,=+;(2)x2﹣y2,=(x+y)(x﹣y),=,=.32.解:(1)∵==,==;比较与∵>,2>,∴+2>+,∴>.故答案为:>.(2)∵x2+y2=(x+y)2﹣2xy=﹣2=182﹣2=324﹣2=322答:x2+y2的值为322.(3)=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=1﹣答:的值为1﹣.33.解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)。
九年级数学上册第21章二次根式21.1二次根式ppt作业课件新版华东师大版

B.14
C.19
D.以上都不对
11.若 (a-2)2+a-2=0,则 a 的取值范围是____a_≤__2____.
12.若|a+b+1|与 a+2b+4互为相反数,则(a+b)2018=__1____.
13.若 x、y 是实数,且 y= x2-9+x-93-x2+7,则 5x+6y=_-___2_2___.
A. (-3)2=-3 B.- 32=-3 C. (±3)2=±3 D. 32=±3
6. (2a-1)2=1-2a,则(
7.当 m<0 时,化简 mm2的结果是__-__1____.
8.化简: (1) (-412)2;
解:412
(2) (3.14-π)2.
解:π-3.14
9.(绍兴期中)若实数 x 满足|x-3|+ x2+8x+16=7,化简 2|x+4|
- (2x-6)2的结果是( A )
A.4x+2
B.-4x-2
C.-2
D.2
10.已知实数 x,y 满足|x-3|+x y-8=0,则以 x,y 的值为两边长
的等腰三角形的周长是( C )
A.14 或 19
18.已知非零实数 a,b 满足 a2-8a+16+|b-3|+ (a-5)(b2+1) +4=a,求 ab-1 的值
解:由题意得:(a-5)(b2+1)≥0,∴a≥5, ∴ a2-8a+16= (a-4)2=|a-4|=a-4, ∴ a2-8a+16+|b-3|+ (a-5)(b2+1)+4=a-4+|b-3|+ (a-5)(b2+1)+4 =a,∴|b-3|+ (a-5)(b2+1)=0. 又∵|b-3|≥0, (a-5)(b2+1)≥0, ∴|b-3|= (a-5)(b2+2)=0,∴b=3,a=5, ∴ab-1=52=25.
华东师大版九年级数学上册第21章21.3.2《二次根式的混合运算》同步测试(含答案)

华师版九年级数学上册第 21 章二次根式21.3.2 二次根式的混淆运算同步测试题号 一二三 总分得分第Ⅰ卷(选择题)一、选择题 (共 10 小题, 3*10=30 )11.算式 6×( 3- 1)之值为什么? ()A.2-6B. 2-1 C .2- 6D . 12.以下计算正确的选项是( )A .3 10-2 5= 5711 1B. 11·( 7 ÷11)= 11 C . ( 75- 15) ÷ 3= 2 5 18D.3 18-3 9= 23.若 x = a - b , y = a + b ,则 xy 的值是 ()A . 2 aB . 2 bC . a +bD . a - b4.计算 ( 5- 3)(5+ 3)- ( 2+ 6)2的结果是 ()A .- 7B .- 7-2 3C .- 7-8 3D .- 6-4 315 .计算 32× + 2× 5的结果预计在 ()2A .7到 8之间B .8到9之间C .9 到 10 之间D .10 到 11 之间6.已知 a = 5+ 2, b = 5- 2,则a 2+b 2 + 7的值为 ()A . 3B . 4C . 5D . 61x y x y7.已知 y = 1- 8x + 8x - 1+ 2,则代数式 y + x + 2- y + x - 2的值是 ()A. 0B. -1C.1D. 211a 2+b 2 +318.已知 a = 5- 2, b =5+ 2,则 的值是 ()A . 4B. 5C. 6D. 7161,求 a 5+ 2a 4- 17a 3- a 2+18a - 17 的值是 ( )9.设 a = 17+ A .-2 B .-1C . 0 D. 110.如图 21- 3- 1,有一张边长为 6 2 cm 的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子, 剪掉的四个角是面积相等的小正方形, 此小正方形的边长为2 cm.则长方体盒子的体积为 ()A. 322cm 3 B. 162cm 3C. 323cm 3D . 16 3cm 3第Ⅱ卷(非选择题)二.填空题 (共 8 小题, 3*8=24 )11. 计算:3+ | 3-2|- (1)-1= ______.3212. 假如 (2+ 2)2= a + b 2(a , b 为有理数 ),那么 a + b 等于 _______.13. 计算: ( 3- 1)( 3+ 1)2= _________.2019× (2 202014.计算: (2 6+ 5) 6-5) = ____________ .15. 若 x , y , z 为实数,且 x + 1 + |y - 1|+ ( z - 1)2 = 0,则 (x + y + z)2019的值是 ___________ .16. 已知 a , b 为一等腰三角形的两边长,且知足等式 2 3a -6+ 32- a = b -4,则此等腰三角形的周长是 __________.12117.已知 x-x= 2,代数式x+x2+ 14的值是__________.18.已知 x1=3+2,x2=3- 2,则 x12+ x22= _________.三.解答题(共 7 小题,46 分)19. (6 分 ) 计算:(1) 18-3-64-61- 32;232-72(2)- (3+10)(3-10);222(3)3÷23×5+ | 10- 4|- 0.1.20. (6 分 ) 已知 x= 2-3, y= 2+3,求代数式的值:(1)x 2- y2;(2)x 2+ xy+ y2.21. (6 分 ) 已知 a=2, b=2,求 3a2- ab+ 3b2的值.7+ 57- 51x y x y22. (6 分 ) 已知 y=1- 8x+8x- 1+2,求代数式y+x+2-y+x- 2的值.23. (6 分 ) 在一个边长为 (2 3+3 5)cm 的正方形的内部挖去一个长为(2 3+10)cm,宽为( 6-5)cm 的矩形,求节余部分图形的面积.24. (8 分) 礼拜天,张琪的妈妈和张琪做了一个小游戏.张琪的妈妈说:“你此刻学习了‘二次根式’,若 x 代表10的整数部分,y 代表它的小数部分,我这个钱包里的钱有(10+ x)y 元,你猜一下这个钱包里的钱有多少,若猜对了,钱包里的钱全给你.”请你帮张琪猜一下钱包里究竟有多少钱.25. (8 分 ) 已知 x=1, y=1,求: (1)x 2y- xy 2的值; (2)x 2- xy + y2的值.3- 223+ 22参照答案1-5 ABDDA6-10 CCDDA11.012.1013.2 3+214.5-2 615.116.1017.4 318.1019.解: (1)原式= 3 2- (- 4)- 32-4 2=32+ 4-32-4 2=4-42;(2)原式=42- 62- (9- 10)=-2- 9+ 10=1;3233(3)原式=23210-10=10+ 4-10-10=4- 10.××+4-10101038520.解: (1)∵ x=2- 3, y= 2+ 3,∴x+ y=4, x- y=- 2 3,∴ x2- y2= (x+ y)(x - y)= 4×(- 23)=- 8 3.(2) ∵ x = 2- 3, y = 2+ 3,∴ x + y =4, xy =1,∴ x 2+ xy + y 2= (x + y)2- xy = 42- 1= 16- 1= 15.21. 解: ∵a =2 = 2( 7- 5)7- 5,同理b = 7+ 5,∴ a +b ==7+ 5 ( 7+ 5)( 7- 5)2 7,ab = 2,3a 2-ab + 3b 2=3a 2+ 6ab + 3b 2-7ab = 3(a + b)2- 7ab = 70.22. 8x - 1≥0,( x + y )2( x - y ) 2解:由题意得1- 8x ≥0,∴ x =1,y = 1,∴x - y < 0,原式=xy-xy8 2=|x +y| - |x - y|= 2x = 2 xy ,当 x = 1, y = 1时,原式= 1.xyxyy8223. 解:节余部分的面积为: (2 3+ 3 5)2 -(2 3+ 10)( 6-5)= (12+ 12 15+ 45)- (6 2- 2 15+ 2 15- 5 2)= (57+ 12 15- 2)(cm 2).24. 解:由于 3< 10< 4,因此 10的整数部分是 3,即 x = 3,进而小数部分y = 10- 3,因此 ( 10+ x)y = ( 10+ 3)( 10- 3)= ( 10)2- 9= 1,答:钱包里有 1 元钱.25. 解 : ∵ x =1=3+2 2=3+22 , y =1=3-2 2(3-2 2)( 3+2 2)3+2 23-2 2=3-22,( 3+2 2)( 3-2 2)∴ xy = 1 1= 1, x + y = 3+ 2 2+ 3-2 2= 6. ·3- 2 2 3+2 2(1)x 2 y -xy2= xy(x - y)= 1×[(3+ 2 2)- (3- 2 2)]= 4 2.(2)x 2- xy + y 2= (x + y)2- 3xy= 62- 3×1= 36- 3= 33.。
华师大版九年级数学上册《第21章 二次根式》(资阳市简阳市镇金中学)

《第21章二次根式》(四川省资阳市简阳市镇金中学)一、选择题1.下列二次根式中的取值范围是x≥3的是()A.B.C.D.2.下列二次根式中,是最简二次根式的是()A.2B.C.D.3.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥4.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n 的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n5.如果最简二次根式与能够合并,那么a的值为()A.2 B.3 C.4 D.56.已知,则2xy的值为()A.﹣15 B.15 C.D.7.下列各式计算正确的是()A.B. C. D.8.等式•=成立的条件是()A.x>1 B.x<﹣1 C.x≥1 D.x≤﹣19.下列运算正确的是()A.﹣= B.=2C.﹣= D.=2﹣10.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7二、填空题11.化简:(﹣)﹣﹣|﹣3|= .12.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是.13.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.14.若实数x,y满足,则xy的值为.15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.16.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三、解答题17.计算:(1)﹣+;(2)(﹣)×;(3)|﹣6|﹣﹣(﹣1)2;(4)﹣()2+(π+)0﹣+|﹣2|18.先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.19.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.20.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.21.先化简,再求值:(﹣)•,其中x=.22.该试题已被管理员删除23.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.《第21章二次根式》(四川省资阳市简阳市镇金中学)参考答案与试题解析一、选择题1.下列二次根式中的取值范围是x≥3的是()A.B.C.D.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数分别计算出x的取值范围,进而得到答案.【解答】解:A、3﹣x≥0,解得x≤3,故此选项错误;B、6+2x≥0,解得x≤﹣3,故此选项错误;C、2x﹣6≥0,解得x≥3,故此选项正确;D、x﹣3>0,解得x>3,故此选项错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握被开方数为非负数.2.下列二次根式中,是最简二次根式的是()A.2B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;。
九年级数学二次根式测试题

九年级数学二次根式测试题时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是52.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .03.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若ba 是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥b a 5.已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -6.把mm 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -7.下列各式中,一定能成立的是( )。
A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( ) A .022=-y x B .033=+y xC .022=-y xD .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22C .55 D .5 10.已知1018222=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若5-x 不是二次根式,则x 的取值范围是 。
12.已知a<2,=-2)2(a 。
13.当x= 时,二次根式1+x 取最小值,其最小值为 。
14.计算:=⨯÷182712 ;=÷-)32274483( 。
初中数学 华东师大版九年级上册 第21章 二次根式 常见题型总结专题练习
二次根式常见题型总结题型1 二次根式的概念(后面附答案) 考查形式 选择题或填空题1. 如果yx 1-是二次根式,那么y x ,应满足的条件是 【 】 (A )x ≥1,y ≥0 (B )()1-x y ≥0 (C )yx 1-≥0 (D )x ≥1,0>y 2. 若代数式x x +-11有意义,则实数x 的取值范围是 【 】(A )1≠x (B )x ≥0 (C )0≠x (D )x ≥0且1≠x 3. 要使式子2+a a 有意义,则a 的取值范围为__________.题型2 最简二次根式、同类二次根式 考查形式 选择题或填空题4. 下列根式中是最简二次根式的是 【 】 (A )32(B )3 (C )9 (D )12 5. 下列根式中,不能与3合并的是 【 】 (A )31 (B )31(C )32 (D )12 6. 若最简二次根式132-+b a 与a b -4是同类二次根式,则=a ______,=b ______.题型3 二次根式的化简求值 考查形式 选择题、填空题、解答题7. 若62121--+-=x x y ,则=xy _________. 8. 若233+-+-=x x y ,则=y x _________.9. 若02=+x x ,则x 的取值范围是__________. 10. 若()0132=++-n m ,求()20202n m +的值.11. 先化简,再求值:yx y y x x ---22,其中321,321-=+=y x .12. 已知函数()23-+-=n x m y (n m ,为常数)的图象如图所示,化简:4432+---n n m .题型4 二次根式的计算 考查形式 选择题、填空题、计算题13. 下列等式不成立的是 【 】 (A )663223=⨯ (B )428=÷ (C )228=- (D )3331=÷14. 计算:(1)3248312123÷⎪⎪⎭⎫ ⎝⎛+-; (2)()()()2321132132--+-.15. 计算:(1)()()45311522522019⨯--+-+-;(2)()122191218-⎪⎭⎫⎝⎛+--+.题型5 探究活动 考查形式 解答题16. 在进行二次根式的化简时,我们有时会遇到形如132,32,53+的式子,其实我们还可以将其进一步化简:553555353=⨯⨯=;(Ⅰ) 36333232=⨯⨯=;(Ⅱ) ()()()()1321321313132132-=-=-+-⨯=+.(Ⅲ)以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:()()131313131313132-=+-+=+-=+.(Ⅳ)(1)请用不同的方法化简352+:①参照(Ⅲ)式化简352+; ②参照(Ⅳ)式化简352+.(2)化简:12121571351131-+++++++++n n .题型6 定义新运算17. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.二次根式常见题型总结答案1. C2. D3. 2->a4. B5. C6. 1 , 17. 3-8. 99. x ≤0 10. 解:∵()0132=++-n m3-m ≥0,()21+n ≥0∴01,03=+=-n m ∴1,3-==n m ∴()()123220202020=-=+n m .11. 解:()()y x yx y x y x y x y x y x y y x x +=--+=--=---2222 当321,321-=+=y x 时 原式2321321=-++=.12. 解:由函数的图象可知:02,03<->-n m ∴2,3<>n m ∴4432+---n n m()()52323232-+=---=---=---=n m n m n m n m .13. B14. 解:(1)3248312123÷⎪⎪⎭⎫ ⎝⎛+- 314323328323433236=÷=÷⎪⎪⎭⎫ ⎝⎛+-=; 解:(2)()()()2321132132--+-()34234131112341112+-=+-=+---=.15. 解:(1)()()45311522522019⨯--+-+-253311251-=⨯---+=;解:(2)()122191218-⎪⎭⎫⎝⎛+--+222322323+=+--+=.16. 解:(1)①()()()3535352352-+-=+()352352-=-=②()()35353535352-=+-+=+(2)2112-+n .(过程略) 17. 2。
备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)
备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)一、单选题1.下列根式中,是最简二次根式的是()A.B.C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.下列各式中不是二次根式的是()A.B.C.D.4.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±35.下列运算错误的是()A.÷=2B.(+ )×=2 +3C.(4 ﹣3 )÷2 =2﹣D.(+7)(﹣7)=﹣26.9的算术平方根是()A.3B.-3C.±3D.±97.下列式子为最简二次根式的是()A.B.C.D.8.下列根式中属最简二次根式的是()A.B.C.D.9.下列二次根式中属于最简二次根式的是().A.B.C.D.10.下列各式中,是最简二次根式的是()A.8B.C.D.11.有一个数值转换器,原理如下:当输入的X=64时,输出的y等于()A.2B.8C.D.二、填空题12.已知(2a+1)2+=0,则a2+b2021=________13.9的算术平方根是________14.若二次根式有意义,则m的取值范畴是________.15.化简的结果是________16.当x=-1时,二次根式的值是________.17.若二次根式在实数范畴内有意义,则x的取值范畴是_______ _.18.运算:=________19.化简的结果________20.的结果是________.21.最简根式和是同类二次根式,则a=________三、运算题22.运算(1)(2).23.运算:﹣15+(1)﹣15 +(2)÷﹣×+ .四、解答题24.求使有意义的x的取值范畴.25.运算:(1)+|3﹣|﹣()2;(2)•(﹣).五、综合题26.按要求填空:(1)填表:________(2)依照你发觉规律填空:已知:________,________;已知:,________.27.已知和,求下列各式的值:(1)x2﹣y2(2)x2+2xy+y2 .答案解析部分一、单选题1.【答案】D【考点】最简二次根式【解析】【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意,故答案为:D.【分析】最简二次根式满足的条件:1、被开方数的每一个因数(或因式)的指数都小于根指数2;2、被开方数中不含有分母,被开方数是多项式时要先因式分解后再观看。
2022-2023学年华东师大版九年级数学上册《第21章二次根式》选择专项练习题(附答案)
2022-2023学年华东师大版九年级数学上册《第21章二次根式》选择专项练习题(附答案)1.下列运算正确的是()A.B.C.D.2.下列各式中,是最简二次根式的是()A.B.C.D.3.计算()2的结果是()A.5﹣2a B.﹣1C.﹣1﹣2a D.14.已知a=2+,b=2﹣,那么a与b的关系为()A.互为相反数B.互为倒数C.相等D.绝对值相等5.用※定义一种新运算:对于任意实数m和n,规定m※n=m2n﹣mn﹣3n,如:1※2=12×2﹣1×2﹣3×2=﹣6.则(﹣2)※结果为()A.B.C.D.6.先阅读下面例题的解答过程,然后作答.例题:化简.解:先观察,由于8=5+3,即8=()2+()2,且15=5×3,即=2××,则有==+.试用上述例题的方法化简:=()A.+B.2+C.1+D.+27.若最简二次根式和能合并,则x的值为()A.0.5B.1C.2D.2.58.若关于a的二次根式有意义,且a为整数,若关于x的分式方程﹣=﹣1的解为正数,则满足条件的所有a的值的和为()A.﹣7B.﹣10C.﹣12D.﹣159.已知|2020﹣a|+=a,则4a﹣40402的值为()A.8084B.6063C.4042D.202110.如图、在一个长方形中无重叠的放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(4﹣2)cm2B.(8﹣4)cm2C.(8﹣12)cm2D.8cm211.如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为()A.16cm2B.40 cm2C.8cm2D.(2+4)cm2 12.下列各式正确的是()A.()=×=7B.()()=5﹣C.()()=3﹣2=1D.()2=5﹣3=213.若的整数部分为x,小数部分为y,则(2x+)y的值是()A.B.3C.D.﹣314.如图,已知钓鱼竿AC的长为6m,露在水面上的鱼线BC长为3m,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为2m,则BB′的长为()A.m B.2m C.m D.2m15.若实数x,y满足,则x﹣y的值是()A.1B.﹣6C.4D.616.一个长方体纸盒的体积为4dm3,若这个纸盒的长为2dm,宽为dm,则它的高为()A.1dm B.2dm C.2dm D.48dm17.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定18.2、6、m是某三角形三边的长,则等于()A.2m﹣12B.12﹣2m C.12D.﹣419.代数式在实数范围内有意义,则x的值可能为()A.2023B.2021C.﹣2022D.2020 20.设,,则M与N的关系为()A.M>N B.M<N C.M=N D.M=±N21.实数a,b在数轴上的对应点如图所示,化简()2+﹣|a|的结果是()A.2a B.2b C.﹣2b D.﹣2a22.若mn>0,m+n<0,则化简÷=()A.m B.﹣m C.n D.﹣n参考答案1.解:A、=2,本选项计算错误,不符合题意;B、==,本选项计算错误,不符合题意;C、4÷=4÷2=2,本选项计算正确,符合题意;D、3×2=6,本选项计算错误,不符合题意;故选:C.2.解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、是最简二次根式,故此选项符合题意;D、=,故此选项不符合题意;故选:C.3.解:∵有意义,∴2﹣a≥0,解得:a≤2,则a﹣3<0,原式=2﹣a+3﹣a=5﹣2a.故选:A.4.解:∵a=2+,b=2﹣,∴ab=(2+)(2﹣)=1,∴a与b互为倒数,故选:B.5.解:原式=(﹣2)2×﹣(﹣2)×﹣3=4+2﹣3=3,故选:A.6.解:===+2;故选:D.7.解:∵最简二次根式和能合并,∴2x+1=4x﹣3.解得x=2.故选:C.8.解:去分母得,x+a+1=﹣x+2,解得,x=,∵关于x的分式方程有正数解,∴>0,∴a<1,又∵x=2是增根,当x=2时,=2,即a=﹣3,∴a≠﹣3,∵有意义,∴5+a≥0,﹣a>0,∴﹣5≤a<0,因此﹣5≤a<0且a≠﹣3,∵a为整数,∴a可以为﹣5,﹣4,﹣2,﹣1其和为﹣12,故选:C.9.解:由题意得,a﹣2021≥0,解得,a≥2021,原式变形为:a﹣2020+=a,则=2020,∴a﹣2021=20202,∴4a=4×20202+8084,∴4a﹣40402=40402+8084﹣40402=8084,故选:A.10.解:如图.由题意知:S正方形ABCH=HC2=16cm2,S正方形LMEF=LM2=LF2=12cm2,∴HC=4cm,LM=LF=2cm.∴S空白部分=S矩形HLFG+S矩形MCDE=HL•LF+MC•ME=HL•LF+MC•LF=(HL+MC)•LF=(HC﹣LM)•LF=(4﹣2)×2=(8﹣12)(cm2).故选:C.11.解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是+=4+2,留下部分(即阴影部分)的面积是(4+2)2﹣16﹣24=16+16+24﹣16﹣24=16(cm2).故选:A.12.解:A、()=+,故错误.B、(+)(﹣)=5﹣+﹣,故错误.C、(﹣)(+)=()2﹣()2=3﹣1=2,故正确.D、(﹣)2=5﹣2+3=5﹣2,故错误.故选:C.13.解:∵9<13<16∴3<<4,∴的整数部分x=2,则小数部分是:6﹣﹣2=4﹣,∴y=4﹣,则(2x+)y=(4+)(4﹣)=16﹣13=3.故选:B.14.解:在Rt△ABC中,AC=6m,BC=3m,∴AB===3,在Rt△AB′C′中,AC′=6m,B′C′=2m,∴AB′===2,∴BB′=AB﹣AB′=3﹣2=(m);故选:C.15.解:∵x﹣5≥0,5﹣x≥0,∴x≥5,x≤5,∴x=5,∴y=﹣1,∴x﹣y=5﹣(﹣1)=5+1=6,故选:D.16.解:设它的高为xdm,根据题意得:2××x=4,解得:x=1.故选:A.17.解:∵a===2﹣,∴a=b.故选:B.18.解:∵2、6、m是某三角形三边的长,∴4<m<8,∴m﹣4>0,m﹣8<0,∴=m﹣4﹣(8﹣m)=m﹣4﹣8+m=2m﹣12.故选:A.19.解:由题意可知:,解得:x≥2022,观察选项,x的值可能为2023.故选:A.20.解:∵====1,===1,∴M=N,故选:C.21.解:由数轴可知:a<﹣b<0<b<﹣a,∴b﹣a>0,∴原式=b+b﹣a+a=2b,故选:B.22.解:∵mn>0,m+n<0,∴m<0,n<0,>0,∴原式===|m|=﹣m,故选:B.。
(人教版)长春九年级数学上册第二十一章《一元二次方程》经典题(答案解析)
一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.3.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 4.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=D 解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额. 5.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.6.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16B 解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.7.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A解析:A【分析】 结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.8.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .5B解析:B【分析】对于关于x 的一元二次方程()222310a x a x -+++=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=(23a +)2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】 解:∵整数a 使得关于x 的一元二次方程()222310a x a x -+++=有两个实数根, ∴a-2≠0且2a+3≥0且△=(23a +)2-4(a-2)≥0,∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-,()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题11.方程230x -=的解为___________.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.13.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12 【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.14.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 15.一元二次方程()422x x x +=+的解为__.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法解析:114x =,22x =- 【分析】 利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.16.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增 解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 17.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键.19.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算. 20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.22.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?解析:这个苗圃园垂直于墙的一边长为12米.【分析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.【点睛】本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键,注意实际应用中的取值范围. 23.解方程:(1)x 2+6x ﹣2=0.(2)(2x ﹣1)2=x (3x +2)﹣7.解析:(1)x 1=﹣,x 2=﹣3;(2)x 1=2,x 2=4.【分析】(1)方程利用配方法求出解即可;(2)方程整理后,利用分解因式分解法求出解即可.【详解】解:(1)方程整理得:x 2+6x =2,配方得:x 2+6x +9=11,即(x +3)2=11,开方得:x +3=,解得:x 1=﹣,x 2=﹣3(2)方程整理得:x 2﹣6x +8=0,分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4.【点睛】此题考查了解一元二次方程-配方法,以及因式分解法,熟练掌握各自的解法是解本题的关键.24.解方程:y(y-1)+2y-2=0.解析:121,2y y ==-【分析】利用分解因式法解答即可.【详解】解:原方程可变形为:()()1210y y y -+-=,即()()120y y -+=,∴y -1=0或y +2=0,解得:121,2y y ==-.【点睛】本题考查了一元二次方程的解法,属于基础题目,熟练掌握求解的方法是关键. 25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】(1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.解方程(1)()221250x --= (2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩解析:(1)123,2x x ==-;(2)51x y =⎧⎨=⎩【分析】(1)方程移项后,运用直接开平方法求解即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()221250x --= ()22125x -=215x -=或215x -=-∴123,2x x ==-;(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩①② 由①得:4x y =+③,把③代入②可得:1342x y y -+-=, 5x =,∴1y =,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.同时还考查了二元一次方程组的解法.27.(1)计算:()21332273-+--⨯. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)23-;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1)21(3)|32|273-+--⨯=3+2﹣33-=2﹣3. (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第二十一章二次根式测试题
一、选择题
1. 下列式子一定是二次根式的是( )
A.2x B.x C.22x D.22x
2.若bb3)3(2,则( )
A.b>3 B.b<3 C.b≥3 D.b≤3
3.若13m有意义,则m能取的最小整数值是( )
A.m=0 B.m=1 C.m=2 D.m=3
4.若x<0,则xxx2的结果是( )
A.0 B.—2 C.0或—2 D.2
5.下列二次根式中属于最简二次根式的是( )
A.14 B.48 C.ba D.44a
6.如果)6(6xxxx,那么( )
A.x≥0 B.x≥6 C.0≤x≤6 D.x为一切实数
7.小明的作业本上有以下四题:
①24416aa;②aaa25105;③aaaaa112;④aaa23。做
错的题是( )
A.① B.② C.③ D.④
8.下列说法正确的是( )
A.若aa2,则a<0 B.0,2aaa则若
C.4284baba D. 5的平方根是5
9.二次根式13)3(2mm的值是( )
A.23 B.32 C.22 D.0
10.化简)0(||2yxxyx的结果是( )
A.xy2 B.y C.yx2 D.y
11.若ba是二次根式,则a,b应满足的条件是( )
A.a,b均为非负数 B.a,b同号
C.a≥0,b>0 D.0ba
12.已知aA.aba B.aba
C.aba D.aba
13.把mm1根号外的因式移到根号内,得( )
A.m B.m C.m D.m
14.下列各式中,一定能成立的是( )。
A.22)5.2()5.2( B.22)(aa
C.122xx=x-1 D.3392xxx
15.当3x时,二次根7522xxm式的值为5,则m等于( )
A.2 B.22 C.55 D.5
16. 下列各式一定是二次根式的是( )
A. 7 B. 32m C. 21a D. ab
17. 若23a,则2223aa等于( )
A. 52a B. 12a C. 25a D. 21a
18. 若1a,则31a化简后为( )
A. 11aa B. 11aa
C. 11aa D. 11aa
19. 能使等式22xxxx成立的x的取值范围是( )
A. 2x B. 0x C. 2x D. 2x
20. 计算:222112aa的值是( )
A. 0 B. 42a C. 24a D. 24a或42a
21. 若12x,则224421xxxx化简的结果是( )
A. 21x B. 21x C. 3 D. -3
22. 若3的整数部分为x,小数部分为y,则3xy的值是( ) A. 333 B. 3 C. 1 D. 3 二、填空题 1.①2)3.0( ;②2)52( 。 2.二次根式31x有意义的条件是 。 3.若m<0,则332||mmm= 。 4.1112xxx成立的条件是 。 5.比较大小:—32 —13。 6. 若11mm有意义,则m的取值范围是 。 7. 当__________x时,21x是二次根式。 8. 在实数范围内分解因式:429__________,222__________xxx。 9. 当15x时,215_____________xx。 10. 把1aa的根号外的因式移到根号内等于 。 11. 若1ab与24ab互为相反数,则2005_____________ab 12. 已知32,32xy,则33_________xyxy。 三、解答题 1.计算: (1))459(43332 (2)126312817 (3)11221231548333 (4)1485423313 (5)2743743351 (6) 222212131213
2.若代数式||112xx有意义,则x的取值范围是什么?
3.若x,y是实数,且2111xxy,求1|1|yy的值。
4. 已知2310xx,求2212xx的值。
5. 把根号外的因式移到根号内:
11.55
1
2.11xx
6. 已知:1110aa,求221aa的值。
7. 已知:,xy为实数,且113yxx,化简:23816yyy。
8. 已知11039322yxxxyx,求的值。